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Fig. S1: No-infected approximation of the SIRS model. Comparison between the nu-
merical solution of the SIRS model (solid lines) and the analytical formulas (dotted lines). The
analytical formulas are the ones displayed in Eqs. (10)–(12) and obtained in the no-infected
approximation. Here, only the susceptible and infected curves are shown. The two vertical
lines correspond to tmax and tp, which are the times at which the maximum of the susceptible
curve Smax is reached and the estimated time of the peak, respectively. Simulation with β = 1,
µ = 0.5, δ = 0.01, S(0) = 0.1, I(0) = 10−4, here displayed only between the times t = 100 to
t = 200.
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Fig. S2: Relative reduction in cumulative cases. Relative reduction in cumulative cases
with respect to the scenario with no vaccines as a function of the vaccine coverage, defined as
the ratio of vaccines with respect to the total population. Each circle in the figure denotes a
specific simulation characterized by a constant vaccine coverage, starting time, and campaign
duration. It is evident from the data that vaccine coverage is the primary factor influencing the
reduction in total cases. The other two parameters, while less significant, become increasingly
noticeable as the vaccine coverage increases.
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Fig. S3: Relative variation of the number of cases at the second peak and cumulative
cases due to vaccination strategies with varying durations. The three vaccination
volume levels depicted in this figure correspond to 0.1, 0.3 and 0.5 vaccines per person. The
duration of each vaccination campaign is constant and equal to 60 days. The curves have been
obtained running the SIRS model with vaccination. The horizontal axis is the starting day of
the vaccination campaign, and the vertical axis is the relative height variation of the second peak
of cases (top), and the cumulative number of cases (bottom). The variation is measured relative
to the baseline scenario with no vaccines. The dashed vertical lines indicate the location of the
first and second peaks in the baseline simulation. Observing the bottom plot, we see that those
strategies that deliver more vaccines over time produce better results in terms of containing
the number of cumulative cases. However, looking at the top plot, we see that the same longer
duration strategies also cause a larger rebound effect. Simulations run with β = 1, µ = 0.5,
δ = 0.01, I(0) = 10−4.
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Fig. S4: Appearance of subsequent peaks due to improper timing of the vaccination
strategies. The dark blue line shows the outcome of the baseline scenario where no vaccination
campaign is active, while the orange line is the result of a certain vaccination strategy where
the timing of the campaign during the second wave exacerbates the third wave. The shaded
area denotes the duration of the campaign, which starts at t = 251 and lasts for 90 days.
Here, the age priority vector is set to [0.1, 0.4, 0.5]. This example shows that an improperly
timed vaccination during the second peak can significantly amplify the following third peak.
This observation highlights the generalizability of the conclusions regarding the first and second
peaks to any consecutive peaks in the epidemic, emphasizing the importance of well-timed
vaccination strategies to mitigate the severity of future waves.
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Fig. S5: Number of cases, hospitalizations and cumulative number of deaths in the
baseline scenario, for different age strata. This figure illustrates the breakdown of cases,
hospitalizations, and cumulative deaths in the baseline scenario (without an active vaccination
campaign) across different age groups. As we can see on the top plot, the adult population
contributes most to active cases, followed by the young and elderly. However, hospitalizations
(middle plot) predominantly affect the elderly, followed by adults and the young. In terms of
fatalities (bottom plot), the elderly group significantly dominates the numbers.
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Fig. S6: Analysis of the vaccination strategies (hospitalizations). In this scatter plot,
each point corresponds to a unique simulation based on a distinct vaccination strategy. The
horizontal axis represents the variation in the number of hospitalizations at the second peak
relative to the baseline case, whereas the vertical axis depicts the relative variation in the
number of deaths. The color, shape, and size of each point carry the same meaning as those in
Fig. 6, i.e., they indicate the starting day, age priority, and duration of each vaccination strategy,
respectively. The black solid line represents the Pareto front, indicating the optimal strategies
that provide the best way to simultaneously minimize hospitalizations and deaths. We can see
that in this case, the rebound effect disappears almost completely since in this model vaccines
offer long-term protection against hospitalization. The shape of the Pareto front also changes,
as the distinction between Type 1 and Type 2 strategies disappears.
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Fig. S7: Features of the Pareto-optimal strategies (hospitalizations). This table shows
the characteristics of Pareto-optimal strategies alongside a scatter plot that includes only those
data points belonging to the Pareto front. The columns of the table provide information on the
duration and starting time of each strategy, the priority vector that determines the vaccines
distribution by age group (ordered as [Young, Adult, Old]), as well as the age stratum that
is most prioritized for each strategy. The asterisk indicates simulations that are optimal for
reducing both the number of cases and the number of hospitalizations. As illustrated in the
table equivalent to the one presented here, but using cases as the measure (see main text), we
can still identify two distinct types of vaccination strategies. However, in this case, the transition
between the two kinds is smoother. This can be attributed to the fact that hospitalizations and
deaths are more dependent on each other than cases and deaths, and therefore the strategies to
optimally reduce one of them are bound to have a certain impact on the other one as well.
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Fig. S8: Model calibration through the comparison of active cases in Spain. The
time interval considered here goes from the 1st of December 2021 to the 7th of March 2022.
The orange line corresponds to real data [1] while the blue line corresponds to the best model
prediction. The shadowed area represents the 95% confidence interval.
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Fig. S9: Examples of rebound in the absence of ages, migration, or both. To demon-
strate that the rebound effect is independent of both the metapopulation network and the age
structure, we present figures where the rebound occurs even when both these factors are ex-
cluded. The black lines represent the baseline with no vaccination, while the red lines depict
scenarios resulting from vaccination within the time window indicated by the green area. In
a) and c), inter-patch mobility has been disabled by setting all elements of the parameter pg

to zero; in b) and c) the age structure was eliminated by turning the contact matrix Cgh into
a diagonal matrix. The rest of the parameters and initial conditions were the same as used in
the simulation explained in Sections S3 and S4. It is evident from all three figures that the
qualitative behavior is remarkably similar: after a brief period of lower prevalence, the cases in
the vaccinated scenarios consistently rise above the baseline in all scenarios, thereby confirming
that neither migrations nor age structures are sufficient to disrupt the rebound effect.
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Section S1. Rebound timing and its dependence on vaccination6

As we already mentioned in the Methods section of the paper, the solution for the infected7

individuals after the end of an eradication-type vaccination campaign is:8

I(t) = I(tstop) exp

[
(β − µ)(t− tstop)− βR(tstop)

δ
(1− e−δ(t−tstop))

]
. (S.1)

Since it is reasonable to think that the no-infection approximation stops working right around9

the time the infectious peak is reached, this allows us to use the time tp where the formula loses10

meaning as an estimate of the timing of the next epidemic peak. In particular tp is defined as11

the time such that I(tp) = 1 − µ/β, which is an upper-bound for the height of any peak. We12

know this because Eqs. (1)–(3) of the SIRS model imply that, when İ = 0 (e.g., in a maximum13

for I(t)), the value of the susceptible compartment should be S = µ/β, which in turn puts a14

strong constrain on the sum of the other two compartments.15

A closed formula for tp can be obtained using Lambert W function [2] as follows:

tp = tstop+
β

β − µ
R(tstop)

δ
− 1

β − µ
ln
βI(tstop)

β − µ

+
1

δ
W

(
−βR(tstop)

β − µ
exp

{
−βR(tstop)

β − µ
+

δ

β − µ
ln
βI(tstop)

β − µ

})
. (S.2)

This expression is too complex to be used in regular calculations, but it allows us to understand16

how the rebound timing tp depends on the strength of the previous vaccination through its17

dependencies on I(tstop) and S(tstop). We do this by looking at the partial derivatives
∂tp

∂I(tstop)
18

and
∂tp

∂S(tstop)
. We consider I(tstop) and S(tstop) as the independent variables, and substitute19

R(tstop) using the normalization condition, i.e., R(tstop) = 1− S(tstop)− I(tstop). Thus,20

∂R(tstop)

∂I(tstop)
=
∂R(tstop)

∂S(tstop)
= −1 . (S.3)

Furthermore, we will use the following property of the principal branch of the Lambert W21

function:22

dW (x)

dx
=

W (x)

x(W (x) + 1)
> 0 , ∀x > −1

e
. (S.4)

We introduce two auxiliary variables A and B, where A corresponds to the argument of the23

exponential inside the Lambert W function, and B is the argument of the Lambert function24

itself:25

A = −βR(tstop)

β − µ
+

δ

β − µ
ln
βI(tstop)

β − µ
, (S.5)

B = −βR(tstop)

β − µ
exp{A} = −βR(tstop)

β − µ
exp

{
−βR(tstop)

β − µ
+

δ

β − µ
ln
βI(tstop)

β − µ

}
, (S.6)

thus Eq. (S.2) can be rewritten as26

tp = tstop −
A

δ
+
W (B)

δ
. (S.7)
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Before we proceed to calculate the derivatives of the time tp with respect to I(tstop) and27

S(tstop), it is useful to calculate the derivatives of A and B:28

∂A

∂I(tstop)
=

β

β − µ
+

δ

I(tstop)(β − µ)
, (S.8)

∂A

∂S(tstop)
=

β

β − µ
, (S.9)

∂B

∂I(tstop)
= B

(
∂A

∂I(tstop)
− 1

R(tstop)

)
, (S.10)

∂B

∂S(tstop)
= B

(
∂A

∂S(tstop)
− 1

R(tstop)

)
. (S.11)

Note that Eqs. (S.8) and (S.9) are always positive. Armed with these definitions we write the29

first partial derivative of tp as follows:30

∂tp
∂I(tstop)

= −1

δ

∂A

∂I(tstop)
+

1

δ

dW (B)

dB

∂B

∂I(tstop)
(S.12)

= −1

δ

∂A

∂I(tstop)
+

1

δ

dW (B)

dB
B

(
∂A

∂I(tstop)
− 1

R(tstop)

)
(S.13)

= −1

δ

∂A

∂I(tstop)
− 1

δ

dW (B)

dB

βR(tstop)

β − µ
exp{A}

(
∂A

∂I(tstop)
− 1

R(tstop)

)
. (S.14)

We immediately notice that this partial derivative is negative if the term in the parenthesis is31

positive, which can be written as32

∂A

∂I(tstop)
− 1

R(tstop)
> 0 ⇐⇒ R(tstop) >

(β − µ)I(tstop)

βI(tstop) + δ
. (S.15)

Since we are currently working with vaccination, in the eradication regime we can safely assume33

that I(tstop)� 1 and, therefore, that the above inequality is satisfied and34

∂tp
∂I(tstop)

< 0 . (S.16)

On the other hand, the other partial derivative reads35

∂tp
∂S(tstop)

= −1

δ

∂A

∂S(tstop)
+

1

δ

dW (B)

dB

∂B

∂S(tstop)
(S.17)

= −1

δ

∂A

∂S(tstop)
+

1

δ

dW (B)

dB
B

(
∂A

∂S(tstop)
− 1

R(tstop)

)
(S.18)

= −1

δ

β

β − µ
− 1

δ

dW (B)

dB

βR(tstop)

β − µ
exp{A}

(
β

β − µ
− 1

R(tstop)

)
. (S.19)

As before, this expression is negative if the term inside the parenthesis is positive. We can write36

such condition as37

β

β − µ
− 1

R(tstop)
> 0 ⇐⇒ S(tstop) <

µ

β
, (S.20)

which is always true in the eradication regime, therefore proving that, in this scenario,38

∂tp
∂S(tstop)

< 0 . (S.21)

To sum up, what we have found is that, the smaller I(tstop) and S(tstop), the larger tp will39

be. Furthermore, since in the eradication regime both of these quantities are related to the40

rate of vaccination α, what we have demonstrated here is that, the stronger the vaccination41

campaign (i.e., the larger α), the more delayed the rebound will be.42
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Section S2. Rebound height and its dependence on vaccination43

Finding a good way of estimating the height of an epidemic peak is challenging, and every44

estimate ends up relying on a number of uncontrolled assumptions. However, in our case we45

are not so much interested in its numerical estimation, but in finding a formula that displays a46

similar qualitative behavior.47

Our estimate of the epidemic peak relies on the connection between it and the slope of the48

susceptible curve at time tp. The two are connected by the Eq. (1) in the following way:49

Ṡ(tp) = −βS(tp)I(tp) + δR(tp) . (S.22)

By using the facts that S(tp) = µ/β and R(t) = 1 − S(t) − I(t), rearranging the terms we get50

that:51

I(tp) = I∗ − Ṡ(tp)

µ+ δ
, (S.23)

where I∗ = δ
µ+δ

(
1− µ

β

)
is the equilibrium value of the epidemic compartment in the SIRS52

model without vaccination. Notice that Eq. (S.23) holds true for every maximum and minimum53

of the function I(t), but we are here only interested in the first maximum.54

The problem now becomes to find the slope of the function S(t) at time tp. We achieve this55

with a quadratic approximation Ŝ(t) = at2 + bt+ c that satisfies the following three conditions:56

Ŝ(tmax) = Smax, Ŝ(tp) =
µ

β
, Ŝ′(tmax) = 0, (S.24)

where Smax is the maximum value reached by the susceptible compartment before it starts to57

decrease, while tmax is the time at which that happens. In our approximation we make this point58

coincide with the vertex of the parabola. The three conditions in Eq. (S.24) give us a system59

of three equations with three unknowns, i.e., the parameters of the parabola. It is therefore60

always possible to find an explicit solution:61

a = −Smax − µ/β
(tp − tmax)2

, b = −2tmaxa, c = Smax + at2max . (S.25)

Next, we can simply compute the derivative of the parabola at time tp, Ŝ(tp) = 2atp + b, which62

gives us an estimate for the slope of the susceptible curve at that point63

Ṡ(tp) = −2
Smax − µ/β
tp − tmax

. (S.26)

Finally, thanks to Eq. (S.23), we get an estimate for the height of the peak as a function of the64

peak in susceptibles preceding the rebound65

I(tp) = I∗ +
2(Smax − µ/β)

(µ+ δ)(tp − tmax)
. (S.27)

The conclusion we can draw from this estimation is that, the larger the build-up in suscep-66

tibles before an epidemic wave (i.e., Smax), the taller the subsequent peak will be.67
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Section S3. Equations of the age-stratified COVID-19 model68

The variables of our system of equations are {ρm,gi,v (t)}, which indicate the density of individuals69

in the compartment m, age stratus g, location i and vaccination status v at time t (measured70

in days). In the following, we write the equations for the temporal evolution of these quantities.71

Note that, for the majority of these compartments, the indexes g, i and v can be left implicit,72

while in the case of the compartment S, the index v must be specified because the form of the73

equation changes according to it. Apart from adding the vaccination state, only the equations74

for compartments S and R have been changed with respect to the work by Arenas et al. [3]:75

ρS,gi,0 (t+ 1) = (1−Πg
i,0(t))ρ

S,g
i,0 (t)− εgi /n

g
i , (S.28)

ρS,gi,1 (t+ 1) = (1−Πg
i,1(t))ρ

S,g
i,1 (t)− ΛρS,gi,1 (t) + εgi (t)/n

g
i , (S.29)

ρS,gi,2 (t+ 1) = (1−Πg
i,2(t))ρ

S,g
i,2 (t) + ΛρS,gi,1 (t) + Γ(ρR,gi,0 (t) + ρR,gi,1 (t) + ρR,gi,2 (t)) , (S.30)

ρE,gi,v (t+ 1) = (1− ηg)ρE,gi,v (t) + Πg
i,v(t)ρ

S,g
i,v (t) , (S.31)

ρA,gi,v (t+ 1) = (1− αg) ρA,gi,v (t) + ηg ρE,gi,v (t) , (S.32)

ρI,gi,v (t+ 1) = (1− µg) ρI,gi,v (t) + αg ρA,gi,v (t) , (S.33)

ρPD,g
i,v (t+ 1) = (1− ζg) ρPD,g

i,v (t) + µg θgv ρ
I,g
i,v (t) , (S.34)

ρPH ,g
i,v (t+ 1) = (1− λg) ρPH ,g

i,v (t) + µg (1− θgv) γgv ρ
I,g
i,v (t) , (S.35)

ρHD,g
i,v (t+ 1) = (1− ψg) ρHD,g

i,v (t) + λg ωgv ρ
PH ,g
i,v (t) , (S.36)

ρHR,g
i,v (t+ 1) = (1− χg) ρHR,g

i,v (t) + λg (1− ωgv) ρPH ,g
i,v (t) , (S.37)

ρD,gi,v (t+ 1) = ρD,gi,v (t) + ζg ρPD,g
i,v (t) + ψg ρHD,g

i,v (t) , (S.38)

ρR,gi,v (t+ 1) = ρR,gi,v (t) + µg (1− θgv) (1− γgv ) ρI,gi,v (t) + χg ρHR,g
i,v (t)− ΓρR,gi,v (t) . (S.39)

The following normalization relations hold:76 ∑
m

∑
v∈{0,1,2}

ρm,gi,v (t) = 1, ∀g, i, t, (S.40)

which can be easily checked by looking at the system of Eqs. (S.28) to (S.39).77

Let us describe the compartmental dynamics of our model. The three vaccination statuses,78

denoted by 0, 1, 2, represent the natural progression of vaccine-associated defense changes within79

an individual. Respectively, they correspond to: a completely defenseless person; a person80

with high defenses against both infection and hospitalization; and finally, a person with high81

defenses against hospitalization but who remains totally susceptible to infection. Initially, a82

fraction εgi /n
g
i of the susceptible population is vaccinated. Although vaccinated individuals will83

still go through the same epidemiological compartments, their transition rates will differ based84

on their vaccination status. We assume that vaccine-induced immunity diminishes with rate Λ.85

Susceptible individuals become infected when they come into contact with asymptomatic or86

infected individuals, with the probability of transmission denoted by Πg
i,v (further explained in87

the next section). If transmission occurs, the previously susceptible individual moves to the88

exposed compartment. An exposed individual transitions to the asymptomatic compartment89

with rate ηg and subsequently to the infected compartment with rate αg. From the infected90

compartment, several outcomes are possible, that are reached at a rate µgv. One possibility is91

recovering after the infection without hospitalization, with probability (1−θgv) (1−γgv ). Another92

possibility is having a severe course of infection and requiring hospitalization, with probability93

(1 − θg1)γg1 and a delay governed by rate λg. At this point, individuals can either receive a94

14



fatal prognosis with probability ωgv leading to death at a rate ψg, or a good prognosis with95

probability 1− ωgv , leading to recovery at a rate χg. The last possibility is dying without being96

hospitalized with probability θgv after a latency period governed by rate ζg. Finally, individuals97

in the recovered compartment who are not vaccinated might transition again to the susceptible98

compartment with probability Γ. All the numerical values of these parameters can be found in99

Tables S1, S2 and S3.100

Section S4. Social contacts and infection probability101

It is important to specify how the infection probability Πg
i,v(t) is calculated. This probability102

represents the probability of an individual associated to patch i, age stratum g, and vaccination103

status v to be infected at time t. Following Arenas et al. [3], the infection probability is calculated104

as105

Πg
i,v(t) = (1− pg)P gi,v(t) + pg

∑
j

RgijP
g
j,v(t) , (S.41)

where the first term indicates the probability of susceptible individuals to get infected in their106

“home” patch while the second term indicates the probability of getting infected elsewhere. In107

particular pg is the probability to travel from your patch to another and Rgji is the probability108

that an individual of age g will go from i to j, given that it will move (no correlation is assumed109

between the vaccination status v and the mobility of an individual). Furthermore P gi,v(t) denotes110

the probability that an agent of age g and status v gets infected inside patch i. This is, in turn,111

expressed as112

P gi,v(t) = 1−
∏
h,j,w

∏
m∈{A,I}

[
1− βm(1− rv)(1− bw)

]Tm,h,w
j→i

, (S.42)

where rv is the vaccine efficacy in preventing infections while bw is the vaccine efficacy in113

preventing transmission once already infected. The exponent Tm,h,wj→i indicates the effective114

number of contacts made by an agent of age h, compartmentm (either infected of asymptomatic)115

and vaccination status w that traveled from patch j to patch i. This quantity is calculated as116

follows:117

Tm,h,vj→i = zg 〈kg〉 f(ngi /si)C
gh
nm,h,vj→i

ñhi
. (S.43)

Here, the term zg 〈kg〉 f(ngi /si) represents the total number of contacts that people of age g118

make inside patch i. Those contacts increase monotonically with the population density in that119

patch, and the function that we use to model this dependency is the following [3]:120

f(x) = 1 + (1− e−ξx) . (S.44)

Since we want the overall number of contacts to depend on the average number of connections of121

each age group, we introduce 〈kg〉 multiplied by a normalization factor zg such that the average122

degree of population belonging to age group g is exactly 〈kg〉. From [3] we know that:123

zg =
ng∑NP

i=1 f( ñi
si

)ñgi
, (S.45)

where si is the surface of the patch i, and the symbols ñi and ñgi refer to the number of people124

present in patch i during the commuting phase, given by:125

ñi =

NG∑
g=1

ñgi (S.46)
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and126

ñgi =

NP∑
j=1

Mg
jin

g
j , (S.47)

For convenience, we also define the mobility matrix as127

Mg
ji = (1− pg)δji + pgRgji , (S.48)

being δji the Kronecker delta function. Then, the total number of contacts must be multiplied128

by Cgh, which specifies the fraction of all the contacts that individuals in age group g have with129

individuals in age group h. Finally, the last term in the exponent indicates how many of these130

contacts were with infected or asymptomatic people coming from node j:131

nm,h,vj→i (t) = nhj ρ
m,h
j,v (t)Mh

ji . (S.49)

All the numerical values of the parameters in this section can be found in Table S4.132
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Symbol Description Estimates in Spain Assignment

βI Infectivity of symptomatic 0.056 Calibrated
βA Infectivity of asymptomatic βI/2 Assumed
ηg Exposed rate 0.127 Calibrated
αg Asymptomatic rate 0.306 Calibrated
µg Infectious rate 0.589 Calibrated

Table S1: Epidemic parameters. Parameters of the epidemic, determined through calibra-
tion with real data on the number of active cases of COVID-19 in Spain between the 1st of
December 2021 and the 7th of March 2022 [1], see Fig. S8. The calibration was carried out
using the Turing package of the Julia language, which relies on a Markov Chain Monte Carlo
approach with a No-U-Turn sample [4].

Symbol Description Estimates in Spain Assignment

θgv Direct death probability 0.0 [5]
{γgv} ICU probability (0.003, 0.01, 0.08)g ⊗ (0, 0.15)v [5, 6]
{ωgv} Death probability in ICU (0, 0.04, 0.3)g ⊗ (0, 0.1)v [5, 6]
λg Prehospitalized in ICU rate 4.084 days−1 [3]
ζg Predeceased rate 7.084 days−1 [3]
ψg Death rate in ICU 7 days−1 [3]
χg ICU discharge rate 21 days−1 [3]

Table S2: Clinical parameters. Clinical parameters, taken from Arenas et al. [3].

Symbol Description Estimates in Spain Assignment

Γ Reinfection rate 100 days−1 Assumed
Λ Waning immunity rate 50 days−1 Assumed
{rv} Risk Reduction of infection probability (0.0, 0.6) [6]
{bv} Risk Reduction of transmission probability (0.0, 0.4) [6]

Table S3: Vaccination and immunity parameters. Selected vaccination and immunity
parameters.

Symbol Description Estimates for g ∈ {Y,M,O} in Spain

{Ng} Population by age stratum (12M, 26,4M, 8,9M) [7]
ngi Region population [8]
si Region surface [8]
Rgij Mobility matrix (non-diagonal) [9]

〈kg〉 Average total number of contacts [3]
Cgh Contacts-by-age matrix [3]
ξ Density factor 0.01 km2 [3]
{pg} Mobility factor (0.3, 1.0, 0.05) [3]

Table S4: Social parameters. Parameters of the model related to geographic and population
data, including mobility, and their values for Spain.
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