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Detection of timescales in evolving 
complex systems
Richard K. Darst1, Clara Granell2, Alex Arenas3, Sergio Gómez3, Jari Saramäki1 & 
Santo Fortunato1,4

Most complex systems are intrinsically dynamic in nature. The evolution of a dynamic complex system 
is typically represented as a sequence of snapshots, where each snapshot describes the configuration 
of the system at a particular instant of time. This is often done by using constant intervals but a better 
approach would be to define dynamic intervals that match the evolution of the system’s configuration. 
To this end, we propose a method that aims at detecting evolutionary changes in the configuration of 
a complex system, and generates intervals accordingly. We show that evolutionary timescales can be 
identified by looking for peaks in the similarity between the sets of events on consecutive time intervals 
of data. Tests on simple toy models reveal that the technique is able to detect evolutionary timescales of 
time-varying data both when the evolution is smooth as well as when it changes sharply. This is further 
corroborated by analyses of several real datasets. Our method is scalable to extremely large datasets 
and is computationally efficient. This allows a quick, parameter-free detection of multiple timescales in 
the evolution of a complex system.

We live in a dynamic world, where most things are subject to steady change. Whether we consider the interactions 
between people, proteins, or Internet devices, there is a complex dynamics that may progress continuously with 
varying rates1, or be punctuated by sudden bursts2. Therefore, for understanding such complex systems, rich 
empirical data with detailed time-domain information is required, together with proper statistical tools to make 
use of it. Fortunately, thanks to Information and Communication Technologies (ICT) and the Web, time-stamped 
datasets are increasingly available. However, the development of methods for extracting useful information out of 
massive temporal data sets is still an ongoing task3.

A typical approach for studying the dynamics of a large-scale evolving complex system is to divide the tem-
poral evolution into meaningful intervals where information of single snapshots is aggregated. The “slice” cor-
responding to the interval between times tn and tn+1 then comprises the subset of elements and interactions (or 
events) that are active between tn and tn+1. For instance, a slice may correspond to a group of people exchanging 
phone calls during an interval of one hour, or to a set of tweets containing specific hashtags posted within some 
time span. Once the intervals are defined, the analysis of the system turns into an investigation of the slices.

The main problem is then how to properly “slice” the data, so that the resulting slices provide the understand-
ing we are after. Among several alternatives, one can decide to use a constant slice size corresponding to some 
characteristic temporal scale of the dynamics (if there is any), or a variable slice size that follows the rate of the 
dynamic activity. However, if we focus our attention on the evolutionary aspects of the system, it might be con-
venient to define the slices according to the variability of the system through time. As an example, if we want to 
use data on email exchanges within the company to understand the evolution of the Enron scandal, it is better 
to use slices that capture changes in the composition of communication groups and thus track the evolution of 
communication patterns, as compared to slices based solely on the rate of activity in the email communication 
network. Consequently, the choice of slice size will be determined both by the availability and granularity of data, 
and by the timescales that reflect evolutionary changes in the configuration of events.

It follows that there is a clear need for a principled way of automatically identifying suitable evolutionary 
timescales in data-driven investigations of evolving complex systems. This is the motivation behind the method 
proposed in the present paper. A proper time-slicing method should produce meaningful evolutionary timescales 
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(intervals) describing changes in the event landscape, both when these changes are smooth and when they are 
abrupt. For abrupt changes, the problem becomes related to anomaly detection4,5 that has applications in e.g. 
fraud or malware detection, and in particular to change-point detection in temporal networks that comprise 
time-stamped contact events between nodes. For temporal networks, several ways for detecting change points 
have been proposed, based on techniques of statistical quality control6,7, generative network models8–10, boot-
strapping11, and snapshot clustering12–14. Note that our approach is not specifically designed for change-point 
detection, but it does reveal change points as a side product of the timescale detection.

In this work, we introduce an automatic time-slicing method for detecting timescales in the evolution of 
complex systems that consist of recurring events, such as recurring phone calls between friends, emails between 
colleagues and coworkers, mobility patterns of a set of individuals, or Twitter activity about a certain topic. The 
method can be easily extended to systems in which interactions are permanent after their appearance (e.g. cita-
tion networks). Our approach is sequential, and consists of determining the size of each interval from the size of 
the previous interval, trying to maximize the similarity between the sets of events within consecutive intervals 
(slices). In general, there is a unique maximum: too short intervals contain few, random events whereas too long 
intervals are no longer representative of the system’s state at any point. Consider, e.g., a set of phone calls in a 
social system aggregated for a month – compared to this slice, one-minute slices would contain apparently ran-
dom calls, and a 10-year slice would contain system configurations that have nothing to do with the initial slice. 
The method is parameter-free and validated on toy models and real datasets.

Results
Method for detecting evolutionary timescales. Let us consider a series of time-stamped events 
recorded during some period of time. Our goal is to create time slices, i.e. sets of consecutive time intervals, that 
capture the significant evolutionary timescales of the dynamics of the system. There are some minimal conditions 
that data must fulfil for this to be a useful procedure: events must be recurrent in time and the total period of 
recording must be long enough to capture the evolution of the system.

In this framework, the appropriate timescales detected must have the following properties: i) Evolution is 
understood as changes in the event landscape, i.e., intervals will only depend on the identities of events within 
them, not on the rate of events in time. ii) Timescales should become shorter when the system is evolving faster, 
and longer when it is evolving more slowly. iii) The particular times when all events suddenly change (critical 
times) should have an interval placed at exactly that point. This is a limiting case of (ii).

To obtain timescales satisfying the above properties, our method iteratively constructs the time intervals  
[tn, tn+1) according to a similarity measure between each pair of consecutive slices Sn−1 and Sn, where Sn is the set 
of events between time tn and tn+1. By looking at the similarity measure as a function of time, one can detect mul-
tiple time scales. The algorithm is designed to detect the longest possible timescales in a parameter-free fashion. 
For discussion of timescale detection and why this is a good choice for real data, see Supplementary Information 
(SI), Section S1.

For the sake of clarity, assume that our method is in progress and we have a previous slice Sn−1. We want to 
find the next slice Sn that is defined by the interval [tn, tn +  Δ tn). The increment Δ tn is the objective variable, and 
is determined by locally optimizing the Jaccard index between Sn−1 and Sn:
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This is shown in Fig. 1(a). The Jaccard Index15 J(Δ tn) estimates the similarity of the two sets as the fraction of their 
common items (events) with respect to the total number of different items in them. In our case, the optimization 
process is performed by increasing Δ tn until a peak for J(Δ tn) is found (see Materials and Methods). The Jaccard 
similarity can then be used to understand the underlying event dynamics. We stress that in the case where the 
same event can occur multiple times, one could also consider using weighted similarity measures, that account 
for the number of occurrences of the events. We discuss weighted similarity measures in the SI. In the examples 
we discuss results are well aligned with expectations, even though multiple event occurrences are disregarded.

This iterative process requires an initial slice, which is computed as follows: Beginning with the initial time t0, 
we construct two intervals [t0, t0 +  Δ t) and [t0 +  Δ t, t0 +  2Δ t). Repeating the process above, we find the maximum 
of J(Δ t) and use that to set the first two intervals at once. This initialization preserves the meaning of our slices 
and does not include any additional hypothesis. After computing both slices, the second one is discarded so that 
all subsequent intervals have the same semantic meaning, and we start the iterative process described above. Note 
that the method is parameter free. The Jaccard Index is used in a similar way in refs 13, 14 to assess the similarity 
of consecutive snapshots that are eventually grouped by means of hierarchical clustering to build relevant inter-
vals, and in ref. 16 to study the effects of time window lengths in social network analysis.

The logic behind the method is easy to understand. Let us first consider a smoothly evolving system. We take 
the previous interval Sn−1 as fixed, and try to find the next interval Sn(Δ t). On one hand, if Δ t is small, increasing 
Δ t will very likely add events already present in Sn−1. Thus, the numerator (intersection term) of Eq. (1) increases 
more than the denominator (union term), and J(Δ t) becomes larger. On the other hand, if Δ t is very large, the 
increase in Δ t will tend to add new events not seen in the previous interval. Therefore the denominator (union 
term) of Eq. (1) grows faster than the numerator (intersection term), and consequently J(Δ t) decreases. These 
principles combined imply the existence of an intermediate value of Δ t representing a balance of these factors, 
which is a solution satisfying our basic requirements of sliced data. If the smoothness in the evolution of the tem-
poral data is altered by an abrupt change (critical time), the previous reasoning still holds, and a slice boundary 
will be placed directly at the snapshot where the anomalous behavior begins.
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Our method has several technical advantages. First and foremost, it is fast and scalable. The method is O(N) 
in the total data size N (e.g. number of distinct events), if intervals are small. Efficient hash table set implementa-
tions also allow linear scaling in interval size, and therefore extremely large data sizes can be processed. The data 
processing is done online: only the events from the previous interval must be saved to compute the next interval. 
There are no input parameters or a priori assumptions that must be made before the method can begin. The input 
is simple, consisting simply of (event_id, time) tuples. The method finds an initial intrinsic scale to the data, where 
each interval represents roughly the same amount of change.

Validation on synthetic data. First we have generated synthetic temporal data examples to be analyzed 
with our method. The data displays several common configurations of the temporal evolution of a toy system. 
Figure 1 shows some examples and the timescales that our method detects. In Fig. 1(a) we sketch the details of 
the method. Figure 1(b) shows three clearly distinguishable sets of events, which are correctly sliced into their 
respective timescales. Within each interval, events repeat very often, but between intervals there are no repeti-
tions. Figure 1(c) shows that the rate of the short-term repetitions does not matter from our evolutionary point of 
view. The second interval has the same characteristic events at all times, so no evolutionary changes are observed. 
Figure 1(d) shows a continually evolving system. For the first half, the long-term rate of evolutionary change is 

Figure 1. Schematic representation of the application of our method to synthetic data. In each plot, the 
horizontal axis represents time in arbitrary units, and the vertical axis the event ID. A dot is present at each 
point where a given event occurs at a given time. The gray and white segments show the detected intervals. 
(a) The Jaccard score J is computed for the sets of events between adjacent intervals. Intervals are adjusted to 
maximize J. (b) Interval identification in a trivial case. Each region contains a characteristic set of events, all 
distinct from those of the other regions. (c) The total event rate (see second interval) does not affect interval 
size, only the characteristic set of events does. (d) Example of varying interval sizes. In the first half of time, 
events change more slowly than in the second half, and thus intervals are longer. Because this is data with clear 
transitions, (a–c) have first intervals merged.
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slow (events are repeated for a longer time before dying out), and thus the intervals are longer. Thereafter, the 
process occurs much faster, and thus the intervals are shorter.

We have also validated our method on more complex synthetic data designed to reveal non-trivial but con-
trolled evolutionary timescales. We choose a dynamics where there is a certain fixed number of events which, 
at every time, might be active or inactive (short-term repetition). We impose that the volume of active events 
per time unit must be, on average, constant. Additionally, to account for the long-term evolution, we change the 
identities of the events at a (periodically) varying rate. Low rates of change, that is, changing the identities of only 
a few events at any time, should result in large time intervals for the slices, while faster rates lead to high variations 
in the identities of the events and should produce shorter slices.

We check our method on this benchmark using a periodic evolutionary rate, with period τ =  500 (see 
Materials and Methods). In Fig. 2, the method shows the desired behavior, namely, it produces short intervals in 
regions where change is fastest (t ≈  250, 750) and longer intervals for low variability of events, i.e. slow evolution 
(t ≈  0, 500, 1000). Most notably, the Jaccard similarity is seen to reflect these dynamics, too. When change is slow-
est, the inter-interval similarity is high, and vice versa. These similarities could be used to perform some form 
of agglomerative clustering to produce super-intervals representing longer-term dynamics. We also show the 
Shannon entropy within each interval. We see that our method produces intervals containing roughly the same 
amount of information.

At times t =  1200 and t =  1400, we add two “critical points”, when the entire set of active events changes 
instantly. This is the limiting case of evolutionary change. As one would expect, slice boundaries are placed at 
exactly these points. Furthermore, the drastic drop in similarity indicates that unique change has happened here, 
and that dynamics across this boundary are uncorrelated.

Analysis of real temporal data. In this section we apply our approach to real-world data, where any true 
signal is obfuscated by noise and we do not have any information about the underlying dynamics.

We start with the Enron email dataset (see Materials and Methods). This dataset was made public during the 
legal investigation concerning the Enron Corporation, which ended in the bankruptcy and collapse of this cor-
poration17. Here, each event is an email communication sent or received by any of the senior managers who were 
subsequently investigated. During the course of the investigation, there were major structural changes in the com-
pany (see SI). Figure 3 shows the results of applying the method to the Enron data. Generally, the intervals are of 
the order of several weeks, which appears to be a reasonable time frame for changes in email communication pat-
terns. As expected, we see that the detected intervals do not simply follow changes in the rate of events, but rather 
in event composition. When comparing interval boundaries to some of major events of the scandal (exogenous 
information, shown as red vertical lines), we see that the interval boundaries often align with the events; note 
that there is no a priori reason for external events always to result in abrupt changes in communication patterns. 
Additionally, we present the results of the application of the change point detection method of Peel and Clauset 
(cpdetect)8. Unlike cpdetect, our method reveals the underlying basic evolutionary timescale (weeks), rather than 
only major change points. On the other hand, cpdetect requires a basic scale as an input before its application (in 
this case, one week). Performing a randomization hypothesis test, we find evidence (at significance p =  0.0194) 
that cpdetect change points correspond to lower-than-random similarity values within our method (see SI).

Next, we focus on the MIT Reality Mining personal mobility dataset. In this experiment, about 100 subjects, 
most of them affiliated to MIT Media Lab, have cellphones which periodically scan for nearby devices using 
the Bluetooth personal area network18. Here, events correspond to pairs of devices being in Bluetooth range 

Figure 2. Artificial data with changing event turnover rate with period τ = 500. (Top) Representation of 
events. Events have been ordered to show the envelope of the dynamics. Events change at the slowest rate at 
t =  500, 1000, and there are critical points at t =  1200, 1400. For clarity, only 10% of events are shown. (Middle) 
Detected intervals (gray/white regions), and inter-interval similarity (plotted green lines) for the slicing 
algorithm. We can see that the internal length reacts to the rate of change of events, and that the critical points 
correspond to intervals boundaries and to large drops in similarity. The similarity also reflects the rate of change 
of events at other times. (Bottom) Event rate (dark blue) and interval entropy (light yellow) over time. We see 
that overall event rate is constant and cannot be used to detect dynamical properties. We also see that each 
interval contains about the same amount of information, 7.3 to 7.7 bits.
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(i.e. physically close). Note that we do not limit the analysis to interactions only between the 100 subjects, but 
process all ≈ 5 ×  104 unique Bluetooth pairs seen (including detected devices not part of the experiment), a total 
of 1.8 ×  106 distinct data points. The major events (see SI) correspond to particular days in the MIT academic 
calendar or internal Media Lab events. In Fig. 4 we plot the time slices generated by our method. Again, we see 
that the basic evolutionary timescale is about one week. We see a correlation with some of the real events, such as 
a long period during winter holidays (late December) and Spring Break (late March). At the beginning (August) 
and end (June) there is a minimal data volume, assimilable to noise, which precludes the method to find reliable 
timescales.

In our last example, we look at the social media response to the semifinals of the UEFA Champions League 
2014–2015, a major European soccer tournament. We collected data from Twitter looking for tweets containing 
the hashtag #UCL, the most widely used hashtag to refer to the competition. As all captured tweets contain the 
hashtag #UCL, we define events by considering the other hashtags that a tweet may contain.

If a tweet contains more than one other hashtag, each of them is considered as a separate event. For example, 
if at time t there is a tweet containing #UCL, #Goal and #Football, we consider that we have two events at time 
t, one for #Goal and the other for #Football. In Fig. 5(a), we see a one-week span around the two first semifinal 
games. Because Twitter discourse is rather unstructured, intervals are very small, comprising at most a few hours. 
During the games themselves (May 5, 6 evenings), we see extremely short intervals representing the fast evolution 
of topics. In Fig. 5(b), we zoom in the first semifinal game. As the game begins, intervals become much shorter as 
we capture events that did not manifest in the previous games to the match. We see other useful signatures, like 
the rapid dynamics at the beginning of the second half (21:45) and at the time of the game-winning goal (21:58).

One could wonder if our method detects something in our data, beyond what one would expect in random 
data. To study this, we do a shuffling test. For each dataset, we compare the initial data with 100 randomized cases. 
Randomization is performed by shuffling all event IDs while preserving the same set of timestamps. For the base 
case, we calculate the widths of all intervals. We use a Mann-Whitney U test to compare this distribution to the 

Figure 3. Comparison of our method and the change point detection method of ref. 8 on the Enron email 
data. Thick red lines indicate events from the company’s timeline. (Top) Results of our method on the network, 
in the same format as Fig. 2. (Middle) Results of the cpdetect method on the network. Dark vertical lines mark 
change points. (Bottom) Event density of the network. We see that both methods align with the company’s 
events to some degree. Our method provides more fine-grained intervals, not just the major points, and is 
capable of more accurately aligning with the real events since it does not have predefined window sizes as an 
input.

Figure 4. Slicing of the MIT reality mining dataset. In this dataset, an event is considered the (from, to) 
pair of Bluetooth scanning, representing two devices being located within proximity of each other. The times 
of major events are known, such as important conferences or start/ends of semesters (see SI). We see that the 
slicing can find such major events, including the beginning of the 2005 semester and the beginning of classes at 
2005-Feb.
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distribution of all widths found in 100 resamples. The resulting p-values are listed in Table 1 and show that our 
results are clearly distinguishable from those found in random event streams datasets.

Discussion
Complex systems are inherently dynamic on varying timescales. Given the amount of available data on such 
systems, especially on human behavior and dynamics, there is a need for fast and scalable methods for gaining 
insight on their evolution. Here, we have presented a method for automatically slicing the time evolution of a 
complex system to intervals (evolutionary timescales) describing changes in the event landscape, so that the evo-
lution of the system may be studied with help of the resulting sequence of slices.

Our method provides the starting point of a pipeline analysis. Many time-varying data analysis techniques 
require segmented data as an input, and if the intervals are decided according to some fixed divisions, the bound-
aries will not be in the optimal places. Our method places snapshot boundaries in principled locations, which will 
tend to be the places with the highest rate of change - or actual sharp boundaries, if they exist. After this process, 
the sliced data can be input to other methods which further aggregate them into even higher orders of structure 
while respecting the underlying dynamics.

Our code for this method is available at ref. 19 and released under the GNU General Public License.

Figure 5. (a) Slicing of Twitter hashtag sequences generated during UEFA Champions League 2014–2015 
football tournament. The format of the figure is as in Fig. 2. In this data all tweets corresponding to the #UCL 
hashtag are captured, so the rest of the co-occurring hashtags are taken as our events. The two increments in the 
event rate represent the two matches, which are captured through very fine intervals in the data slicing. (b) First 
semifinal of UEFA Champions League 2014–2015, between Juventus and Real Madrid. The format of the figure 
is as in Fig. 2. The game runs from 20:45 until 22:30, with the halftime from 21:30 until 21:45. We see sped-up 
activity around the goals in the slicing (top) that is not simply explained by the event rate (bottom). When goals 
are scored (20:53, 21:12 and 21:55) there is a much faster topics turnover.

p-value
width, mean ± std 

baseline
width, mean ± std 

reshuffled No Nr

MIT reality 
mining 2.75 ×  10−16 1.5 ×  105 ±  2.5 ×  105 s 3.3 ×  105 ±  6.2 ×  105 s 191 9088

Enron 3.0 ×  10−27 17 ±  12 days 153 ±  182 days 69 783

Twitter 2.2 ×  10−113 1248 ±  5410 s 3775 ±  6086 s 513 16961

Table 1.  Test of results on real datasets with respect to a baseline consisting of a random reshuffling of 
the events. The p-values refer to the likelihoods that the width distribution of intervals of our method on the 
original data is the same as the width distribution of randomized data (100 resamplings). No and Nr refer to the 
total number of detected intervals on the original data and in all 100 resampled trials respectively. The width 
distributions are extremely broad, thus standard deviations are large relative to the means.
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Methods
Identification of optimum interval. The value of Δ t is searched from the raw data, and various strategies 
can be used. A simple linear search suffices, but is inefficient at long timescales. An event-driven approach checks 
only Δ t intervals corresponding to actual events, but this too is inefficient at long timescales. An ideal approach, 
and the one adopted in this paper, is to use exponentially spaced intervals (see SI). The shortest Δ t searched is 
taken from the next event in the data.

Temporal benchmark. The proposed benchmark has a periodic activity change in time, while having a 
uniform event rate. A universe of N =  1000 event IDs is created. Upon initialization, each event is independently 
placed into an activated status with probability q. At each time step, each active ID creates an event with probabil-
ity p. Also, at each time step (and before event creation), a fraction c(t) of event IDs are picked. Each of these IDs 
has its active status updated, being made active with probability q regardless of its previous state. This preserves 
the mean total number of activated IDs as qN at all times. At each time step, on average pqN events are expressed. 
Thus, by looking at simply the rate of events, the model is completely uniform and there is a constant average 
event rate in time.

The changeover rate c(t) is periodic, however, obeying

π
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with c0 being the minimum changeover rate, c the scale of changeover, and τ the period. Thus, at some points, 
the IDs of the expressed events is changing more rapidly than at other times, and this is the cause of longer and 
shorter intervals.

When there is a critical event at time tcrit, we exceptionally set c(tcrit) =  1 at that time. This produces a state of 
the system uncorrelated from the previous time. According to the model, this changeover occurs before the time 
step, which matches with placing a new interval at tcrit in our half-open segment convention. However, the total 
universe of event IDs stays the same, and there is no statically observable change in behavior.

In this work, we use N =  1000, τ =  500, p =  0.2, q =  0.2, c0 =  0, and c =  0.01.

Shannon Entropy. The Shannon entropy ref. 20 is calculated by = −∑H p plni i over a series of events i 
with corresponding probability pi.

Enron temporal data. The Enron Email Dataset consists of emails of approximately 150 senior managers 
of the Enron Corporation, which collapsed in 2001 after market manipulation was uncovered, leading to an 
accounting scandal17. We have all bidirectional email communications to and from each key person with a res-
olution of one day. An event is the unordered pair (source, destination) of each email. Our particular input data 
is already aggregated by day, therefore each event is only repeated once each day, with a weight of the number of 
mails that day. SI Tables S1 and S2 lists the basic properties and SI Table S3 lists the major events of this dataset.

Reality mining. The Reality Mining dataset covers a group of persons affiliated with the MIT Media Lab who 
were given phones which tracked other devices in close proximity via the Bluetooth personal area network protocol18.  
An event is defined as every ordered pair (personal_device, other_device). We only have data from the personal 
devices of the 91 subjects who completed the experiment, not full ego networks. The data contains 1881152 
unique readings from 2004 August 8 until 2005 July 14, with most centered in the middle of the academic year. SI 
Table S4 lists basic properties and SI Table S5 lists the major events of this dataset21.

UCL hashtags. In this dataset, we scrape Twitter for all hashtags containing #UCL, referring to the Europe 
Champions League tournament. We scrape between the dates of 30 April 2015 and 08 May 2015, covering the 
two first semifinal games of the tournament. An event is any hashtag co-occurring with #UCL, except #UCL 
itself. If there are multiple co-occurring hashtags, each counts as one event. All hashtags are interpreted as UTF-8 
Unicode and case-normalized (converted to lowercase) before turning into events. SI Table S6 lists basic proper-
ties and SI Table S7 lists the major events.
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S1. ALGORITHM DESCRIPTION

The algorithm for detecting the evolving timescales of time-varying data is implemented in different layers. Each
layer is reasonably independent of others, allowing them to be improved or replaced independently of each other.
This allows the method to be easily adapted and improved for new types of data. This document describes each of
the possible variations of each layer of implementation. Please note that this document is designed to explain the
algorithm components from a scientific viewpoint. It is not a usage manual of the code, which is found on the project
site.

The algorithm is designed in the following layers:

1. Data input (See user manual)

2. Data representation (Sec. S1 B 1)

3. Similarity measures (Sec. S1 C)

4. The core segmentation process (Sec. S1 D)

5. Choosing ∆t to test at one iteration (Sec. S1 E)

6. Maximum finding (Sec. S1 F)

Code for the method is available at https://github.com/rkdarst/dynsnap.

A. Data and timescales

Before the method is applied to data, it is important to understand the necessarily qualities of input data and how
timescales are detected. The method is by default suited to most real data in a parameter-free fashion, but there can
be non-intuitive behavior for data with long-term self similarity, such as completely periodic artificial data.

The purpose of this method is to segment events into time-intervals so that the spacing of intervals corresponds to
the similarity of events within those intervals. This is captured by looking at the similarity of events within intervals.
An interval is too short if there is not enough time to get a characteristic set of events within it. An interval is too long
if, by some definition, the start and end of the interval are different in terms of characteristic events. All else being
equal, we would rather take longer intervals. Data must have two properties in order to be sliced. First, events must
repeat on a short time scale. That is, events repeat in time, so that the same event can be captured in two adjacent
intervals, or else intervals can not be similar. This is our smallest possible slicing time. If events do not recur, then
our method can not be used. On the other hand, there must be a long time scale at which events do not recur. If
events did always recur at every time scale, then the longest time scale of self-similarity covers the entire time. In
this case, any equal-size slicing of the interval would be acceptable. There are two ways this long-term change can
be understood. One is if some events become active, turn on and off for some time, and then eventually deactivate.
That is, you can identify some time range when an event occurs, and then forever before and after that time, that
event is not seen. Alternatively, there can be a finite universe of events, and the events are extremely bursty, so that
there are very long inactive periods between phases of activity.

Our method can detect different timescales. If there are different timescales, then J(∆t) (Sec. S1 F) for each slice
will reveal them. There is then the question of selecting which of these timescales the algorithm should return for any

https://github.com/rkdarst/dynsnap
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given run of the code. The algorithm described here and the code released along with this article adopts the strategy
that, by default, the longest possible timescale should be detected. There are options to find shorter timescales, and
a detailed discussion exists within the code manual at doc/Manual.rst, and in Sec. S1 F and Sec. S1 F 4.

To use this method on data which does not meet the criteria above, in particular the “long term change”, timescale
options will be needed. In particular, consider the case of periodically repeating data, especially artificial data that
has no random noise. There is a short term similarity timescale, smaller than the period of repetition. This is the most
useful timescale to detect. Detecting this timescale would allow one to detect the components within the repeating
pattern. However, there is also a similarity at a long term timescale. Detecting this timescale would override and
hide all internal similarity. Since this similarity extends to all time and our method by default tries to find the longest
possible timescale, we would find the (less interesting) result that all time is similar. Another way to see this is that
there is as much, if not more, similarity between the first 1/3rd and last 1/3rd of data as there is within each period.
(Note that this can be used as a test for data where time scale adjustment is needed). Thus, our method correctly
detects the longest timescale as covering all time. However, note that any small amount of non-repeating random
noise will destroy this long-term similarity, and the method then detects some shorter time scale. This is why we say
that our method works well and without parameters on real data - random noise destroys long-term similarity, so
detecting the longest time scale returns the expected result.

B. Preliminaries

All time ranges are considered half-open intervals [t1, t2). Within an interval, events are aggregated to produce
“sets of events” which characterize the interval. The core goal of the slicing algorithm is to produce adjacent intervals
that have different sets of events, but that are not too dissimilar.

1. Data and interval representation

At the lowest level, all data is a multiset of (time, id, weight) tuples for each event. The variable time refers
to the time at which an event has happened, id stands for the unique ID of the event, and weight stands for the
number of occurrences of that particular event at that particular time. This conforms a multiset because duplicate
events at the same time and ID are allowed. If data is unweighted, all weights can be considered to be (and stored
as) 1.

When using data in an unweighted fashion, then the set of events is a regular (non-weighted, non-multiset) set
containing the IDs of every event present within the interval.

When using data in a weighted fashion, a set of events is a weighted set containing event IDs for every event present
within the interval, where each event has an associated (non-negative) weight. If the original data has only unit
weights (or was originally unweighted), then the event weights reduce to the counts of events within the intervals.
The weights are the sum of weights of all events of that ID within that interval.

Note that a weighted set can be converted to unweighted by dropping all weights. Conversely, if unweighted data
is made weighted, the weights count the number of events present.

C. Similarity measures

The various similarity measures are defined as a function between two (possibly weighted) sets of events as defined
above, with a resulting value in the range [0, 1]. A 1 similarity defines a perfect match while 0 indicates no similarity.

In the following examples, consider two intervals A and B. Here we are loose with terminology and use the terms
A and B interchangeably to refer to the interval itself as well as to the set of events within the intervals. In the
remainder of this document, we use J to refer to a generic similarity measure, even if the symbol itself refers to the
Jaccard score.
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1. Unweighted Jaccard

This measure calculates the similarity between unweighted sets of events. It makes use of the standard Jaccard
score,

J(A,B) =
|A ∩B|
|A ∪B|

. (S1)

In this formulation, the Jaccard score is 1 if two intervals have the same elements regardless of the number of
occurrences of those elements within the intervals.

2. Weighted Jaccard

The following is the extension of the Jaccard score to the intersection and union of weighted sets. Weighted sets
are defined by real-valued indicator functions wi representing the weight of each element within the set. Element i
has a weight of wi. Any element of weight zero is considered to not be contained in the set and can be removed.
Conversely, any element not present in the set has a weight of zero. A weighted union is defined to have elements of

wU,i = max(wA,i, wB,i) (S2)

over all elements in either A or B. Here, wU,i is the indicator function for the union, and respectively wA,i and wB,i

for the sets A and B. A weighted intersection is defined to have elements of

wI,i = min(wA,i, wB,i) (S3)

with components analogous to Eq. (S2). With these definitions for the intersection and union, the weighted Jaccard
score is computed as in Eq. (S1).

It is worth noting that the weighted Jaccard score introduces a bias towards equal-size sets with equal element
counts. Thus, there is some “inertia” in interval sizes and can not adapt to changing timescale quickly.

3. Cosine similarity

The weighted sets can be considered sparse vectors, allowing us to use the cosine similarity. Defined in terms of
sets, the cosine similarity is

C(A,B) =
A ·B
|A||B|

=

∑
(wA,iwB,i)∑

(wA,i)
∑

(wB,i)
. (S4)

The cosine similarity of 1 indicates perfect match between events and relative event counts, but does not require
the same number of total events. Thus, the cosine similarity takes into account event counts in a more flexible way
than the weighted Jaccard score. The cosine similarity can be 1 if the sets are of unequal sizes, as long as the relative
distribution of event weights is the same.

4. Unweighted cosine similarity

The unweighted cosine similarity is defined as

C(A,B) =
|A ∩B|√
|A||B|

(S5)

This is the analog of Eq. (S4) when applied to unweighted sets. It has many of the same advantages and disadvantages
as the unweighted Jaccard score.
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D. The slicing process

The slicing of the data is the core of the algorithm. It provides an efficient, one pass, linear time method of
segmenting the groups of events in intervals where each interval i comprises the time range within the half-open
interval [ti, ti+1). The interval size is ∆t∗i = ti+1 − ti. Our general procedure is:

1. Begin with some initial time t0. This is either the time of the very first event, or some specified time if one
wishes to segment only a portion of the time period.

2. Find the optimal ∆t∗0 for the first interval. Various values of ∆t are tried (see Sec. S1 E), and the optimum is
the value which maximizes the similarity J(∆t) (see Sec. S1 F). The interval is then set to [t0, t0 + ∆t∗0).

3. Repeat the previous steps until all data is treated, or until we reach a specified stop time. We go through time
by setting the start of the next interval at the end of the previous, ti = ti−1 + ∆t∗i−1.

1. Initial step: calculating the size of the first interval

We begin with an initial time t0, which is the lower bound of the first interval. If this is not provided by the user,
it is the time of the first event. A test sequence of ∆ts is generated via one of the methods described in Sec S1 E. For
each ∆t generated, we compute the intervals A(∆t) = [t0, t0 + ∆t) and A′(∆t) = [t0 + ∆t, t0 + 2∆t). These will be
the next two intervals of width ∆t after t0. We then compute our similarity score J (Sec. S1 C) between A and A′ as
a function of ∆t:

J(∆t) = J (A(∆t), A′(∆t))

= J ([t0, t0 + ∆t), [t0 + ∆t, t0 + 2∆t)) . (S6)

Eq. (S6) is maximized as a function of ∆t to produce ∆t∗, our optimal interval size (see Sec. S1 F for a detailed
explanation of this procedure). Once ∆t∗ is found, the first interval A is set to [t0, t0 + ∆t∗). This interval is now
fixed, the starting time is updated to t1 = t0 + ∆t0 and we proceed to the propagation step.

Merging of the first two intervals. This method provides an option which consists in merging the initial
intervals. In this process, in the initial step, the first two intervals detected (A and A′) are merged into one double-
sized interval. Continuing from Sec. S1 D 1, after ∆t∗ is calculated, the first interval A is set to [t0, t0 + 2∆t∗), and
the new starting time is set to t0 = t0 + 2∆t. If this option is chosen, this process is done at the beginning of the data
slicing as well as after any critical events (which cause a restart in the slicing process as explained in Sec. S1 F 5). This
avoids discarding the second interval [t0 + ∆t∗, t0 + 2∆t∗, but causes the combined first interval to have a different
size distribution from subsequent calculations.

In cases where the data has only sharp transitions, this merge process is advantageous, since the first two intervals
will probably be more similar than what comes after it. However, in smoothly varying data, merging should not be
done because it changes the meaning of the first interval relative to others. This is noticeable when the first interval
is twice as long as others. In the end, this decision must be made with external information, and it should be used
only if needed. Note that this decision is only relevant at the beginning of time, when the method is first learning
relevant timescales.

This is done in main text Fig. 1(a–c), where the data has sharp, clear transitions. Without this process, existing
boundaries stay the same, but each interval is divided into two. Thus, there are pairs of J = 1 intervals (self similar),
followed by pairs of J = 0 intervals (critical events, Sec. S1 F 5).

2. Propagation step

Given our previous interval A and starting time ti at the end of A, we proceed to construct the next interval in a
similar fashion to the initial step. We generate our series of ∆ts and construct a series of intervals B(∆t) = [ti, ti+∆t)
for each ∆t. Analogously to the initial step, we compute the similarity score as a function of ∆t,

J(∆t) = J (A,B(∆t))

= J (A, [ti, ti + ∆t)) . (S7)

The difference to the initial step is that the first interval is fixed, and only the second is changing. We choose the ∆t∗

which maximizes J(∆t). The next interval is then fixed as B = [ti, ti + ∆t∗).
We repeat the propagation step indefinitely, until the intervals reach the end of the data and all events are included.

For each iteration, we take the A as the previous interval, and begin at the next start time ti = ti−1 + ∆t∗i−1.
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E. ∆t generation

There are various methods to choose the ∆ts to test in the optimization process of the previous section. We must
explicitly generate some values, because this is a numerical optimization. It is important to do this cleverly, or else
the method can become very inefficient. We would rather not test every possible ∆t value, or test values too far in
the future. We would prefer to check small ∆ts that are close together, but they should be spaced further apart at
long ∆t. We would rather check small ∆t values first, since smaller intervals have fewer events to test, and thus are
faster to compute.

Also, there is a major opportunity for optimization. As long as ∆t increases, interval sets can be generated by
simply adding (via set union) new events (between ∆tn−1 and ∆tn) to the previous interval set. This is a very efficient
operation, and makes each individual iteration O(∆tmax), assuming that ∆t only increases.

Since we do not have an a-priori knowledge of the minimum or maximum reasonable interval size, these are
structured as generators of ∆t values, returning an infinite sequence. At a certain point, the algorithm detects that
we have searched enough, and that it is likely that we already obtained the peak in similarity we were looking for,
which causes the generation of ∆t to stop (as described in Sec. S1 E 5).

The methods described below are currently defined in the code. Better methods could be implemented in the future,
including an actual bisection to find the optimum. Only the logarithmic method is fully developed for actual use.

1. Linear scan mode

In this mode, the values m + 1d,m + 2d,m + 3d, ... are iterated. The parameter d is the step size (1 by default),
and m is the minimum step size (default to the same as d). This method does not automatically adapt to the data
scale, thus reasonable values of step size and minimum step size must be provided. Further, this method is inefficient
for data with a very long timescale, or data that evolves in very different timescales.

2. Logarithmic scan mode

In this mode, we begin with a base scale of

m = 10blog10(te−ti)c (S8)

where te − ti is the time to the next event after the interval start time ti. Thus, m is the greatest power of 10 less
than the time to the next event. This allows the scan mode to adapt to the actual data sizes. Then, we return the
sequence of values:

1m, 2m, . . . , 99m, 100m, 110m, 120m, . . . , 990m, 1000m, 1100m, . . . , (S9)

which produces a logarithmic time scale with reasonable precision at all points.

3. Event-based scan mode

In this mode, for every distinct event time te > ti, we return the corresponding ∆t = te − ti. Recall that ti is
the start of the interval. In this way, every time step with presence of events is tested. This mode offers the greater
precision in aligning intervals with events, but can be inefficient for very large datasets at very long times, where each
individual event is unlikely to have an effect on the Jaccard score.

4. An ideal mode

An ideal method would combine parts of the above methods. It would begin with a logarithmic scanning, but ideally
with some fixed multiplier such as 1.01. The next time is found by ∆tnext = d1.1∆te. Here, the ceiling operator d·e
means the time of the next event equal to or after the given time. This allows a logarithmic increase in time, while
always aligning with actual events and skipping non-present events. After a maximum is found, we would backfill
with a bisection algorithm to find the exact event which produces a global optimum for the similarity peak.

The downside to this method is that it requires many searches through our data to find the event-ceiling. This
is implemented as a fast database search, but still requires extra operations. Also, the bisection stage would ideally
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need to be able to increment sets both forward and backwards in time. Currently, the process of set construction is
optimized to incrementally build up the sets while moving forward in ∆t. Going backwards is possible with weighted
sets (though this procedure needs to be done with caution, watching out for floating point errors), but with unweighted
sets this operation is not possible. This biases us to do a more thorough scan going only forward in time. The current
logarithmic implementation is seen as a good trade-off between simplicity, accuracy, generality, and computational
performance.

5. Criteria for stopping the ∆t generation

The above methods do not specify when to stop searching new ∆t values (except when using greedy maximum
finding, as we will see in Sec. S1 F 3). The intuition is that there will always be some maximum, independently of
the number of values of ∆t that we choose to scan. In order to have a good chance of finding the global optimum,
we need to carefully adjust how many time steps we will search after the latest found peak. If we decide to search
in a small time window, we have great chances to get trapped in a local maxima. Instead, if we opt for scanning a
very large time window, we will certainly sacrifice the computational efficiency. As usual, a balance between these
two opposite cases is desired. We achieve this by continuing to scan until we have tested all ∆t < 25∆t∗ and ∆t less
than 25 times the previous round’s ∆t∗, if there is a previous interval. As mentioned, the multiplier can be adjusted
lower for better performance or higher for less risk of missing future peaks, but this is the subject of further research.

F. Maximum finding

The ∆t values are given by one of the methods from Sec. S1 E, and we wish to find the optimum value of ∆t∗ such
that it maximizes J(∆t). The first consideration is that there will likely be many local maxima. Some will be caused
by general fluctuations in the data. However, when scanning on a larger scale, we may see different local maxima,
which can be interesting in their own right, because they may indicate different time scales of the system. These can
be seen by plotting J(∆t) as a function of ∆t, primarily for the first interval. Sec. S1 F 4 discusses some methods of
adjusting the timescale detection to find other maxima.

Then the question is under what conditions do we expect non-trivial maxima to exist. When there is a long-term
evolution of the system (events active at −∞ are different from those at +∞), then we will obtain a decrease in
similarity as ∆t becomes longer. In this case, there will not be a maximum. However, if there is not a long-term
evolution (i.e. for each event ID, that event has the same probability of occurring at any point in time), then the
similarity J(∆t) may continually increase. In this case, the basic assumptions of our method are violated, but the
answer is correct anyway: as all times are statistically self-similar, we expect one giant interval covering all time
because there are no sub-divisions of distinct character.

In brief, the process of maximum finding works as follows. For each ∆t, we calculate the similarity J(∆t). We
search for the maximum value of J(∆t) in an on-line fashion. The ∆t iteration (see Sec. S1 E) produces a continuous
stream of ∆t values. After each ∆t is produced, J(∆t) is calculated (as in Sec. S1 C). Then, the list of all ∆t and
J(∆t) are examined by the methods that we will present next in this section, which return ∆t∗, the optimum interval
size. This ∆t∗ is fed back to the stop criteria in Sec. S1 E 5 and used to decide when we should cease exploring further
∆t. Once the stop criteria is met, the iteration stops and the final ∆t∗ is known.

1. Longest

This method is our standard approach. We search for the maximum similarity value of J(∆t) from all possible ∆t
values. If there are multiple values of ∆t with the same maximum, we pick the greatest one as ∆t∗.

2. Shortest

This is similar to “Longest”, but choosing the shortest ∆t.
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3. Greedy

In this method, as soon as J(∆t) decreases for the first time, we stop testing other values. This method is much
more efficient in terms of computation time. While there is usually one clear peak, there are often local fluctuations
which cause this method to give a local maximum far before the global maximum. If the number of events is large
enough to reduce the effects of fluctuations, or if the highest computational performance is needed for streaming data,
this method could be useful. If this method is used, the stop criteria of Sec. S1 E 5 is unneeded.

4. Detecting other timescales

One of the basic assumptions of this method is that the similarity score increases, and then decreases. We would
hope that as the similarity starts going down, we can notice a peak. The peak finders, as described above, do not
find multiple local maxima. This is because choosing a peak requires some heuristic for how significant of a peak
should be detected. The two extremes are represented by the “longest”/“shortest” peak finders (scan forward in time
as much as possible, find peak as global maximum in scanned area) and “greedy” (stop at the first decrease, as soon
as any maximum is found; in other words the first local maximum). This corresponds to finding the longest similar
time scales and shortest similar time scales.

Peak factor. The “peak factor” is a way to balance these. It is implemented only for the “longest” and “shortest”
maximum finding methods. Using this option, once J(∆tmax) drops to less than peak factor× J(∆t∗), then we stop
searching any longer times and return ∆t∗. This provides a way to break out of the search after the first peak.

Pastpeak factor. The factor of 25 present in Sec. S1 E 5 can be adjusted. This limits the forward search time and
provides another way to limit the timescale searched.

Pastpeak max, pastpeak min, search min. One can directly set the time scales searched. One can set a
maximum or minimum amount of time to search past ∆t∗ (as in Sec. S1 E 5). One can also set a minimum amount of
time to search past ∆t = 0. This may be useful to avoid the effects of extreme fluctuations in J at small ∆t. Unlike
the other options, these require a pre-existing knowledge of likely time scales within the data. Because of this, these
options are not used in this work or enabled by default. The existing options work to achieve the goal of detecting
the longest possible timescales without needing any parameters.

5. Critical event detection

At some times (critical times), the character of the active events in the entire data changes instantly. When this
happens, comparison with the previous interval will give bad results, since similarity is by definition going to always
be low. Similarity scores could also remain zero, if there is no overlap in the set of events before and after the critical
time. Thus, the signature of critical events is low but continually increasing similarities with no peak found. At this
point, the algorithm will tend to produce longer and longer intervals, pointlessly trying to maximize similarity and
eventually return too large intervals. At this point, using the “initial step” process (see Sec. S1 D 1) is better than
using the propagation step (see Sec. S1 D 2).

Using the “initial step” process means that once a critical event occurs, the previous interval is forgotten and
segmentation restarts as in Sec. S1 D 1. To decide whether an event can be considered critical, we require that i) the
similarity corresponding to the last ∆t is greater than 0.95 of the peak similarity and ii) we have not reached the end
of the dataset.

An example of critical events can be seen in main text Fig. 1(a-c). Each interval boundary occurs at a critical
event.

S2. DATASET DESCRIPTIONS

A. Periodic toy model

This model creates data with evolving timescales while having a uniform event rate. The latter means that at
every point in time, there is the same expected value of the number of events. Our method does not group the data
in intervals using the overall event rate, it detects intervals based on the identity of events at a given time. In this
model, the characteristic active events change slowly over time, but at a varying rate. This adds the “evolutionary
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Number of events 43599
Number of distinct events 1275
First event time 1999-05-11
Last event time 2002-06-21
Total count/weight of events 43599

TABLE S1: Basic properties of Enron dataset (core network)

Number of events 802481
Number of distinct events 207071
First event time 1998-05-26
Last event time 2002-07-11
Total count/weight of events 2933183

TABLE S2: Basic properties of Enron dataset (full data)

timescales” that our method detects. When the timescales evolve faster, intervals are shorter, and when timescales
evolve slower, intervals are longer.

In this periodic toy model, a universe of N = 1000 event IDs are created. Upon initialization, each event is
independently placed into an activated status with probability q. At each timestep, each active ID emits an event
with probability p. This p produces the short-term repetition, on a timescale of 1/p. Also, at each timestep (and
before event creation), a fraction c(t) of event IDs are picked. Each of these IDs has its active status updated, being
made active with probability q regardless of its previous state. This provides the long-term change: on average, each
active event tends to lasting on the order of 1/c(t) time steps until it is deactivated. This preserves the mean total
number of activated IDs as qN at all times. At each timestep, on average pqN events are emitted.

The changeover rate c(t) is periodic, however, obeying

c(t) = c0 + c

(
1

2
− 1

2
cos

(
2πt

τ

))
, (S1)

with c0 being the minimum changeover rate and, c being the scale of changeover, and τ being the period. Thus, at
some points, the IDs of the expressed events is changing more rapidly than at other times, and this is the cause of
longer and shorter intervals.

When there is a critical event at time tcrit, we exceptionally set c(tcrit) = 1 at that time. This produces a state of
the system decorrelated from the previous time. According to the model, this changeover occurs before the timestep,
which matches with placing a new interval at tcrit in our half-open segment convention. However, the total universe
of event IDs stays the same, and there is no statically observable change in behavior.

In this work, we use N = 1000, τ = 500, p = 0.2, q = 0.2, c0 = 0, and c = 0.01.

B. Enron

The Enron Email Dataset consists of emails of approximately 150 senior managers of the Enron Corporation, which
collapsed in 2001 after market manipulation was uncovered, leading to an accounting scandal [2]. This dataset was
made public during the legal investigation concerning the Enron Corporation, which ended up with the bankruptcy
and collapse of this corporation. Here, each event is an email communication sent or received by any of the senior
managers who were subsequently investigated. During the time recorded in the dataset, there were major structural
changes in the company, executives were hired and fired and new products were launched. This exogenous information
was sometimes also reflected in the data as changes in volume and in the identities of active events.

We have all bidirectional email communication to and from each key person at a resolution of one day. An event
is the unordered pair (source, destination) of each email. Our particular input data is already aggregated by day,
therefore each event is only present once each day, with a weight of the number of mails that day. Table S1-S2 list
the basic properties and Table S3 lists the major events of this dataset. In Fig. S1, we show the full Enron data. This
includes one event for every message sent, even to other executives.
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FIG. S1: Slicing of the full Enron dataset. The format of this figure is as in Fig. 2 from the main text. Thick red bars at the
top of the plots correspond to actual dates of major events. This is the slicing of the whole dataset, not just the links between
executives.

Date Event
1999-11-29 Launch of enron online
2000-01-15 Launch of EBS
2000-07-01 EBS-blockbusters partnership
2000-08-23 Stock all-time high
2000-10-03 Enron attorney discusses Belden’s strategies
2000-11-01 FERC exonerates Enron
2000-12-15 EBS $53m ‘profit’
2000-12-13 Skilling announced to be CEO
2001-01-17 Blackouts in CA
2001-03-23 Enron schedules conference call to boost stock
2001-04-17 The ‘asshole’ call
2001-05-17 Schwarzenegger, Lay, Milken meeting
2001-07-12 Quarterly conference call
2001-07-24 Skilling meets with analysists and investors in NY
2001-08-22 Watkins raises accounting irregularities
2001-11-08 Dynegy agrees to buy enron
2001-11-19 Enron restates its third quarter earning
2001-11-28 Enron shares plunge below $1
2001-11-28 Dynergy deal collapses
2001-12-02 Enron files for bankrupcy
2002-01-23 Stephen Cooper takes over as Enron CEO
2002-02-03 Lay cancels Senate committee appearance
2002-02-07 Fastow, Kopper, Lay invoke the Fifth
2002-02-07 Skilling and Watkins testify
2002-03-14 Arthur Anderen LLP indicted

TABLE S3: Major events of the Enron collapse

1. Comparison with the cpdetect method

The cpdetect method is run as described in Ref. [4]. A part of this process is to pre-aggregate all data into windows
of one week size, and thus any changepoints are a priori limited in their accuracy. This process is not necessary in
our work, and one possible use of our method is providing initial intervals for other methods such as cpdetect.

The output from our method and cpdetect is not directly comparable. The cpdetect method produces only sig-
nificant changepoints, while our method should produce snapshots distributed throughout the entire time period.
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Number of events 1881152
Number of distinct events 51466
First event time 2004-08-01 00:26:38
Last event time 2005-07-14 17:41:19
Total count/weight of events 1881152

TABLE S4: Basic properties of the Reality Mining dataset

Date Event
2004-09-08 First day of classes
2004-10-18 Sponsor week end
2004-10-25 Sponsor week start
2004-11-08 Exam week start
2004-11-12 Exam week end
2004-11-25 First day of thanksgiving
2004-12-09 Last day of classes
2004-12-13 Exams start (4 days)
2005-01-03 Independent activities period start
2005-02-01 Start of spring classes
2005-03-19 Start of spring break
2005-03-28 End spring break
2005-05-12 Last day of classes
2005-05-16 Exams start
2005-06-03 Commencement

TABLE S5: Major events of the Enron dataset

However, we would expect that the similarity J is lower than average at each changepoint. If so, it will indicate that
our method can show at least the major underlying dynamics of the system. We show this with a hypothesis test.
To do this, calculate a test statistic which is our mean (interpolated) similarity value corresponding to each change
point found by cpdetect. We randomize the times of change points by picking times uniformly from our entire time
range of changepoints, which shuffles the change point sequence. We do this 1× 104 times to compute a distribution
of our test statistic in the random case. We find that our actual value of X is significant at p = 0.0033. This means
that our choice of similarity does correlate with the evolutionary timescale of the system. If one looks at low values
of J , one can find changepoints, and our process of maximizing J finds self-similar intervals.

C. Reality mining dataset

The Reality Mining dataset covers a group of persons affiliated with the MIT Media Lab who were given phones
which tracked other devices in close proximity via the Bluetooth personal area network protocol [1]. We say an event is
every ordered pair of (personal device, other device). We only have data from the personal devices of the 91 subjects
who completed the experiment, not full ego networks. The data contains 1881152 unique readings from 2004 August
8 until 2005 July 14, being most of them centered in the middle of the academic year. Table S4 lists basic properties
and Table S5 lists the major events of this dataset. The major events are from the MIT academic calendar or internal
Media Lab events, with which most subjects were affiliated [3].

As expected, we find many more segment intervals than major events. In the slicing, we can see that in the first
weeks, where students are still relocating and meeting new people, the change in the events’ identities is fast, thus
the intervals are shorter. On the other hand, the interactions throughout the rest of the academic year are pretty
stable, and the intervals are sized accordingly. Additionally, we see that several key events are detected. The major
Thanksgiving holiday (Nov 25) is detected a day early, as people begin traveling. There are intervals before and
after the start of the December exam week, and then a stable period after that when people are on holiday until the
university opens again (Jan 3). After that, we see segment boundaries that exactly align with the beginning of classes
(Feb 1), the beginning of spring break (Mar 19), and the last day of classes (May 12). All of this can be detected
despite the fact that many subjects are research staff, who are not bound by any academic calendar.
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Entire data Game 1 Game 2
Number of events 401849 87900 120123
Number of distinct events 8650 2660 3161
First event time 2015-04-30 16:08:42 2015-05-05 19:45:00 2015-05-06 19:45:00
Last event time 2015-05-08 01:59:45 2015-05-05 23:44:59 2015-05-06 23:44:59
Total count/weight of events 401849 87900 120123

TABLE S6: Basic properties of the UCL dataset. All times are in CEST, the local timezone of the matches.

Date Event
2015-05-05 20:45 Game 1 begins
2015-05-05 20:50 Yellow card for Bonucci (Juventus)
2015-05-05 20:53 Goal by Morata (Juventus)
2015-05-05 21:12 Goal by Ronaldo (Real Madrid)
2015-05-05 21:29 First half ends
2015-05-05 21:45 Second half begins
2015-05-05 21:58 Goal by Tévez (Juventus)
2015-05-05 22:33 Game 1 ends
2015-05-06 20:45 Game 2 begins
2015-05-06 21:29 First half ends
2015-05-06 21:45 Second half begins
2015-05-06 22:17 Messi (Barcelona) scores
2015-05-06 22:20 Messi (Barcelona) scores
2015-05-06 22:34 Neymar (Barcelona) scores
2015-05-06 22:34 Game 2 ends

TABLE S7: Major events of the first leg of the Champion’s League semifinals

D. UCL hashtags

In this dataset, we scrape Twitter for all hashtags containing #UCL, referring to the UEFA (European) Champions
League tournament. We scrape between the dates of 30 April 2015 and 08 May 2015, covering the first leg of the two
semifinal games of the tournament. An event is any hashtag co-occurring with #UCL, except #UCL itself. If there are
multiple hashtags in the same tweet, each counts as one event. Thus, events (hashtags) reflect what people are talking
about in conjunction with the tournament. All hashtags are interpreted as UTF-8 Unicode and case-normalized
(converted to lowercase) before turning into events. Table S6 lists basic properties and Table S7 lists the major events
of this dataset.

In the slicing (main text Fig. 5(a)), we see much intervals segments during the games of May 5 and May 6 than
in the rest of the dataset. This corresponds to the must faster turnover of interesting topics during the game. In
addition, we can spot the games that all four teams played in their respective national championships on the previous
weekend of May 2-3, which trigger as well some discussion on the forthcoming Champions League matches. If we focus
our attention on the first of the two games (main text Fig. 5(b)), we observe a shorter segment size at the beginning of
the game and during the three goals at times 20:53 (Juventus), 21:12 (Real Madrid), and 21:58 (Juventus), compared
to the rest of the match. In particular, we notice a more noticeable effect when the second half started with the tied
game at 21:45, and when the third goal is scored, because it was a penalty kick which took Juventus to the lead.
Game 2 was a lopsided 3-0 victory for Barcelona against Bayern Munich. Given the one-sided game, the analysis
shows a fairly uniform pattern throughout the game, until the goals are scored at 22:17, 22:20, and 22:34. The game
ends right after the last goal. In the initial part of the game, the dynamics continually slowed down as time goes on
without major events. Immediately after the game, the audience reacts much more strongly than in the last game,
probably because at that point one starts speculating about the possible finalists of the competition.

The detail of the second game is presented in Fig. S2. There is a flurry of activity at the start, but as the game
progresses without goals dynamics slow down. At the end of the game, there are three goals (beginning at 22:17). At
this point, the system becomes extremely active with a very diverse and rapidly changing topics, and intervals are
very short for a while.
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FIG. S2: Second semifinal of the UEFA Champions League 2014-2015, between Barcelona and Bayern Munich. Game times are
the same as in main text Fig. 5(b) in the main text. This game was one-sided with goals made by only one team. Consequently,
internal structure for the slicing is relatively uniform and slowing down with time, especially since all goals were scored within
the last 20 minutes of the game. Nevertheless, we can detect interval boundaries for halftime, and after the three goals are
scored (22:17, 22:20, and 22:34), we have a very high turnover rate of discussion topics.
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