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Complex diseases involve many genes and molecules that inter-
act within cellular networks1–3. Advances in experimental 
and computational techniques enable both physical interac-

tion networks (for example, protein–protein interaction, signaling 
and regulatory networks) and functional networks (for example, 
co-expression, genetic and single-cell interaction networks) to be 
mapped with increasing accuracy. A key problem in the analysis of 
these networks is the identification of functional units, called mod-
ules or pathways4. It is well-known that molecular networks have a 
high degree of modularity (that is, subsets of nodes are more densely 
connected than expected by chance), and that individual modules 
often comprise genes or proteins that are involved in the same bio-
logical functions5. Moreover, biological networks are typically too 
large to be examined as a whole. Consequently, module identification 
is often a crucial step to gain biological insights from network data6–9.

Module identification, also called community detection or graph 
clustering, is a classic problem in network science for which a wide 
range of methods have been proposed10. These methods are typically 

assessed on in silico generated benchmark graphs11. However, how 
well different approaches uncover biologically relevant modules in 
real molecular networks remains poorly understood. Crowdsourced 
data competitions (known as challenges) have proved to be an effec-
tive means to rigorously assess methods and foster collaborative 
communities. The Dialogue on Reverse Engineering and Assessment 
(DREAM) is a community-driven initiative promoting data chal-
lenges in biomedicine (http://dreamchallenges.org). DREAM chal-
lenges have established robust methodologies for diverse problems, 
including the inference of molecular networks12,13. But, so far there 
has been no community effort addressing the downstream analysis 
of reconstructed networks.

Here we present the Disease Module Identification DREAM 
Challenge, where over 400 participants from all over the world 
predicted disease-relevant modules in diverse gene and protein 
networks (Fig. 1; https://synapse.org/modulechallenge). We intro-
duce community-driven benchmarks, dissect top-performing 
approaches and explore the biology of discovered network modules.
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Results
A community challenge to assess network module identifica-
tion methods. We developed a panel of diverse, human molecular 
networks for the challenge, including custom versions of two pro-
tein–protein interaction and a signaling network extracted from the 
STRING14, InWeb15 and OmniPath16 databases, a co-expression net-
work inferred from 19,019 tissue samples from the Gene Expression 
Omnibus (GEO) repository17, a network of genetic dependencies 
derived from loss-of-function screens in 216 cancer cell lines18,19 
and a homology-based network built from phylogenetic patterns 
across 138 eukaryotic species20,21 (Methods). We included different 
types of network, which also vary in their size and structural prop-
erties, to provide a heterogeneous benchmark resource (Fig. 1a).

Each network was generated specifically for the challenge and 
released in anonymized form (that is, we did not disclose the gene 
names and the identity of the networks), thus enabling rigorous 
‘blinded’ assessment. That is, participants could only use unsuper-
vised clustering algorithms, which rely exclusively on the network 
structure and do not depend on additional biological information 
such as known disease genes.

We solicited participation in two types of module identifica-
tion challenge (Fig. 1b). In Sub-challenge 1, solvers were asked 
to run module identification on each of the provided networks  

individually (single-network module identification). In Sub-
challenge 2, the networks were reanonymized in a way that the 
same gene identifier represented the same gene across all six net-
works. Solvers were then asked to identify a single set of non-over-
lapping modules by sharing information across the six networks 
(multi-network module identification), which allowed us to assess 
the potential improvement in performance offered by emerging 
multi-network methods compared to single-network methods. In 
both sub-challenges, predicted modules had to be non-overlapping 
and comprise between 3 and 100 genes.

The challenge was run using the open-science Synapse plat-
form22. Over a 2-month period, participants could make a limited 
number of submissions and see the performance of all teams on a 
real-time leaderboard. In the final round, teams could make a single 
submission for each sub-challenge, which had to include method 
descriptions and code for reproducibility.

Biologically interpretable scoring of modules based on trait 
associations. Evaluation of predicted modules is challenging 
because there is no ground truth of ‘correct’ modules in molecular 
networks. Here, we introduce a framework to empirically assess 
modules based on their association with complex traits and diseases 
using genome-wide association studies (GWAS) data (Fig. 1c).  
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Fig. 1 | The Disease Module Identification DREAM Challenge. a, Network types included in the challenge. Throughout the paper, boxplot center lines 
show the median, box limits show upper and lower quartiles, whiskers show 1.5× interquartile range and points show outliers. b, Outline of the challenge. 
c, Outline of the scoring.
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Since GWAS are based on data completely different from those 
used to construct the networks, they can provide independent 
support for biologically relevant modules. To cover diverse molec-
ular processes, we have compiled a large collection of 180 GWAS 
datasets (Supplementary Table 1). Predicted modules were scored 
on each GWAS using the Pascal tool23, which aggregates trait-
association P values of single nucleotide polymorphisms (SNPs) at 
the level of genes and modules. Modules that scored significantly 
for at least one GWAS trait were called trait-associated. Finally, 
the score of each challenge submission was defined as the total 
number of its trait-associated modules (at 5% false discovery rate 
(FDR), see Methods).

To detect potential overfitting, the collection of 180 GWASs was 
split into a leaderboard set for scoring the leaderboard submissions 
and a separate holdout set for scoring the single, final submission of 
each team. Results reported below are from the final evaluation on 
the holdout set.

Top methods from different categories achieve comparable per-
formance. The community contributed 42 single-network and 33 
multi-network module identification methods in the final round of 
the two sub-challenges. We first discuss the single-network methods 
(Sub-challenge 1), which we grouped into seven broad categories: (1) 
kernel clustering, (2) modularity optimization, (3) random-walk-
based, (4) local methods, (5) ensemble methods, (6) hybrid meth-
ods and (7) other methods (Fig. 2a and Supplementary Table 2).  
While many teams adapted existing algorithms for community 
detection, other teams—including the best performers—devel-
oped novel approaches. The top five methods achieved comparable 
performance with scores between 55 and 60, while the remaining 
methods did not get to scores above 50 (Fig. 2b). Although the 
scores were close, the top-scoring method K1 (method IDs are 
defined in Supplementary Table 2) performed more robustly than 
runner-up methods, achieving the best score: (1) in the leaderboard 
and final rounds (Supplementary Table 3); (2) at varying FDR  
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Fig. 2 | Assessment of module identification methods. a, Main types of module identification approach used in the challenge. b, Final scores of the 
42 module identification methods applied in Sub-challenge 1 for each of the six networks, as well as the overall score summarizing performance 
across networks (evaluated using the holdout GWAS set at 5% FDR; method IDs are defined in Supplementary Table 2). Ranks are indicated for the 
top ten methods. The last row shows the mean performance of 17 random modularizations of the networks (error bars show the standard deviation). 
c, Robustness of the overall ranking was evaluated by subsampling the GWAS set used for evaluation 1,000 times. For each method, the resulting 
distribution of ranks is shown as a boxplot. d, Number of trait-associated modules per network. Boxplots show the number of trait-associated modules 
across the 42 methods, normalized by the size of the respective network.
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cutoffs (Supplementary Fig. 1) and (3) on subsamples of the GWAS 
holdout set (Fig. 2c).

The top teams used different approaches: the best performers 
(K1) developed a novel kernel approach leveraging a diffusion-
based distance metric24,25 and spectral clustering26; the runner-up 
team (M1) extended different modularity optimization methods 
with a resistance parameter that controls the granularity of mod-
ules27 and the third-ranking team (R1) used a random-walk method 
based on Markov clustering with locally adaptive granularity to bal-
ance module sizes28 (Methods). These teams further collaborated 
after the challenge to bundle their methods in a user-friendly tool29.

Four different method categories are represented among the top 
five performers, suggesting that no single approach is inherently 
superior for module identification. Rather, performance depends 
on the specifics of each individual method, including the strat-
egy used to define the resolution (the number and size of mod-
ules). Preprocessing steps also affected performance: many of the 
top teams first sparsified the networks by discarding weak edges. 
A notable exception is the top method (K1), which performed 
robustly without any preprocessing of the networks.

The challenge also allows us to explore how informative differ-
ent types of molecular network are for finding modules underlying 
complex traits. In absolute numbers, methods recovered the most 
trait-associated modules in the co-expression and protein–protein 
interaction networks (Supplementary Fig. 1). However, relative to 
the network size, the signaling network contained the most trait 
modules (Fig. 2d). These results are consistent with the importance 
of signaling pathways for many of the considered traits and diseases. 
The cancer cell line and homology-based networks, on the other 
hand, were less relevant for the traits in our GWAS compendium 
and thus comprised only a few trait modules.

Complementarity of different module identification approaches. 
To test whether predictions from different methods and networks 
tend to capture the same or complementary modules, we applied 
a pairwise similarity metric to all 252 module predictions from 
Sub-challenge 1 (42 methods × 6 networks, see Methods). We 
find that similarity of module predictions is primarily driven by 
the underlying network and top-performing methods do not con-
verge to similar module predictions (Fig. 3a and Supplementary  
Fig. 2). Indeed, only 46% of trait modules are recovered by multiple 
methods with good agreement in a given network (high overlap 
or submodules, Supplementary Fig. 2). Across different networks, 
the number of recovered modules with substantial overlap is even 
lower (17%). Thus, the majority of trait modules are method- and 
network-specific.

The modules produced by different methods also vary in terms 
of their structural properties. For example, submissions included 
between 16 and 1,552 modules per network, with an average mod-
ule size ranging from 7 to 66 genes. Neither the number nor the 
size of submitted modules correlates with performance (Fig. 3b 
and Supplementary Figs. 3 and 4). Thus, there is no single optimal 
granularity for a given network; rather, different methods captured 
trait-relevant modules at varying levels of granularity. Topological 
quality metrics of modules such as modularity showed only mod-
est correlation with the challenge score (Pearson’s r = 0.45, Fig. 3c), 
highlighting the need for biologically interpretable assessment of 
module identification methods.

Multi-network module identification methods did not provide 
added power. In Sub-challenge 2, teams submitted a single modu-
larization of the genes, for which they could leverage information 
from all six networks together. While some teams developed dedi-
cated multi-network (multi-layer) community detection meth-
ods30,31, the majority of teams first merged the networks and then 
applied single-network methods (Methods).
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It turned out to be very difficult to effectively leverage comple-
mentary networks for module identification. While three teams 
achieved marginally higher scores than single-network module pre-
dictions (Fig. 3d), the difference is not significant when subsampling 
the GWASs (Bayes factor < 3, Supplementary Fig. 5). Moreover, the 
best-scoring team simply merged the two protein–protein inter-
action networks (the two most similar networks, Supplementary 
Fig. 6), discarding the other types of network. Since no significant 
improvement over single-network methods was achieved, the win-
ning position of Sub-challenge 2 was declared vacant.

Integration of challenge submissions leads to robust consensus 
modules. To derive consensus modules from team submissions, we 
integrated module predictions from different methods in a consen-
sus matrix C, where each element cij is proportional to the num-

ber of methods that put gene i and j together in the same module. 
The consensus matrix was then clustered using the top-performing 
module identification method from the challenge (Methods).

We generated consensus modules for each challenge network 
by applying this approach to the top 21 (50%) of methods from the 
leaderboard round. The score of the consensus modules outper-
forms the top individual method predictions in both sub-challenges 
(Supplementary Figs. 1 and 5). However, when applied to fewer 
methods, the performance of the consensus drops (Supplementary 
Fig. 7). We conclude that the consensus approach is only suitable in 
a challenge context, since applying such a large number of methods 
is not practical for users. Indeed, we found that the total number 
of trait-associated modules when considering the modules from 
top-performing methods individually is higher than the number 
of modules resulting from their consensus (Supplementary Fig. 8).
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Network modules reveal trait-specific and shared pathways. We 
next sought to explore biological properties of predicted modules. 
The most trait-associated modules were found for immune-related, 
psychiatric, blood cholesterol and anthropometric traits, for which 
high-powered GWAS are available that are known to show strong 
pathway enrichment (Fig. 4a). Significant GWAS loci often show 
association to multiple traits. Across our GWAS compendium, we 
found that 46% of trait-associated genes but only 28% of trait-asso-
ciated modules are associated with multiple traits (Fig. 4b). Thus, 
mapping genes onto network modules may help in disentangling 
trait-specific pathways at shared loci.

We next asked which traits are similar in terms of the impli-
cated network components. To this end, we considered the union 
of all genes within network modules associated with a given trait 
(trait-module genes). We then evaluated the pairwise similarity of 
traits based on the significance of the overlap between the respec-
tive trait-module genes (Methods). Trait relationships thus inferred 
are consistent with known biology and comorbidities between the 
considered traits and diseases (Fig. 4c).

Trait-associated modules implicate core disease genes and path-
ways. Due to linkage disequilibrium (LD), many genes that show 

association to a trait may not causally influence it. A key question 
is whether our trait modules, and the corresponding genes, are cor-
rectly predicted as being biologically or therapeutically relevant 
for that trait or disease. We thus sought to evaluate trait modules 
using additional independent datasets, including ExomeChip data, 
monogenic disease genes, functional annotations and known thera-
peutic targets.

We first consider a module from the consensus analysis that 
shows association to height—a classic polygenic trait—as an 
example (Fig. 5a). Forty percent of genes in this module either 
comprise coding variants associated to height in an independent 
ExomeChip study32 or are known to be implicated in mono-
genic skeletal growth disorders, supporting their causal role in 
the phenotype (Fig. 5b). Gene Ontology (GO) annotations fur-
ther show that this module consists of two submodules compris-
ing extracellular matrix proteins responsible for, respectively,  
collagen fibril and elastic fiber formation—pathways that are essen-
tial for growth (Fig. 5b). Indeed, mutations of homologous genes in 
mouse lead to abnormal elastic fiber morphology (Supplementary 
Fig. 9). Some of the genes supported by these additional datasets 
did not show signal in the GWAS used to discover the module. 
For example, the module gene BMP1 (Bone Morphogenic Protein 1)  
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causes osteogenesis imperfecta, which is associated with short 
stature. Yet, BMP1 does not show association to height in current 
GWAS and ExomeChip studies, demonstrating how network mod-
ules can implicate additional disease-relevant pathway genes (see 
Supplementary Figs. 10 and 11 for a comprehensive evaluation of 
prioritized trait-module genes).

To evaluate more generally whether trait-associated modules 
correspond to generic or disease-specific pathways, we systemati-
cally tested modules for functional enrichment of GO annotations, 
mouse mutant phenotypes and pathway databases. We further 
selected the most representative annotations for each module using 
a regression framework33 (Methods). We find that the majority of 
trait modules reflect core disease-specific pathways. For example, in 
the STRING protein–protein interaction network only 33% of trait 
modules from the consensus analysis have generic functions; the 
remaining 66% of trait modules correspond to core disease-specific 
pathways, some of which are therapeutic targets (Supplementary 
Fig. 12 and Supplementary Table 4). Examples include a module 
associated with rheumatoid arthritis that comprises the B7:CD28 
costimulatory pathway required for T  cell activation, which is 
blocked by an approved drug (Fig. 6a); a module associated with 
inflammatory bowel disease corresponding to cytokine signaling 
pathways mediated by Janus kinases (JAKs), which are therapeutic 
targets (Fig. 6b) and a module associated with myocardial infarction 
that includes the NO/cGMP signaling cascade, which plays a key 
role in cardiovascular pathophysiology and therapeutics (Fig. 6c). 
We further applied our pipeline to a GWAS on IgA nephropathy 
(IgAN) obtained after the challenge, an autoimmune disorder with 
poorly understood etiology34. We find two IgAN-associated mod-
ules, which prioritize novel candidate genes involved in NF-kB sig-
naling, complement and coagulation cascades, demonstrating how 
our challenge resources can be used for network-based analysis of 
new GWAS datasets (Supplementary Fig. 13).

Discussion
As large-scale network data become pervasive in many fields, robust 
tools for detection of network communities are of critical impor-

tance. With this challenge we have conducted an impartial and 
interpretable assessment of module identification methods on bio-
logical networks, providing much-needed guidance for users. While 
it is important to keep in mind that the exact ranking of methods is 
specific to the task and datasets considered, the resulting collection 
of top-performing module identification tools and methodological 
insights will be broadly useful for modular analysis of complex net-
works in biology and other domains.

Kernel clustering, modularity optimization, random-walk-based 
and local methods were all represented among the top performers, 
suggesting that no single type of approach is inherently superior. In 
contrast, the popular weighted gene co-expression network analysis 
(WGCNA) method7 did not perform competitively, likely because it 
relies on hierarchical clustering, which—unlike the top-performing 
approaches—was not specifically designed for network clustering. 
Moreover, while most published studies in network biology rely on 
a single clustering method, the results of this challenge demonstrate 
the value of applying multiple methods from different categories to 
detect complementary types of module.

The challenge further emphasized the importance of the resolu-
tion (size and number of modules). Biological networks typically 
have a hierarchical modular structure, which implies that disease-
relevant pathways can be captured at different levels of granular-
ity35. Indeed, we found that there is no intrinsic optimal resolution 
for a given network; rather, it depends on the type of method used 
(Supplementary Fig. 3). Top-performing challenge methods allowed 
the resolution to be tuned, enabling users to explore different mod-
ule granularities.

Our analysis showed that signaling, protein–protein interac-
tion and co-expression networks comprise complementary trait-
relevant modules. Considering different types of network is thus 
clearly advantageous. However, multi-network module identifica-
tion methods that attempted to reveal integrated modules across 
these networks failed to significantly improve predictions com-
pared to methods that considered each network individually. These 
results are contrary to the common assumption that multi-network 
integration improves module predictions. However, this finding 
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remains specific to the challenge networks, which may not have 
been sufficiently related. Indeed, the best result was obtained by the 
team merging only the two most related networks (the two protein–
protein interaction networks), and the runner-up team confirmed 
in a post hoc analysis that focusing on networks with similar modu-
lar structures improved their results36. Multi-network methods may 
thus be better suited to networks that are more closely related, pos-
sibly from the same tissue- and disease-context37.

On the basis of these challenge findings, we make the following 
practical recommendations for module identification: (1) methods 
from diverse categories should be applied to identify complemen-
tary modules (for example, the top three challenge methods, which 
are available in a user-friendly tool29); (2) the resulting modules 
from different methods should be used as is, without forming a con-
sensus (consensus modules were only competitive when integrating 
over 20 methods); (3) whenever possible, diverse networks should 
be leveraged (for example, co-expression, protein–protein inter-
action and signaling), as they comprise complementary types of 
module; (4) module identification methods should first be applied 
to each network individually, without merging the networks and  
(5) multi-network methods may be used to reveal modules in lay-
ered networks, but performance depends heavily on whether net-
works are sufficiently related.

There is continuing debate over the value of GWASs for revealing 
disease mechanisms and therapeutic targets. Indeed, the number of 
GWAS hits continues to grow as sample sizes increase, but the bulk 
of these hits does not correspond to core genes with specific roles in 
disease etiology38. While thousands of genes may show association 
to a given disease, we have demonstrated that much more specific 
disease modules comprising only dozens of genes can be identified 
within networks. These modules prioritize novel candidate genes, 
reveal pathway-level similarity between diseases and correspond to 
core disease pathways in the majority of cases. This is consistent 
with the robustness of biological networks: presumably, the many 
genes that influence disease indirectly are broadly distributed across 
network modules, while core disease genes cluster in specific path-
ways underlying pathophysiological processes39,40.

In this study we used generic networks, not context-specific net-
works, because the focus was on method assessment across diverse 
disorders. In the near future, we expect much more detailed maps 
of tissue- and disease-specific networks, along with diverse high-
powered genetic datasets, to become available2,41,42. We hope that 
our challenge resources will provide a foundation to dissect these 
networks and reveal pathways implicated in human disease.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41592-019-0509-5.
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Methods
Network compendium. A collection of six gene and protein networks for human 
were provided by different groups for this challenge. The two protein–protein 
interaction and signaling networks are custom or new versions of existing 
interaction databases that were not publicly available at the time of the challenge. 
The remaining networks were yet unpublished at the time of the challenge. This 
was important to prevent participants from deanonymizing challenge networks by 
aligning them to the original networks.

Networks were released for the challenge in anonymized form. Anonymization 
consisted in replacing the gene symbols with randomly assigned ID numbers. 
In Sub-challenge 1, each network was anonymized individually; that is, node k 
of network A and node k of network B are generally not the same genes. In Sub-
challenge 2, all networks were anonymized using the same mapping; that is, node k 
of network A and node k of network B are the same gene.

All networks are undirected and weighted, except for the signaling network, 
which is directed and weighted. Below we briefly summarize each of the six 
networks. Detailed descriptions of networks 4, 5 and 6 are available on GeNets20,  
a web platform for network-based analysis of genetic data (http://apps.
broadinstitute.org/genets).

The first network was obtained from STRING, a database of known and 
predicted protein–protein interactions14. STRING includes aggregated interactions 
from primary databases as well as computationally predicted associations. Both 
physical protein interactions (direct) and functional associations (indirect) are 
included. The challenge network corresponds to the human protein–protein 
interactions of STRING v.10.0, where interactions derived from text mining 
were removed. Edge weights correspond to the STRING association score after 
removing evidence from text mining.

The second network is the InWeb protein–protein interaction network15. 
InWeb aggregates physical protein–protein interactions from primary databases 
and the literature. The challenge network corresponds to InWeb v.3. Edge weights 
correspond to a confidence score that integrates the evidence of the interaction 
from different sources.

The third network is the OmniPath signaling network16. OmniPath integrates 
literature-curated human signaling pathways from 27 different sources, of which  
20 provide causal interaction and seven deliver undirected interactions. These  
data were integrated to form a directed weighted network. The edge weights 
correspond to a confidence score that summarizes the strength of evidence from 
the different sources.

The fourth network is a co-expression network based on Affymetrix HG-U133 
Plus 2 arrays extracted from the GEO46. To adjust for non-biological variation, 
data were rescaled by fitting a loess-smoothed power law curve to a collection of 
80 reference genes (ten sets of roughly eight genes each, representing different 
strata of expression) using non-linear least squares regression within each sample. 
All samples were then quantile normalized together as a cohort17. After filtering 
out samples that did not pass quality control, a gene expression matrix of 22,268 
probesets by 19,019 samples was obtained. Probes were mapped to genes by 
averaging and the pairwise Spearman correlation of genes across samples was 
computed. The matrix was thresholded to include the top 1 million strongest 
positive correlations resulting in an undirected, weighted network. The edge 
weights correspond to the correlation coefficients.

The fifth network is a functional gene network derived from the Project 
Achilles dataset v.2.4.3 (ref. 18). Project Achilles performed genome-scale loss-
of-function screens in 216 cancer cell lines using massively parallel pooled 
short-hairpin RNA screens. Cell lines were transduced with a library of 54,000 
shRNAs, each targeting one of 11,000 genes for RNA interference knockdown 
(~5 shRNAs per gene). The proliferation effect of each shRNA in a given cell 
line could be assessed using Next Generation Sequencing. From these data, the 
dependency of a cell line on each gene (the gene essentiality) was estimated 
using the ATARiS method. This led to a gene essentiality matrix of 11,000 genes 
by 216 cell lines. Pairwise correlations between genes were computed and the 
resulting codependency network was thresholded to the top 1M strongest positive 
correlations, analogous to how the co-expression network was constructed.

The sixth network is a functional gene network based on phylogenetic 
relationships identified using the CLIME (clustering by inferred models of 
evolution) algorithm21. CLIME can be used to expand pathways (gene sets) with 
additional genes using an evolutionary model. Briefly, given a eukaryotic species 
tree and homology matrix, the input gene set is partitioned into evolutionarily 
conserved modules (ECMs), which are then expanded with new genes sharing 
the same evolutionary history. To this end, each gene is assigned a log-likelihood 
ratio (LLR) score based on the ECMs inferred model of evolution. CLIME was 
applied to 1,025 curated human gene sets from GO and the Kyoto Encyclopedia of 
Genes and Genomes using a 138 eukaryotic species tree, which resulted in 13,307 
expanded ECMs. The network was constructed by adding an edge between every 
pair of genes that co-occurred in at least one ECM. Edge weights correspond to the 
mean LLR scores of the two genes.

Challenge structure. Participants were challenged to apply network module 
identification methods to predict functional modules (gene sets) based on network 
topology. Valid modules had to be non-overlapping (a given gene could be part of 

either zero or one module, but not multiple modules) and comprise between 3 and 
100 genes (modules with over 100 genes are typically less useful to gain specific 
biological insights). Modules did not have to cover all genes in a network. The 
number of modules per network was not fixed: teams could submit any number 
of modules for a given network (the maximum number was limited due to the 
fact that modules had to be non-overlapping). In Sub-challenge 1, teams were 
required to submit a separate set of modules for each of the six networks. In Sub-
challenge 2, teams were required to submit a single set of modules by integrating 
information across multiple networks (it was permitted to use only a subset of the 
six networks).

The challenge consisted of a leaderboard phase and the final evaluation. The 
leaderboard phase was organized in four rounds, where participants could make 
repeated submissions and see their score for each network, along with the scores 
of other teams, on a real-time leaderboard. Due to the high computational cost of 
scoring the module predictions on a large number of GWAS datasets, a limit for 
the number of submissions per team was set in each round. The total number of 
submissions that any given team could make over the four leaderboard rounds 
was thus limited to only 25 and 41 for the two sub-challenges, respectively. For the 
final evaluation, a single submission including method descriptions and code was 
required per team, which was scored on a separate holdout set of GWASs after the 
challenge closed to determine the top performers.

With this challenge we assessed unsupervised clustering methods that define 
modules based solely on the topological structure of networks, unbiased by existing 
biological knowledge. Additional biological information, such as GWAS data and 
functional annotations, was integrated afterwards to assess and characterize the 
predicted modules. It is important to benchmark unsupervised methods in this 
blinded setting, because they are often relied on in regions of the network for 
which a paucity of biological information is currently available.

The submission format and rules are described in detail on the challenge 
website (https://www.synapse.org/modulechallenge).

Gene and module scoring using Pascal. We have developed a framework to 
empirically assess module identification methods on molecular networks using 
GWAS data. Since we are employing a large collection of 180 GWAS datasets 
ranging over diverse disease-related human phenotypes, this approach covers 
a broad spectrum of molecular processes. In contrast to evaluation of module 
enrichment using existing gene and pathway annotations, where it is sometimes 
difficult to ascertain that annotations were not derived from similar data types 
as the networks (for example, gene expression, protein–protein interactions or 
homology), the GWAS-based approach provides an orthogonal means to assess 
disease-relevant modules.

SNP trait-association P values from a given GWAS were integrated across 
genes and modules using the Pascal (pathway scoring algorithm) tool23. Briefly, 
Pascal combines analytical and numerical solutions to efficiently compute 
gene and module scores from SNP P values, while properly correcting for LD 
correlation structure prevalent in GWAS data. To this end, LD information 
from a reference population is used (here, the European population of the 1,000 
Genomes Project was employed as we only included GWASs with predominantly 
European cohorts). For gene scores we used the sum of chi-squared statistics of 
all SNPs within a window extending 50 kb up and downstream from the gene of 
interest. Since proximal SNPs are often in LD, under the null hypothesis this sum 
is not distributed like a sum of chi-squares of independent random variables. Yet, 
a change of basis to orthogonal ‘eigen-SNPs’, which diagonalize the genotypic 
correlation (LD) matrix, recovers independence with the effect that the sum of 
independent chi-squares is weighted (with the eigenvalues as weights)23.

The fast gene scoring is critical as it allows module genes that are in LD, and 
can thus not be treated independently, to be dynamically rescored. This amounts 
to fusing the genes of a given module that are in LD and computing a new score 
that takes the full LD structure of the corresponding locus into account. Pascal 
tests modules for enrichment in high-scoring (potentially fused) genes using a 
modified Fisher method, which avoids any P value cutoffs inherent to standard 
binary enrichment tests. The general approach can be summarized in three steps: 
(1) gene score P values of all genes in the background set (here, all genes in a 
given network) are transformed so that they follow a target distribution respecting 
their ranking; (2) a test statistic for a given module is computed by summing the 
transformed scores of module genes (and fusion-genes) and (3) it is evaluated 
whether the observed test statistic is higher than expected, that is, the module is 
enriched for trait-associated genes. Specifically, here we employed the ‘chi-squared 
method’ implemented in Pascal23, which transforms gene scores such that they 
follow a χ21

I
-distribution (gene scores are first rank-transformed to obtain a uniform 

distribution and then transformed by the χ21
I

-quantile function). χ21
I

-gene scores of 
a given module of size m are then summed and tested against a χ2m

I
-distribution. 

Since gene scores are first rank-transformed, this is a ‘competitive’ enrichment test, 
which evaluates whether the module genes tend to have lower trait-association P 
values than the other genes that are part of the given network. Note that specifying 
the correct background set is critical for competitive enrichment tests, which here 
amounts to all genes that are part of the given network (that is, not all genes in the 
genome), as shown in Supplementary Fig. 4. Last, the resulting nominal module P 
values were adjusted to control the FDR via the Benjamini–Hochberg procedure.

Nature Methods | www.nature.com/naturemethods

http://apps.broadinstitute.org/genets
http://apps.broadinstitute.org/genets
https://www.synapse.org/modulechallenge
http://www.nature.com/naturemethods


Analysis NATuRE METhODs

Scoring metric. In Sub-challenge 1, the score for a given network was defined as 
the number of modules with significant Pascal P values at a given FDR cutoff in 
at least one GWAS (called trait-associated modules, see previous section). Thus, 
modules that were hits for multiple GWAS traits were only counted once. The 
reason for this choice is that we do not want to ‘overcount’ modules that are hits  
for multiple related GWAS traits compared to modules that are hits for GWASs 
where few related traits are available (see Fig. 4c). The overall score was defined  
as the sum of the scores obtained on the six networks (that is, the total number  
of trait-associated modules across all networks). For the official challenge ranking  
a 5% FDR cutoff was defined, but performance was further reported at 10, 2.5  
and 1% FDR.

Before the challenge, we performed an analysis to explore whether this scoring 
metric would favor a particular resolution for modules and thus bias results; for 
example, toward decomposing modules into a larger number of small submodules. 
To this end, we generated random modules of varying size. We found no systematic 
bias in the scores for a specific module granularity and this result was confirmed 
in the challenge (Supplementary Figs. 3 and 4). The key element of the scoring 
function that was designed to fairly assess module collections with different 
average module sizes was the higher multiple testing burden applied when a larger 
number of smaller modules was submitted.

Module predictions in Sub-challenge 2 were scored using the exact same 
methodology and FDR cutoffs. The only difference to Sub-challenge 1 was that 
submissions consisted of a single set of modules (instead of one for each network) 
and there was thus no need to define an overall score. As background gene set, the 
union of all genes across the six networks was used.

Leaderboard and holdout GWAS datasets. We compiled a collection of 180 
GWAS datasets (Supplementary Table 1), including all GWASs for which we could 
access genome-wide summary statistics (SNP P values). We deliberately included 
both high- and low-powered studies to evaluate whether disease-associated 
modules could be detected in datasets of varying signal strength. We manually 
assigned each GWAS dataset to either the leaderboard set used in the leaderboard 
round or the holdout set used for the final scoring. The assignment was made such 
that GWASs of closely related traits (for example, height, male height and female 
height) were either all in the leaderboard set or all in the holdout set, thus avoiding 
a situation where two very similar GWASs would be found both in the leaderboard 
and holdout set. This resulted in a leaderboard set of 76 GWASs and a holdout 
set of 104 GWASs (Supplementary Table 1). Compared to random assignment of 
GWASs to the leaderboard and holdout set, this setup better tests the robustness of 
parameters tuned by participants during the leaderboard round.

Robustness analysis of challenge ranking. To gain a sense of the robustness of 
the ranking with respect to the GWAS data, we subsampled the set of 104 GWASs 
used for the final evaluation (the holdout set) by drawing N < 104 GWASs. Here 
we used N = 76 GWASs (73% of the holdout set) as this is the same size as the 
leaderboard set, but this choice does not critically affect results. Note that we have 
to do subsampling rather than resampling of GWASs because the scoring counts 
the number of modules that are associated to at least one GWAS; that is, including 
the same GWASs multiple times does not affect the score. We applied this approach 
to create 1,000 subsamples of the holdout set. The methods were then scored on 
each subsample.

The performance of every method m was compared to the highest-scoring 
method across the subsamples by the paired Bayes factor Km. That is, the method 
with the highest overall score in the holdout set (all 104 GWASs) was defined as 
reference (that is, method K1 in Sub-challenge 1). The score S(m, k) of method m 
in subsample k was thus compared with the score S(ref, k) of the reference method 
in the same subsample k. The Bayes factor Km is defined as the number of times 
the reference method outperforms method m, divided by the number of times 
method m outperforms or ties the reference method over all subsamples. Methods 
with Km < 3 were considered a tie with the reference method (that is, method m 
outperforms the reference in more than one out of four subsamples).

Overview of module identification methods in Sub-challenge 1. Based on 
descriptions provided by participants, module identification methods were 
classified into different categories (Fig. 2a). Categories and corresponding  
module identification methods are summarized in Supplementary Table 2. In  
the following, we first give an overview of the different categories and top-
performing methods, and then describe common pre- and postprocessing steps 
used by these methods:
•	 Kernel clustering: instead of working directly on the networks themselves, 

these methods cluster a kernel matrix, where each entry (i, j) of that matrix 
represents the closeness of nodes i and j in the network according to the 
particular similarity function, or kernel that was applied. Some of the kernels 
that were applied are well-known for community detection, such as the expo-
nential diffusion kernel based on the graph Laplacian47 employed by method 
K6. Others, such as the LINE embedding algorithm48 employed by method K3 
and the kernel based on the inverse of the weighted diffusion state distance24,25 
employed by method K1, were newer. Method K1 was the best-performing 
method of the challenge and is described in detail below.

•	 Modularity optimization: this method category was, along with random-walk-
based methods, the most popular type of method contributed by the commu-
nity. Modularity optimization methods use search algorithms to find a partition 
of the network that maximizes the modularity Q (commonly defined as the 
fraction of within-module edges minus the expected fraction of such edges in 
a random network with the same node degrees)43. The most popular algorithm 
was Louvain community detection49. At least eight teams employed this 
algorithm in some form as either their main method or one of several methods, 
including the fourth ranking team. The best-performing modularity optimiza-
tion method (M1), which ranked second overall, is described in detail below.

•	 Random-walk-based methods: these methods take inspiration from random 
walks or diffusion processes over the network. Several teams used the estab-
lished Walktrap50, Infomap51 and Markov clustering algorithms. The top team 
of this category (method R1, third rank overall) used a sophisticated random-
walk method based on multi-level Markov clustering28, which is described in 
detail below. While we did not include kernel methods in the ‘random walk’ 
category, several of the successful kernel clustering methods used random-
walk-based measures within their kernel functions.

•	 Local methods: only three teams used local community detection methods, 
including agglomerative clustering and seed set expansion approaches. The top 
team of this category (method L1, fifth rank overall) first converted the adja-
cency matrix into a topology overlap matrix35, which measures the similarity 
of nodes based on the number of neighbors that they have in common. The 
team then used the SPICi algorithm52, which iteratively adds adjacent genes to 
cluster seeds such as to improve their local density.

•	 Hybrid methods: seven teams employed hybrid methods that leveraged 
clusterings produced by several of the different main approaches listed 
above. These teams applied more than one community detection method to 
each network to get larger and more diverse sets of predicted modules. The 
most common methods applied were Louvain49, hierarchical clustering and 
Infomap51. Two different strategies were used to select a final set of modules 
for submission: (1) choose a single method for each network according to 
performance in the leaderboard round, and (2) select modules from all applied 
methods according to a topological quality score such as the modularity or 
conductance10.

•	 Ensemble methods: much like hybrid methods, ensemble methods leverage 
clusterings obtained from multiple community detection methods (or multiple 
stochastic runs of a single method). However, instead of selecting individual 
modules according to a quality score, ensemble methods merge alternative 
clusterings to obtain potentially more robust consensus predictions53. Our 
method to derive consensus module predictions from team submissions is an 
example of an ensemble approach (see below).

Besides the choice of the community detection algorithm, there are other 
steps that critically affected performance, including preprocessing of the network 
data, setting of method parameters and postprocessing of predicted modules 
(Supplementary Table 2):
•	 Preprocessing: most networks in the challenge were densely connected, 

including many edges of low weight that are likely noisy. Some of the top 
teams (for example, M1, R1, L1) benefited from sparsifying these networks by 
discarding weak edges before applying their community detection methods. 
An added benefit of sparsification is that it typically reduces computation time. 
Few teams also normalized the edge weights of a given network to make them 
either normally distributed or fall in the range between zero and one. Not all 
methods required preprocessing of networks; for example, the top-performing 
method (K1) was applied to the original networks without any sparsification 
or normalization steps.

•	 Parameter setting: community detection methods often have parameters that 
need to be specified, typically to control the resolution of the clustering (the 
number and size of modules). While some methods have parameters that 
explicitly set the number of modules (for example, the top-performing method 
K1), other methods have parameters that indirectly control the resolution 
(for example, the resistance parameter of the runner-up method M1). While 
there were also methods that had no parameters to set (for example, the classic 
Louvain algorithm), these methods have an intrinsic resolution that may not 
always be optimal for a given network and target application.

•	 Postprocessing: modularization of biological networks often results in highly 
imbalanced module sizes. That is, some modules may be very small (for 
example, just one or two genes), while others are extremely large (for example, 
thousands of genes). Both extremes are generally not useful to gain biological 
insights at the pathway level. Since current community detection methods 
generally do not allow constraints on module size to be specified, teams used 
different postprocessing steps to deal with modules outside the allowed range 
in the challenge (between 3 and 100 genes). A successful strategy to break 
down large modules was to recursively apply community detection methods to 
each of these modules. Alternatively, all modules of invalid size were merged 
and the method was reapplied to the corresponding subnetwork. Finally, 
modules with fewer than three genes were often discarded. Some teams also 
discarded larger modules that were deemed low quality according to a topo-
logical metric, although this strategy was generally not beneficial.
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Method K1 (first rank in Sub-challenge 1). The top-performing team developed 
a kernel clustering approach (method K1) based on a distance measure called 
diffusion state distance (DSD)24,25, which they further improved for this challenge. 
DSD produces a more informative notion of proximity than the typical shortest 
path metric, which measures distance between pairs of nodes by the number of 
hops on the shortest path that joins them in the network. More formally, consider 
the undirected network G(V, E) on the node set V = {v1, v2, v3,...,vn} with |V| = n. 
Het(vx, vy) is defined as the expected number of times that a random walk (visiting 
neighboring nodes in proportion to their edge weights) starting at node vx and 
proceeding for some fixed t steps will visit node vy (the walk includes the starting 
point, that is, 0th step). Taking a global view, we define the n-dimensional vector 
Het(vx) whose ith entry is the Het(vx,vi) value to network node vi. Then the DSDt 
distance between two nodes vx and vy is defined as the L1 norm of the difference of 
their Het vectors, that is

DSDtðvx ; vyÞ ¼ jjHetðvxÞ �HetðvyÞjj1
It can be shown that DSD is a metric and converges as t→∞, allowing DSD to 

be defined independently from the value t (ref. 24.) The converged DSD matrix can 
be computed tractably, with an eigenvalue computation, as

DSDðvx ; vyÞ ¼ jjð1x � 1yÞðI � D�1AþWÞ�1jj1
where D is the diagonal degree matrix, A is the adjacency matrix and W is the 
matrix where each row is a copy of π, the degrees of each of the nodes, normalized 
by the sum of all the vertex degrees (in the unweighted case, weighted edges can be 
normalized proportional to their weight) and 1x and 1y are the vectors that are zero 
everywhere except at position x and y, respectively. The converged DSD matrix 
was approximated using algebraic multigrid techniques. Note that for the signaling 
network, edge directions were kept and low-weight back edges were added so that 
the network was strongly connected; that is, if there was a directed edge from vx to 
vy, an edge from vy to vx of weight equal to 1/100 of the lowest edge weight in the 
network was added.

A spectral clustering algorithm26 was used to cluster the DSD matrix of a given 
network. Note that the spectral clustering algorithm operates on a similarity matrix 
(that is, entries that are most alike have higher values in the matrix). However, the 
DSD matrix is a distance matrix (that is, similar entries have low DSD values). 
The radial basis function kernel presents a standard way to convert the DSD 
matrix to a similarity matrix; it maps low distances to high similarity scores and 
vice versa. Since the spectral clustering algorithm employed uses k-means as the 
underlying clustering mechanism, it takes a parameter k specifying the number of 
cluster centers. The leaderboard rounds were used to measure the performance of 
different k values. Clusters with fewer than three nodes were discarded. Clusters 
with over 100 nodes were recursively split into two subclusters using spectral 
clustering (that is, k = 2) until all clusters had fewer than 100 nodes.

The top-performing team also used a different algorithm to search for dense 
bipartite subgraph module structure in half of the challenge networks and 
merged these modules (which were rare) with the clusters generated by their 
main method54. However, a post facto analysis of their results showed that this 
step contributed few modules and the score would have been similar with this 
additional procedure omitted.

Method M1 (second rank in Sub-challenge 1). The runner-up team developed 
a multi-resolution modularity optimization method27. The rationale is that in the 
absence of information on the cluster sizes of the graph, a method should be able 
to explore all possible topological scales at which clusters may satisfy the definition 
of module. The multi-resolution method developed by the team works by adding 
a resistance parameter r to the community detection algorithms. This resistance 
controls the aversion of nodes to form communities; the larger the resistance, the 
smaller the size of the modules. For community detection algorithms based on 
the optimization of the well-known modularity function43, this resistance takes 
the form of a self-loop (with a weight equal to r) which is added to all nodes of the 
network. In this way, all nodes contribute to the internal strength of their modules 
with a constant amount r. When the resistance is zero, the standard (and implicit) 
scale of resolution is recovered.

The team first sparsified networks by removing low confidence edges and then 
applied several well-known modularity optimization algorithms, including: (1) 
extremal optimization, (2) spectral optimization, (3) Newman’s fast algorithm and 
(4) fine-tuning by iterative repositioning of nodes. The idea is that a combination 
of several algorithms has fewer chances to get stacked in a suboptimal partition. 
The resistance parameter r was optimized so as to maximize the proportion of 
nodes inside communities of the desired sizes defined by the challenge rules, 
that is, between 3 and 100 nodes (only a handful of values were evaluated due to 
computational cost, but resulted in much better resolutions than the default of 
r = 0). Communities above the size limit (100 nodes) were subdivided recursively.

Method R1 (third rank in Sub-challenge 1). This team used balanced multi-layer 
regularized Markov clustering (bMLRMCL)28, an extension of the Markov cluster 
algorithm (MCL). The algorithm improves three common issues with MCL: (1) 
scalability for large graphs; (2) fragmented clusters due to the existence of hub 
nodes and (3) modules of imbalanced size.

Regularized MCL (RMCL) changes the MCL expansion step by introducing 
a canonical flow matrix, which ensures that the original topology of the graph 
still influences the graph clustering process beyond the first iteration. Multi-layer 
RMCL further improves the runtime by first coarsening the graph into multiple 
layers of smaller graphs to run RMCL on. Last, the balanced version of the 
algorithm computes a new regularization matrix at each iteration that penalizes 
big cluster sizes, where the penalty can be adjusted using a balance parameter28. 
Altogether, the method has three parameters: the inflation parameter i, coarsening 
size c and size balance parameter b. As preprocessing steps, the team first discarded 
weak edges and then transformed edge weights to integers. Communities with 
more than 100 nodes were recursively reclustered.

Overview of module identification methods in Sub-challenge 2. There are 
broadly three different approaches to identify integrated modules across multiple 
networks: (1) the networks are first merged and then single-network module 
identification methods are applied on the integrated network, (2) single-network 
module identification methods are first applied on each individual network and then 
the resulting modules are merged across networks and (3) dedicated multi-network 
community detection methods are employed (also called multi-layer or multiplex 
methods), which are specifically designed to identify modules in layered networks30,31.

In Sub-challenge 2, the majority of teams employed the first approach. These 
teams built an integrated network by merging either all six or a subset of the 
challenge networks, and then applied single-network methods (typically the same 
method as in Sub-challenge 1) to modularize the integrated network. For example, 
the team with highest score in Sub-challenge 2 merged the two protein–protein 
interaction networks and then applied the Louvain algorithm to identify modules 
in the integrated network. The top-performing team from Sub-challenge 1 also 
performed competitively in Sub-challenge 2. They applied their single-network 
method (K1) to an integrated network consisting of the union of all edges from the 
two protein–protein interaction networks and the co-expression network.

Dedicated multi-network community detection methods were also employed 
by several teams30,31. For example, the runner-up team in Sub-challenge 2 
previously extended the modularity measure to multiplex networks and adapted 
the Louvain algorithm to optimize this multiplex-modularity31. For this challenge, 
the team further improved their method with a randomization procedure, the  
consideration of edge and layer weights and a recursive clustering of the 
communities larger than a given size36.

Similar to Sub-challenge 1, teams used the leaderboard phase to set parameters 
of their methods. However, besides the parameters of the community detection 
method, there were additional choices to be made: whether to use all or only a 
subset of the six networks and how to integrate them.

None of the teams employed the second approach mentioned above, that is, to 
merge modules obtained from different networks. This approach was only used by 
the organizers, to form consensus modules in Sub-challenge 2 (see next section). 
In recent work, Sims et al. intersected brain-specific co-expression modules with 
generic protein–protein interaction networks, leading to a refined network module 
enriched for both common and rare variants associated with Alzheimer’s disease55. 
Exploring this type of approach with our challenge resources and potentially 
additional context-specific networks is thus an interesting avenue for future work.

Consensus module predictions. We developed an ensemble approach to derive 
consensus modules from a given set of team submissions (see Supplementary Fig. 
7 for a schematic overview). In Sub-challenge 1, a consensus matrix Cn was defined 
for each network n, where each element cij corresponds to the fraction of teams 
that put gene i and j together in the same module in this network. That is, cij equals 
one if all teams clustered gene i and j together, and cij equals zero if none of the 
teams clustered the two genes together. The top-performing module identification 
method (K1) was used to cluster the consensus matrix (that is, the consensus 
matrix was considered a weighted adjacency matrix defining a functional gene 
network, which was clustered using the top module identification method of 
the challenge). Method K1 has only one parameter to set, which is the number 
of cluster centers used by the spectral clustering algorithm. This parameter was 
set to the median number of modules submitted by the considered teams for the 
given network. The consensus module predictions described in the main text were 
derived from the submissions of the top 50% teams (that is, 21 teams) with the 
highest overall score on the leaderboard GWAS set.

Multi-network consensus modules were obtained by integrating team 
submissions from Sub-challenge 1 across all six networks using the same approach 
(Supplementary Fig. 7). The same set of teams was considered (that is, top 50% on 
the leaderboard GWAS set). First, a multi-network consensus matrix was obtained 
by taking the mean of the six network-specific consensus matrices Cn. The multi-
network consensus matrix was then clustered using method K1 as described above, 
where the number of cluster centers was set to the median number of modules 
submitted by the considered teams across all networks.

Two additional, more sophisticated approaches to construct consensus matrices 
Cn were tested: (1) normalization of the contribution of each module by the 
module size led to similar results as the basic approach described above, and (2) 
unsupervised estimation of module prediction accuracy using the Spectral Meta 
Learner ensemble method56. These methods did not perform well in this context 
(Supplementary Fig. 7).
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Similarity of module predictions. To define a similarity metric between module 
predictions from different methods, we represented module predictions as vectors. 
Namely, the set of modules predicted by method m in network k was represented as 
a prediction vector Pmk of length Nk(Nk − 1)/2, where Nk is the number of genes in 
the network. Each element of this vector corresponds to a pair of genes and equals 
one if the two genes are in the same module and zero otherwise. Accordingly, for 
any two module predictions (method m1 applied to network k1, and method m2 
applied to network k2), we calculated the distance as follows:

Dðm1k1;m2k2Þ ¼ 1� Pm1k1 ;Pm2k2 >

jjPm1k1 jj2jjPm2k2 jj2
where <.,.> is the Euclidean inner product, ||.||2 is the Euclidean norm and D is 
the (symmetric) distance matrix between the 252 module predictions submitted in 
Sub-challenge 1 (that is, 42 methods applied to each of six networks). The distance 
matrix D was used as input to multidimensional scaling analysis for dimensionality 
reduction in Fig. 3a.

Overlap between trait-associated modules. Three different metrics were 
considered to quantify the overlap between trait-associated modules from different 
methods and networks. The first metric was the Jaccard index, which is defined  
as the size of the intersection divided by the size of the union of two modules  
(gene sets) A and B:

JðA;BÞ ¼ A \ Bj j
A∪Bj j

The Jaccard index measures how similar two modules are, but does allow the 
detection of submodules. For example, consider a module A of size ten that is a 
submodule of a module B of size 100. In this case, even though 100% of genes of 
the first module are comprised in the second module, the Jaccard index is rather 
low (0.1). To capture submodules, we thus considered in addition the percentage of 
genes of the first module that are comprised in the second module:

SðA; BÞ ¼ A \ B
Aj j

Last, we also evaluated the significance of the overlap. To this end, we 
computed the P value pAB for the overlap between the two modules using the 
hypergeometric distribution. P values were adjusted using Bonferroni correction 
given the number of module pairs tested.

Based on these three metrics, we categorized the type of overlap that a given 
trait-module A had with another trait-module B as:

	1.	 strong overlap if J(A,B) ≥ 0.5 and pAB < 0.05;
	2.	 submodule if J(A,B) <0 .5 and S(A,B) −J (A,B) ≥ 0.5 and pAB< 0.05;
	3.	 partial overlap if J(A,B) < 0.5 and S(A,B) − J(A,B) < 0.5 and pAB < 0.05;
	4.	 insignificant overlap if pAB ≥ 0.05.

An additional category, strong overlap and submodule, was defined for trait 
module A that satisfy both conditions (1) and (2) with two different trait modules 
B and C. This categorization was used to get a sense of the type of overlap between 
trait modules from all methods (see Supplementary Fig. 2).

Trait similarity network. We defined a network level similarity between GWAS 
traits based on overlap between trait-associated modules. To this end, we only 
considered the most relevant networks for our collection of GWAS traits, that is, 
the two protein–protein interaction, the signaling and the co-expression network 
(see Fig. 2d). For a given network, the set of ‘trait-module genes’ GT was obtained 
for every trait T by taking the union of the modules associated with that trait 
across all challenge methods. If different GWASs were available for the same trait 
type (see Supplementary Table 1), the union of all corresponding trait-associated 
modules was taken. The overlap between every pair of trait-module gene sets GT1

I
 

and GT2

I
 was evaluated using the Jaccard index JðGT1 ;GT2 Þ

I
 and the hypergeometric 

P value PT1T2

I
 as described in the previous section. P values were adjusted using 

Bonferroni correction. For the visualization as a trait–trait network in Fig. 4c, an 
edge between traits T1 and T2 was added if the overlap was significant (PT1T2 <0:05

I
)  

in at least three out of the four considered networks, and node sizes and edge 
weights were set to be proportional to the average number of trait-module genes 
and the average Jaccard index across the four networks, respectively.

Functional enrichment analysis. To test network modules for enrichment in 
known gene functions and pathways, we considered diverse annotation and 
pathway databases. GO annotations for biological process, cellular component and 
molecular functions were downloaded from the GO website (http://geneontology.
org, accessed on 20 January 2017). Curated pathways (KEGG, Reactome and 
BioCarta) were obtained from MSigDB v.5.2 (http://software.broadinstitute.
org/gsea). We also created a collection of gene sets reflecting mouse mutant 
phenotypes, as defined by the Mammalian Phenotype Ontology57. We started with 
data files HMD_HumanPhenotype.rpt and MGI_GenePheno.rpt, downloaded 
from the Mouse Genome Informatics database (http://www.informatics.jax.org) on 
21 February 2016. The first file contains human–mouse orthology data and some 

phenotypic information; we then integrated more phenotypic data from the second 
file, removing the two normal phenotypes MP:0002169 (no abnormal phenotype 
detected) and MP:0002873 (normal phenotype). For each remaining phenotype, 
we then built a list of all genes having at least one mutant strain exhibiting that 
phenotype, which we considered as a functional gene set.

Annotations from curated databases are known to be biased toward certain 
classes of genes. For example, some genes have been much more heavily studied 
than others and thus tend to have more annotations assigned to them. This and 
other biases lead to an uneven distribution of the number of annotations per 
genes (annotation bias). On the other hand, the gene sets (modules) tested for 
enrichment in these databases typically also exhibit bias for certain classes of 
genes (selection bias)58,59. Standard methods for GO enrichment analysis use the 
hypergeometric distribution (that is, Fisher’s exact test), the underlying assumption 
being that, under the null hypothesis, each gene is equally likely to be included 
in the gene set (module). Due to selection bias, this is typically not the case in 
practice, leading to inflation of P values58,59. Following Young et al.59, we thus used 
the Wallenius non-central hypergeometric distribution to account for biased 
sampling. Corresponding enrichment P values were computed for all network 
modules and annotation terms (pathways). The genes of the given network were 
used as a background gene set. For each network, module identification method 
and annotation database, the M × T nominal P values of the M modules and T 
annotation terms were adjusted using the Bonferroni correction.

Selection of representative module annotations. Gene-set enrichment analysis 
methods often identify multiple significantly enriched gene sets with very similar 
compositions. To annotate our modules with few, but informative, gene sets, we 
formulate the gene-set enrichment problem within a regression framework33. 
Thus, the problem of gene-set enrichment is transformed into a feature selection 
problem; that is, the aim is to select the gene sets that best predict the membership 
of genes in a given module.

We constructed gene sets from the latest version of GO (format v.1.2; data 
version, releases/15 July 2018) and the Reactome database (download time,  
16 July 2018). Genes belonging to a GO term or a Reactome pathway are 
considered as one gene set, independent of positions of either the term or the 
pathway in the respective hierarchies. Next, we used the gene sets to construct a 
gene-by-gene-set binary matrix G, whose rows are genes and columns are gene 
sets. Gij equals 1 if and only if gene i belongs to gene set j; otherwise Gij equals zero.

Given a module M, as well as the background genes B (the union of genes 
within GO and Reactome), we construct a vector y representing all genes in B. 
We assign yi = 1 if and only if gene gi belongs to the module M. Next, we train the 
regression model: y = Gβ + ε using elastic net with α = 0.5 (the hyperparameter α 
controls the number of selected gene sets). Gene sets with coefficients larger than 
zero were selected as representative annotations for the given module33.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Challenge data and results are available from the challenge website (https://synapse.
org/modulechallenge). This includes: official challenge rules; gene scores for the 
compendium of 180 GWASs used in the challenge plus five additional GWASs 
obtained after the challenge (GWAS SNP P values are available on request); 
official challenge rules; gene scores for the compendium of 180 GWASs used in 
the challenge plus five additional GWASs obtained after the challenge (GWAS 
SNP P values are available on request); the six challenge networks (anonymized 
and deanonymized versions); the final module predictions of all teams for both 
sub-challenges; consensus module predictions for both sub-challenges; individual 
module scores for all GWASs and enriched functional annotations for all modules.

Code availability
Code is available on GitHub for: user-friendly, dockerized versions of the top three 
methods (https://github.com/BergmannLab/MONET); the latest Pascal version 
(https://www2.unil.ch/cbg/index.php?title=Pascal, https://github.com/dlampart/
Pascal); the regression-based gene-set enrichment analysis (https://github.com/
TaoDFang/GeneModuleAnnotation) and, in addition, the scoring scripts, a 
snapshot of the Pascal version used for the challenge, and module identification 
method descriptions and code provided by teams are available on the challenge 
website (https://synapse.org/modulechallenge).
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Supplementary Figure 1 

Scores in Sub-challenge 1. 

(a) Overall scores of the 42 module identification methods applied in Sub-challenge 1 at four different FDR cutoffs (10%, 5%, 2.5%, and 
1% FDR). For explanation see legend of Fig. 2b, which shows the scores at 5% FDR (the predefined cutoff used for the challenge 
ranking). The top-performing method (K1) ranks first at all four cutoffs. The consensus prediction achieves the top score at 10% and 5% 
FDR, but not at the more stringent cutoffs.  

(b) Average number of trait-associated modules across the 42 methods for each of the six networks. The most trait modules are found 
in the two protein-protein interaction (PPI) and the co-expression networks. Related to Fig. 2d, which shows the average number of trait 
modules relative to network size. 



 

Supplementary Figure 2 

Pairwise similarity of module predictions from different methods. 

(a) Pairwise similarity of module predictions from different methods in Sub-challenge 1, averaged over all networks. Similarity was 
computed based on whether the same genes were clustered together by the two methods. Specifically, a prediction vector     was 
defined for every method   and network  , specifying for every pair of genes whether they were co-clustered in the same module 

(Methods). The prediction vectors     of method   for the six networks (           ) were then concatenated, forming a single vector 

   representing the module predictions of that method for all six networks. A corresponding distance matrix between the 42 methods 
was computed as described in Methods (Equation 1) and hierarchically clustered using Ward’s method. The annotation row and column 
show the method type. The top five methods (1-5) and the consensus (C) are highlighted. The top methods did not converge to similar 
module predictions (they are not all grouped together in the hierarchical clustering). Related to Fig. 3, which shows similarity of module 
predictions from individual networks. 

(b) Comparison of trait-associated modules identified by all challenge methods. Pie-charts show the percentage of trait modules that 
show overlap with at least one trait module from a different method in the same network (top) and in different networks (bottom). We 
distinguish between strong overlap, sub-modules, weak but statistically significant overlap, and insignificant overlap (Methods). 



 

Supplementary Figure 3 

Optimal module granularity is method- and network-specific. 

All panels show results for single-network module identification methods (Sub-challenge 1). 

(a) Average module size versus score for each of the 42 methods. The x-axis shows the average module size of a given method across 
the six networks. The y-axis shows the overall score of the method. Top teams (highlighted) produced modules of varying size, i.e., 
they did not converge to a similar module size during the leaderboard round. There is no significant correlation between module size 
and score (p-value = 0.13 using two-sided Pearson’s correlation test), i.e., the scoring metric did not generally favor either small or 
large modules. Rather, when optimizing parameters during the leaderboard round, teams converged to very different granularities that 
led to the best performance for their specific methods. 

(b) Average number of modules versus score for each method. The x-axis shows the average number of submitted modules across 
networks for a given method, and the y-axis shows the corresponding score. The top five teams (highlighted) submitted a variable 
number of modules (between 103 and 470 modules, on average, per network). There is no significant correlation between the number 
of submitted modules and the obtained score (p-value = 0.99 using two-sided Pearson’s correlation test), i.e., the scoring metric was 
not biased to generally favor either a small or high number of submitted modules. 

(c) Comparison of module sizes between networks and method types. For each network, boxplots show the distribution of average 
module sizes for kernel clustering (n = 6 methods), modularity optimization (n = 10 methods), random-walk-based (n = 10 methods), 
and hybrid methods (n = 7 methods; the remaining categories are not shown because they comprise only three methods each). Note 
that teams tuned the resolution (average module size) of their method during the leaderboard round. The variation in module size 
between different method categories and networks suggests that the optimal resolution is method- and network-specific. For example, 
teams using random-walk-based methods tended to choose a higher resolution (smaller average module size) than teams using kernel 



clustering or modularity optimization methods. On average, modules were smallest in the signaling network and largest in the co-
expression network. 

(d) Module size versus trait-association p-value for individual modules from all methods and networks. For all n = 84,798 modules, the 
module size (x-axis) is plotted against the -log10 of the minimum Pascal p-value across all GWASs (y-axis). Color shows the density of 
points. By design, Pascal p-values are not confounded by module size
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, which is confirmed here (the regression line, shown in red, is 

flat; see also Supplementary Fig. 4). 



 

Supplementary Figure 4 

Module granularity of random predictions does not correlate with score. 

The panels show the average number of trait-associated modules for 17 random modularizations of the networks (i.e., networks were 
decomposed into random modules of the given sizes). Results are shown both for Bonferroni (orange) and Benjamini-Hochberg (blue) 
corrected p-values at a significance level of 0.05. The difference between the two panels is the background gene set used for the 
Pascal module enrichment test (see Methods). 

(a) The complete set of all annotated genes is used as background to compute module enrichment (the UCSC known genes). This is 
an incorrect choice for the background because module genes are drawn from the network genes, which is a subset of all known 
genes. As expected, this incorrect choice of a background set leads to a higher number of trait-associated random modules than in 
Panel b, in particular for large modules. 

(b) The set of all genes in a given network is used as background to compute module enrichment. This is the approach that was 
employed for the challenge scoring. Besides from very small modules of size 3, the module size does not affect the number of trait-
associated random modules, i.e., our scoring methodology is not biased towards a specific module size (see also Supplementary Fig. 
3d). 



 

Supplementary Figure 5 

Scores in Sub-challenge 2. 

(a) Final scores of multi-network module identification methods in Sub-challenge 2 at four different FDR cutoffs (10%, 5%, 2.5%, and 
1% FDR). For explanation see legend of Fig. 3e, which shows the scores at 5% FDR (the predefined cutoff used for the challenge 
ranking). Ranks are indicated for the top five teams (ties are broken according to robustness analysis described in Panel b). The multi-
network consensus prediction (red) achieves the top score at each FDR cutoff. Interestingly, the performance of methods integrating all 
five networks (dark blue) seems to drop substantially at the more stringent FDR thresholds. For example, the second and third ranking 
methods at both 5% and 10% FDR, which integrated all five networks, performed poorly at the 2.5% and 1% FDR thresholds (see 
second and third row from the top). This suggests that not only the absolute number of trait-associated modules, but also their quality in 
terms of association strength could not be improved by considering multiple networks. As mentioned in the Discussion, the challenge 
networks may not have been sufficiently related for multi-network methods to reveal meaningful modules spanning several networks. 
Indeed, the similarity between our networks in terms of edge overlap was small (Supplementary Fig. 6). Of note, there is an important 
conceptual difference between the multi-network methods that teams applied (blue) and the multi-network consensus prediction (red). 
While the former performed modularization on blended or multi-layer networks, the latter integrated the single-network module 
predictions obtained from each individual network (see Supplementary Fig. 7). Results thus suggest that our multi-network consensus 
approach is better suited than multi-layer module identification methods when network similarity is low. Exploring the performance of 
these different approaches when applied to networks of varying similarity is a promising avenue for future work.  

(b) Robustness of the overall ranking in Sub-challenge 2 was evaluated by subsampling the GWAS set used for evaluation 1,000 times. 
For each method, the resulting distribution of ranks is shown as a boxplot (using the 5% FDR cutoff for scoring). Related to Fig. 2c, 
which shows the same analysis for Sub-challenge 1. The difference between the top single-network module prediction and the top 
multi-network module predictions is not significant when sub-sampling the GWASs (Bayes factor < 3, see Methods section “Robustness 
analysis of challenge ranking”). 



 

Supplementary Figure 6 

Pairwise similarity of challenge networks. 

Pairwise similarity of challenge networks. The upper triangle of the matrix shows the percent of shared links (the Jaccard index 
multiplied by 100) and the lower triangle shows the fold-enrichment of shared links compared to the expected number of shared links at 
random. The two protein-protein interaction networks are the two most similar networks, yet they have only 8% shared edges. Of note, 
a recent study has found similarly low overlap between protein-protein interaction networks from different sources, suggesting that 
these molecular maps are still far from complete

60
. 

60. Huang, J. K. et al. Systematic Evaluation of Molecular Networks for Discovery of Disease Genes. Cell Syst. 6, 484-495.e5 (2018) 



 

Supplementary Figure 7 

Consensus Module Predictions. 

(a) Schematic of the approach used to generate single-network consensus module predictions for Sub-challenge 1. For each network, 
module predictions from the top 50% of teams were integrated in a consensus matrix C, where each element cij gives the fraction of 
teams that clustered gene i and j together in the same module in the given network (performance as the percentage of considered 
teams is varied is shown in (c)). The overall score from the leaderboard round was used to select the top 50% of teams, i.e., the same 
set of teams was used for each network. The consensus matrix of each network was then clustered using the top-performing module 
identification method of the challenge (method K1; see Methods). 

(b) The approach used to generate multi-network consensus module predictions for Sub-challenge 2 was exactly the same as for 
single-network predictions, except that team submissions from all networks were integrated in the consensus matrix C. In other words, 
as input we still used the single-network predictions of the top 50% of teams from Sub-challenge 1, but instead of forming a consensus 
matrix for each network, a single cross-network consensus matrix was formed. This cross-network consensus matrix is then clustered 
using method K1 as described above (see Methods). 

(c) Scores of the single-network consensus predictions as the percentage of integrated teams is varied. We considered the top 25%, 
50%, 75% and 100% of teams, as well as the top eight (19%) teams (these are the teams that ranked 2nd, or tied with the team that 
ranked 2nd, at any of the considered FDR cutoffs).  

(d) Performance of different methods to construct the consensus matrix C. In addition to the basic approach described above 
(Standard), two more sophisticated approaches to construct the consensus matrix were evaluated (Normalized and SML). In each 
case, the same set of team submissions were integrated (top 50%) and method K1 was applied to cluster the resulting consensus 
matrix. 

The first alternative (Normalized) is similar to the basic method but further assumes that appearing together in a smaller cluster is 
stronger evidence that a pair of genes is associated than appearing together in a larger cluster. Thus, each cluster’s contribution to the 
consensus matrix was normalized by the size of the cluster. Furthermore, we normalized the ij-entry of the consensus matrix by the 
number of methods that assigned gene i to a cluster, thus taking the presence of background genes into account. We found that the 
consensus still achieved the top score with these normalizations, but there was no improvement compared to the basic approach. 



The second method is a very different approach called Spectral Meta Learner (SML)
56

. SML is an unsupervised ensemble method 
designed for two-class classification problems. Briefly, it takes a matrix of predictions  , where each row corresponds to different 

samples being classified and the columns correspond to different methods. Accordingly, each matrix element     is the class (0 or 1) 

assigned to sample   by method  . Under the assumption of conditional independence of methods given class labels, SML can estimate 

the balanced accuracy of each classifier in a totally unsupervised manner using only the prediction matrix  . The algorithm then uses 
this information to construct an ensemble classifier in which the contribution of each classifier is proportional to its estimated 
performance (balanced accuracy). The module identification problem is an unsupervised problem by its nature and we applied the SML 
algorithm as a new way for constructing consensus modules. For each method   and network  , we created a vector of prediction    , 
of size    

by    
, where    

is the number genes in network as follows: 

                                                                   (1) 

                       

For each network, we constructed the prediction matrix   with each column    defined as above. We then provided this matrix as input 
to the SML algorithm. The SML algorithm outputs a consensus matrix, which assigns a weight between each pair of genes. We found 
that SML did not perform well in the context of this challenge, likely because the underlying assumption of SML is that top-performing 
methods converge to similar predictions, which was not the case here (see Fig. 3 and Supplementary Fig. 2). 



 

Supplementary Figure 8 

Number of distinct trait-associated modules recovered by top methods. 

Number of distinct trait-associated modules recovered by the top K methods. Here, we did not form consensus modules. Instead, given 
the top K methods, we considered the set including all individual modules predicted by these methods and scored them with the same 
pipeline as used for the challenge submissions. We then evaluated how many “distinct” trait-associated modules were recovered by 
these methods. Distinct modules were defined as modules that do not show any significant overlap among each other. Overlap 
between pairs of modules was evaluated using the hypergeometric distribution and called significant at 5% FDR (Benjamini-Hochberg 
adjusted p-value < 0.05). From the set of trait-associated modules discovered by the top K methods, we thus derived the subset of 
distinct trait-associated modules (when several modules overlapped significantly, only the module with the most significant GWAS p-
value was retained). Although the resulting scores (number of distinct trait-associated modules) cannot be directly compared with the 
challenge scores (because module predictions had to be strictly non-overlapping in the challenge), it is instructive to see how many 
distinct trait modules can be recovered when applying multiple methods. The stacked bars (colors) further show how many of the 
distinct trait modules are contributed by each method category. The number of distinct trait modules is not monotonically increasing as 
more methods are added because the larger sets of modules also increase the multiple testing burden of the GWAS scoring. The top 
four methods together discover 78 distinct trait-associated modules. Relatively little is gained by adding a higher number of methods. 



 

Supplementary Figure 9 

Functional Enrichment for Example Modules. 

Enrichment p-values for mouse mutant phenotypes, Reactome pathways and GO biological processes are shown for four example 
modules discussed in the main text. P-values were computed using the non-central hypergeometric distribution and adjusted using the 
Bonferroni method (Methods). Results for the remaining trait-associated modules from the consensus analysis in the STRING protein-
protein interaction network are shown in Supplementary Fig. 12 and Supplementary Table 4. Functional enrichment analysis for 
additional pathway databases and modules from all methods and networks are available on the challenge website. 



(a) Module associated with height described in Fig. 5 (n = 25 genes). 

(b) Module associated with rheumatoid arthritis described in Fig. 6a (n = 25 genes). 

(c) Module associated with inflammatory bowel disease described in Fig. 6b (n = 42 genes). 

(d) Module associated with myocardial infarction described in Fig. 6c (n = 36 genes). 



 

Supplementary Figure 10 

Enrichment of trait-associated modules in curated gene sets from recent studies. 

Enrichment of trait-associated modules in six curated gene sets from three recent studies. The first two gene sets were taken from 
Marouli et al.

32
 and correspond to genes comprising height-associated ExomeChip variants (n = 475 genes) and genes known to be 

involved in skeletal growth disorders (n = 266 genes), respectively. The third gene set was taken from de Lange et al.
61

 and 
corresponds to genes causing monogenic immunodeficiency disorders (n = 316 genes). Lastly, three gene sets relevant for type 2 
diabetes (T2D) were taken from Fuchsberger et al.

62
 and correspond to genes in literature-curated pathways that are believed to be 

linked to T2D (we distinguished between genes in cytokine signalling pathways [n = 384 genes] and other pathways [n = 390 genes]) 
and genes causing monogenic diabetes (n = 81 genes). We then considered corresponding GWAS traits in our hold-out set, namely 
height, all immune-related disorders, and T2D. We tested all modules associated with these GWAS traits for enrichment in these six 
external gene sets. Enrichment was tested using the hypergeometric distribution and p-values were adjusted to control FDR using the 
Benjamini-Hochberg method. The heatmap shows for each GWAS (row) the fraction of trait-associated modules that significantly 
overlap with a given gene set (column). It can be seen that modules associated with a given trait predominantly overlap the external 
gene sets that are expected to be relevant for that trait. 

61. de Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory 
bowel disease. Nat. Genet. 49, 256–261 (2017). 

62. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 (2016). 



 

Supplementary Figure 11 



Support of trait-module genes in higher-powered GWASs. 

Trait-associated modules comprise many genes that show only borderline or no signal in the corresponding GWAS (called “candidate 
trait genes”). To assess whether modules correctly prioritized candidate trait genes, we considered eight traits for which older (lower-
powered) and more recent (higher-powered) GWAS datasets were available in our holdout set. This allowed us to evaluate how well 
trait-associated modules and candidate trait genes predicted using the lower-powered GWAS datasets were supported in the higher-
powered GWAS datasets.  

(a) Pairs of older (lower-powered) and more recent (higher-powered) GWASs used for the evaluation of module-based gene 
prioritization. The first column gives the trait and the second and third columns the corresponding GWASs. The bar plot shows the 
percentage of trait-associated modules from the first GWAS that are also trait-associated modules in the second GWAS. At the bottom, 
the expected percentage of confirmed modules at random is shown (i.e., assuming the trait-associated modules in the second GWAS 
were randomly selected from the set of predicted modules). 

(b) Height-associated module from Fig. 5 as an illustrative example (n = 25 genes). The module shows modest association to height in 
the lower-powered GWAS. Color indicates GWAS gene scores (FDR-corrected Pascal p-value = 0.04, see Methods). The signal is 
driven by three genes from different loci with significant scores (pink), while the remaining genes (grey) are predicted to be involved in 
height because of their module membership.  

(c) The module from (b) is supported in the higher-powered GWAS (q-value = 0.005). 45% of candidate trait genes (grey in (b)) are 
confirmed (pink).  

(d) Since high-powered GWASs typically result in many trait-associated genes, even random modules would have some genes 
“confirmed”. It is thus important to evaluate whether more candidate trait genes are confirmed than expected. Here we show support of 
candidate trait genes across the eight traits listed in (a). The lower-powered GWASs were used to predict candidate trait genes, defined 
as genes that: (i) are within a trait-associated module in the lower-powered GWAS; (ii) have a high gene p-value (p > 5E-4, i.e., two 
orders of magnitude above the genome-wide significance threshold of 5E-6 (cf. grey genes in (a)) and (iii) are located more than one 
megabase away from the nearest significant locus of the corresponding GWAS. Gene p-values were computed using Pascal as 
described above. Finally, the Pascal p-value of all candidate trait genes was evaluated for the higher-powered GWAS (n = 2,254 genes 
considering trait-modules from all methods). Since there is a genome-wide tendency for p-values to become more significant in higher-
powered GWAS data

38
, Pascal p-values were also evaluated for a background gene set (all genes that meet the two conditions (ii, iii), 

but do not belong to trait-associated modules of the lower-powered GWAS). The plot shows the cumulative distribution of gene scores 
in the higher-powered GWASs for candidate trait genes (red line) and genes in the background set (grey line). a substantial fraction of 
module genes that do not show any signal and are located far from any significant locus in the lower-powered GWAS are subsequently 
confirmed by the higher-powered GWAS.  

(e) Since candidate trait genes (i.e., genes satisfying the three conditions (i-iii) described above) could still have lower p-values than 
genes in the background set (i.e., genes satisfying the two conditions (ii, iii)), we repeated the same analysis with higher gene p-value 
thresholds for condition (ii): p-value > 5E-3 (n = 2,185 genes) (e) and p-value > 5E-2 (n = 1,969 genes) (f). For this range the 
“discovery” gene score p-values in the candidate set and the background set are much more similar. Although there may remain some 
confounding, the same trend as in (d) is observed, indicating that the result is robust. This suggests that modules are predictive for trait-
associated genes and could potentially be used to prioritize candidate genes for follow-up studies, for instance. 



 

Supplementary Figure 12 

Overview of Consensus Trait-modules in the STRING Network. 

Overview of all 21 trait-associated consensus modules in the STRING protein-protein interaction network. The first three columns give 
the module ID, the trait type, and the specific GWAS trait that the module is associated to. We tested all modules for enrichment in GO 
annotation, mouse mutant phenotypes, and other pathway databases using the non-central hypergeometric test (Methods). The 
putative function of each module based on this enrichment analysis is summarized in the fourth column (see Figs. 5, 6, 
Supplementary Fig. 9, and Supplementary Table 4 for details). Two thirds of the modules have functions that correspond to core 
pathways underlying the respective traits, while the remaining modules correspond either to generic pathways that play a role in diverse 
traits or to pathways without an established connection to the considered trait or disease. Only pathways with a well-established link to 
the trait were considered core pathways. Generic pathways, such as cell-cycle-related or epigenetic pathways, were not considered 
core pathways because they are relevant for many traits and tissues, making them more difficult to target therapeutically. For example, 
modules 77 and 109 are both associated with schizophrenia and comprise pathways related to epigenetic gene silencing and 
nucleosome organization, respectively. Although there is evidence that epigenetic mechanisms may play a role in schizophrenia, we 
considered this to be a generic pathway. 



 

Supplementary Figure 13 

Modules Associated with IgA Nephropathy. 



The top ten enriched GO biological processes, Reactome pathways and mouse mutant phenotypes are shown for two IgA nephropathy 
(IgAN) associated modules. P-values were computed using the non-central hypergeometric distribution (Methods).  

(a) IgAN-associated module identified using the consensus analysis in the InWeb protein-protein interaction network (n = 19 genes). 
The module comprises immune-related NF-κB signaling pathways. Enriched mouse mutant phenotypes for module gene homologs 
include perturbed immunoglobulin levels (IgM and IgG1). The module implicates in particular the NF-κB subunit REL as a candidate 
gene. The REL locus does not reach genome-wide significance in current GWASs for IgAN but is known to be associated with other 
immune disorders such as rheumatoid arthritis. 

(b) IgAN-associated module identified by the best-performing method (K1) in the InWeb protein-protein interaction network (n = 12 
genes). Besides finding complement factors that are known to play a role in the disease (CFB and C4A), the module implicates novel 
candidate genes such as the chemokine Platelet Factor 4 Variant 1 (PF4V1) from a sub-threshold locus, and is enriched for coagulation 
cascade, a process known to be involved in kidney disease

62
. The top two enriched mouse mutant phenotypes are precisely “abnormal 

blood coagulation” and “glomerulonephritis”. 

62. Madhusudhan, T., Kerlin, B. A. & Isermann, B. The emerging role of coagulation proteases in kidney disease. Nat. Rev. Nephrol. 
12, 94–109 (2016). 

 



 

 
 
 

Supplementary Table 1 (Included in the online Supplementary Information as Excel file) 
Collection of GWAS Datasets used for the Challenge. 
The table lists the GWAS datasets used for the module scoring. The first column indicates whether the GWAS was 
used during the "leaderboard" or "final" evaluation phase. The five GWAS listed in the end ("extra") were not used for 
the scoring as they were added to the collection after the challenge. The PASCAL gene scores for all GWAS are 
available for download from the challenge website (file names are given in the last column). The original GWAS SNP 
summary statistics can be downloaded individually from the indicated sources or we can share the complete 
collection upon request.  
 
  



 

Supplementary Table 2. Module identification methods 
 
IDa 

 
Description 

 
Scoreb 

Pre- / post- 
processingc 

Kernel clustering: (i) the weighted adjacency matrix is transformed into a gene similarity matrix; (ii) a clustering algorithm is applied. 
K1 (i) Diffusion State Distance metric24; (ii) spectral clustering. 60 R 
K2 (i) Singular Value Thresholding63 maps the graph into a latent feature space; (ii) hierarchical clustering using Ward’s method. 48 W, R 
K3 (i) Large-scale Information Network Embedding (LINE)48; (ii) K-means clustering. 46 - 
K4 (i) Extension of Spectral Clustering On Ratios-of-Eigenvectors (SCORE)64 allowing for weighted networks and hierarchical 

structure of submodules; (ii) spectral clustering. 
42 R 

K5 (i) SCORE64; (ii) spectral clustering.  38 - 
K6 (i) Diffusion kernel is applied to graph Laplacian47; (ii) Weighted Gene Coexpression Network Analysis (WGCNA)7. 30 M 
Modularity optimization: search algorithms are employed to find modules that maximize a modularity quality function. 
M1 Modularity optimization algorithms are extended with a multiresolution technique27. 60 S, R 
M2 Louvain community detection algorithm49. 56 S,W,R,M 
M3 Extension of a multi-network module identification method31,36, here applied to single-layer networks. 48 R 
M4 PageRank algorithm is used to create an initial partition for the Louvain method75. 44 W, R 
M5 Hierarchical module tree generated using Louvain algorithm, optimal partitions selected using modularity, conductance, and 

connectivity metrics74. 
42 W,R,M,F 

M6 Greedy agglomerative clustering approach optimizes a score based on total weight of intra-module edges and module size. 40 S,W, M 
M7 Fast greedy clustering algorithm65 that iteratively divides modules to optimize the modularity. 40 - 
M8 Modularity optimization by Conformational Space Annealing (Mod-CSA)66 using the weighted adjacency matrix. 38 S, R 
M9 Louvain algorithm is used for optimization of a generalized modularity metric with a resolution parameter. 37 R 
M10 Louvain algorithm. 33 R 
Random-walk-based: modules are identified using diffusion processes over the network. 
R1 Multi-level Markov clustering is extended with a regularization matrix to balance module sizes28. 58 S, W, R 
R2 Walktrap algorithm50, output modules are filtered based on the median node degree. 44 S, R 
R3 Walktrap algorithm. 43 S, R 
R4 A machine learning approach for predicting disease genes from graph features is combined with the Infomap algorithm51.  40 S,R,F 
R5 Walktrap algorithm with varying number of steps. 39 S, F, M 
R6 Infomap algorithm, Markov-time parameter is optimized to yield maximum number of modules of valid size. 38 R,M 
R7 Markov clustering, output modules are filtered based on conductance and module size. 36 S, w 
R8 Recursive local graph sparsification and clustering using Infomap for scalable community detection73. 36 S, R 
R9 Walktrap is used for the first network, Infomap for the remaining networks. 28 R 
R10 Modules detected using Walktrap and Infomap are combined. 20 S 
Local methods: agglomerative algorithms that grow modules from seed nodes. 
L1 Topological overlap matrix is clustered using the fast agglomerative SPICi52 and SCAN++ algorithms67. 55 S, W,R 
L2 Basic agglomerative approach assigning genes to connected modules until the module size limit is reached. 31 W,R,M 
L3 Local method that grows modules from seed nodes using a novel Triangle based Community Expansion (TCE) method. 30 M 
Ensemble clustering: alternative clusterings sampled either from stochastic runs or from a set of different methods are merged. 
E1 Various clustering methods are applied on network embeddings created using DeepWalk68, consensus modules are 

obtained using a bagging method. 
46 S,W,M 

E2 Consensus modules are derived from two flat clustering algorithms: ClusterOne and Finding Low-Conductance set with 
Dense interactions (FLCD)69. 

41 S,W,F 

E3 Ensemble approach applied to integrate multiple Markov clustering runs. 24 S,R 
Hybrid methods: different clustering methods are selected for each network based on leaderboard performance or structural quality scores. 
H1 Either Louvain, Infomap, or a continuous optimization method70 are selected for each network. 50 R, F 
H2 Either Louvain, Infomap, SPICi, or DCut71 are selected for each network. 50 W,R 
H3 Five different methods are applied to cluster networks, followed by filtering of modules based on structural quality metrics. 40 W,R, M, F 
H4 Nine different methods are applied in different combinations, followed by module filtering and post-processing steps. 37 R,M,F 
H5 Seven different methods are applied including an ensemble approach, followed by filtering and post-processing steps72. 31 S,W,R,M,F 
H6 WGCNA followed by fast greedy community detection to refine modules. 19 R 
H7 No detailed description provided. 14 - 
Others 

  

O1 Agglomerative algorithm that joins clusters based on the number of shared neighbors and the cluster sizes. 36 W,F 
O2 Two-way modules (dense bipartite subgraphs) are mined using a heuristic algorithm. 33 W,F 
O3 No detailed description provided. 12 - 

(legend on next page) 
  



 

Supplementary Table 2 (See previous page) 
The 42 module identification methods applied in Sub-challenge 1 grouped by category. 
aIdentifier (ID) of the method used throughout the paper. 
bOverall score of the method as defined in Fig. 2b. 
cCommon pre- and post-processing steps. Pre-processing steps are coded as: (S) sparsification of networks and (W) 
rescaling of edge weights. Post-processing steps are coded as: (R) recursive break-down of large modules, (M) 
merging modules of invalid size followed by re-modularization, and (F) filtering modules according to a quality metric. 
 
 
 
Supplementary Table 3 (Included in the online Supplementary Information as Excel file) 
Challenge scores of methods in the leaderboard and final round. 
The table shows the challenge scores of all methods both for the leaderboard and final rounds. 
  
 
 
Supplementary Table 4 (Included in the online Supplementary Information as Excel file) 
Functional Enrichment of Consensus Trait Modules. 
For each of the 21 consensus trait-modules shown in Supplementary Fig. 12, all categories with a Bonferroni-
corrected P-value below 0.05 are listed (Methods). Only results for mouse mutant phenotypes, Reactome pathways 
and GO biological process annotations are included for brevity. Full results including all tested pathway databases 
and all challenge modules are available on the challenge website. 
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