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Rebound in epidemic control: how
misaligned vaccination timing amplifies
infection peaks
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In this study, we explore the dynamic interplay between the timing of vaccination campaigns and the
trajectory of disease spread in a population. Through modeling and comprehensive data analysis of
model output, we have uncovered a counter-intuitive phenomenon: initiating a vaccination process at
an inopportunemoment canparadoxically result in amorepronounced secondpeakof infections. This
“rebound” phenomenon challenges the conventional understanding of vaccination impacts on
epidemic dynamics. We provide a detailed examination of how improperly timed vaccination efforts
can inadvertently reduce the overall immunity level in a population, considering both natural and
vaccine-induced immunity. Our findings reveal that such a decrease in population-wide immunity can
lead to a delayed, yet more severe, resurgence of cases. This study not only adds a critical dimension
to our understanding of vaccination strategies in controlling pandemics but also underscores the
necessity for strategically timed interventions to optimize public health outcomes. Furthermore, we
compute which vaccination strategies are optimal for a COVID-19 tailored mathematical model, and
find that there are two types of optimal strategies. The first type prioritizes vaccinating early and rapidly
to reduce thenumber of deaths,while the second typeacts later andmore slowly to reduce thenumber
of cases; both of them target primarily the elderly population. Our results hold significant implications
for the formulation of vaccination policies, particularly in the context of rapidly evolving infectious
diseases.

Global pandemics of infectious diseases are one of the greatest threats
that humanity faces and, as a consequence, the issue of how to control
them becomes increasingly more urgent as time passes. To rise up to
the challenge, traditional epidemic control offers two alternatives:
non-pharmaceutical interventions (NPIs) such as school closures,
quarantine, or mask mandates on the one hand, and pharmaceutical
interventions such as vaccination, drugs, or treatments on the other.
However, in the case of NPIs1 as in that of vaccination2,3, apparently
similar implementations can lead to different outcomes, hinting at the
fact that epidemic control is, at its heart, a complex problem that
requires a detailed understanding of the underlying mechanisms of
the epidemic.

Mathematical models have long been used to provide a framework to
gather such insights4. In the context of COVID-19, for instance, they have
proved tobe apowerful tool for thedescription, prediction andpreventionof
the ongoing pandemic5–15. Therefore, it comes as no surprise that the search
for an optimal strategy for theminimization of the cases is a well-researched

topic, in particular in the context ofNPIs16–20. The reasonbehind this interest
is obvious: non-pharmaceutical interventions come with high social and
economic costs attached and it is therefore crucial to make them last as little
as possible, possibly to contain the epidemicuntil pharmaceutical treatments
are available. The same kind of optimization problem has been studied in
relation to vaccination, for example in connection to issues of economical
costs21, vaccination rates22, age prioritization23, boosters’ distribution13,24,25

and NPIs-vaccination synergy26. Following this literature, in this paper, we
will also focus on the optimization of vaccination strategies, especially from
the point of view of timing and duration. Unlike the previous works on this
subject27–29, we employ a SIRS model with a time-limited vaccination cam-
paign, which stands as the simplest model incorporating waning immunity
(a feature shared by vaccines of several respiratory illnesses30,31). Addition-
ally, we assess the effectiveness of a vaccination strategy by measuring the
peak prevalence observed after the conclusion of the vaccination campaign.

From our analysis, a counter-intuitive rebound effect is observed: the
timing of vaccination and subsequent immunity waning can synchronize
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with the increase in susceptible population, potentially leading to an infection
peak larger thanwhatwouldbe expected in the absence of vaccination.Earlier
attempts to model reinfections and waning immunity employing a SIRS
model exist32,33, but they primarily deal with the stability of such systems
under the assumption of an unlimited supply of vaccines, and therefore no
reboundwasobserved.The resurgenceof infected individuals after the start of
a mass vaccination campaign has been documented and modeled in various
papers34–36, some of them pinpointing the gradual accumulation of the sus-
ceptible compartment as a key driver37. Additional factors include the sig-
nificance of transient phases in the dynamics38 and the impact of declining
immunity within hosts39. In contrast, investigations into time-limited vacci-
nation strategies are relatively rare, often focusing on specific scenarios such
as pathogens with seasonal infectivity40 or vaccinations administered in
pulsatile campaigns41. However, to the best of our knowledge, the effect has
not yet been mechanistically described in a simple compartmental model
depending only on the timing of the vaccination campaign.

Finally,we are interested in investigatingwhether the reboundeffect seen
in simpler models persists when examining a specific disease and a more
advanced model. For this purpose, we expand upon the model by Arenas et
al.9, originally developed for COVID-19, to include vaccination campaigns,
focusing on the effective management of vaccination timing to minimize the
second peak of infections and reduce cumulative hospitalizations and deaths.
The age-stratified nature of this model also allows us to introduce an addi-
tional variable alongside the timing and duration: the age priority. Using data
from a recent wave of an infectious disease, our findings provide key insights
for optimizing vaccinationdistribution, aiming tomitigate the effects of future
epidemic waves and inform public health policies.

Results
In the following, we outline our findings about what separates a good vac-
cination strategy from a bad one, and in particular on how to get to an
optimal one. This section is divided into four parts: The first part introduces
the SIRS model with vaccination and its basic features. The second part
focuses on the rebound effect (i.e., the unexpected growth of cases after a
vaccination campaign) and gives a mechanistic explanation on why it
happens. The third part outlines the importance of timing and duration of a
campaign to achieve an optimal result. Lastly, the fourth part shifts to amore
complex epidemiological model and deals with the problem of identifying
the Pareto-optimal solutions that simultaneously minimize both the second
wave of cases/hospitalizations and overall deaths.

The model
Let us consider a continuous-timemean-field SIRSmodel with vaccination, a
compartmental model that divides the population into three groups: sus-
ceptible (S), infected (I) and recovered (R) individuals. In this model, sus-
ceptible individuals can become infected through contact with an infected
person at a rate of β. Alternatively, they may gain immunity to the disease
through vaccination, occurring at a rate of α(t), and consequently move into
the recovered category. Infected individuals transition to the recovered
compartment at a rate μ, while recovered individuals lose their immunity at a
rate δ, becoming susceptible again. Note that the vaccination process in this
model can be dynamically managed; it can be turned on and off at any
moment according to the employedvaccination strategy. Thedynamics of the
model is sketched in Fig. 1.

The equations that describe the model are:

dS
dt

¼ �βSI þ δR� αðtÞ; ð1Þ

dI
dt

¼ βSI � μI; ð2Þ

dR
dt

¼ μI � δRþ αðtÞ: ð3Þ

Here, variables S(t), I(t) andR(t) represent the fraction of individuals in their
corresponding compartments, which fulfill S(t) + I(t) + R(t) = 1; we also
write the vaccination rate depending explicitly on time t, while the rest of the
parameters are constant.Webegin by studying the behavior of the systemof
Eqs. (1)–(3)whenα(t) =α, tounderstandwhat different levels of vaccination
have on the epidemic in the long term.We opted for a constant vaccination
rate because, inmany real-world scenarios, the pace of vaccination rollout is
constrained by logistical factors and is independent of the number of
susceptible individuals. First of all, we recall that, ifβ>μ, the stationary states
S*, I*, R* of the standard SIRS model with no vaccination (α = 0) are42:

S� ¼ 1
R0

; I� ¼ 1� 1
R0

� �
δ

μþ δ
; R� ¼ 1� 1

R0

� �
μ

μþ δ
:

ð4Þ
Thebasic reproductionnumber of thismodel isR0 ¼ β

μ anddoesnot change
once we add a non-zero vaccination term. In the case β < μ the system
rapidly reaches the “disease-free equilibrium”, where S = 1 and I = R = 0,
whichwe consider uninteresting for the scope of this paper. Therefore, from
now on we will always assume that β > μ.

Depending on the rate of vaccination α, we can identify three regimes:
the coexistence regime, the eradication regime, and the total immunity
regime, illustrated in Fig. 2. In the first regime, which occurs when the
vaccination rate α ∈ [0, αer], all compartments are present and the quali-
tative behavior of the system remains the same as the standard SIR but with
stationary values S�co; I

�
co;R

�
co:

S�co ¼
1
R0

; I�co ¼ I� � α

μþ δ
; R�

co ¼ R� þ α

μþ δ
: ð5Þ

Thecritical vaccination rate for eradicationαer = (1−1/R0)δ is definedas the
value of the vaccination rate for which the endemic fraction of infected
individuals I* goes to zero. Thus, the eradication regime, where no infective
individuals are present, happens when α ∈ [αer, αti], where the stationary
values become

S�er ¼ 1� α

δ
; I�er ¼ 0; R�

er ¼
α

δ
: ð6Þ

Fig. 1 | SIRS model with vaccination. A graphical representation of the SIRS
compartmental model with reinfections and vaccination described in Eqs. (1)–(3).

Fig. 2 | Vaccination regimes. Illustration of the different vaccination regimes based
on the value of the vaccination rate α. Please note that the three regimes are shown
with identical lengths in this diagram, though their actual extents are governed by the
values of αer and αti.
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The critical vaccination rate required to achieve total immunity, denoted αti
= δ, is defined as the vaccination rate at which the fraction of susceptible
individuals also vanishes. If α exceeds this threshold, the system transitions
into the third regime–the total immunity regime–characterized by the
presence of only recovered individuals. Finally, during all of our numerical
simulations we never allow the fraction of susceptibles to drop lower than
0.005 due to vaccination, in order to avoid pathological behaviors with
unrealistically small numbers for the fraction of individuals in any
compartment.

The rebound effect of misaligned vaccination
In the previous section, we assumed that the rate of vaccination of the SIRS
model is constant over time; however, this is far from a realistic scenario. In
many real-world emergency situations, vaccine supplies are constrained and
distributed within specific timeframes. Consequently, vaccination efforts
extend over defined periods known as vaccination campaigns. These cam-
paigns have a designated start date and follow a daily schedule for dis-
tributing vaccine doses.

Building upon this premise, to incorporate a vaccination campaign
into the previous model, we propose to use a piecewise function for the
vaccination rate α(t). This function is defined for the duration of the cam-
paign, with a starting time denoted as tstart and an ending time denoted as
tstop, as follows:

αðtÞ ¼ α if t 2 tstart; tstop
h i

;

0 otherwise :

(
ð7Þ

Let us begin our analysis by simulating the previous epidemic model
using two different values for the vaccination rate α, thereby placing the
model in two distinct vaccination regimes (Throughout all our numerical
simulations, we maintain the fraction of susceptibles above 0.005 following
vaccination to prevent pathological behaviors associatedwith unrealistically

small numbers in any compartment.). Concerning timing, we will let the
model reach a stable equilibrium before initiating the corresponding vac-
cination campaign.We simulate the system of Eqs. (1)–(3) with a value of α
= 0.003 (corresponding to the coexistence regime) and α = 0.008 (corre-
sponding to the eradication regime), see Fig. 3.

In the figure, we observe that initially, without any vaccination strategy
in place, the system experiences fluctuations until reaching a stable equili-
brium. Following this, the initiation of the vaccination campaign leads to a
reduction in thenumberof infected individuals. This reductionalso involves
the susceptibles if the strategy falls under the eradication regime.

Then, after ending the vaccination campaigns, we observe the antici-
pated “rebound effect”, characterized by a significant peak in the number of
infected individuals, which is particularly evident in the eradication regime.
This phenomenon hints that vaccination, despite its benefits, can have
complex and sometimesunexpected effectsondisease spreaddynamics, and
deserves a deeper investigation into its origins and underlyingmechanisms.

This counter-intuitive phenomenon, like many aspects of epidemic
modeling, can be understood through the availability of susceptible indi-
viduals. A disease can only spread if there are susceptible individuals to fuel
its transmission. In this light, the efficacy of a vaccination campaign lies in its
ability to transfer people directly from the susceptible category to the
recovered one, thereby reducing the pool of individuals available for con-
tagion. However, once the campaign concludes and assuming vaccine-
induced immunity wanes over time, vaccinated individuals gradually revert
to susceptibility. If the campaignwas highly effective, a significant portion of
the population might become susceptible simultaneously, lacking natural
immunity from recent infections andbecoming available for new infections.
This synchrony can lead to an increase in infection numbers. Analogous to
pulling and releasing a spring, the vaccination campaign initially lowers
infection rates, but their subsequent increase can lead to a sharp rise in cases.

It is important to note that the extent of this rebound varies sig-
nificantly depending on the vaccination strategy employed. In the co-
existence regime, the rebound is small and can simply be seen as the system

�� �� � �� �� �� � � ��

Fig. 3 | Rebound of infections after vaccination in the coexistence and eradica-
tion regimes. Illustrative example of the effects of limited-time vaccination in
two different vaccination regimes. On the left, the vaccination rate α falls in the
coexistence regime (α = 0.003), while on the right it is in the eradication regime
(α = 0.008). The shaded area denotes the time period when the vaccination
strategy is active. In both regimes, when the vaccination stops, a resurgence
wave is observed, but with a different magnitude: in the coexistence regime, the

wave is relatively modest, whereas in the second scenario, it is more pro-
nounced, comparable in size to the initial wave. This observation suggests that a
higher intensity of vaccination efforts may paradoxically exacerbate the
rebound effect. Simulation with β = 1, μ = 0.5, δ = 0.01 and a vaccination
campaign taking place between t = 400 and t = 600. The initial conditions are
I(0) = 0.01 and S(0) = 0.99.
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settling from one equilibrium (with vaccines, Eq. (5)) to another (without
vaccines, Eq. (4)). On the other hand, in the eradication and total-immunity
regimes, the rebound can be very large (depending on the duration of the
vaccination campaign).

To mathematically understand the mechanism behind the rebound in
the latter case, wemust return to themodeling approach. As wementioned,
the eradication regime starts at the value of αer where the number of infected
individuals goes to zero. This allows us to develop a perturbation theory
framework that gives us an approximated solution for the unfolding of the
epidemic just after the end of the vaccination campaigns. At zeroth order in
this approximation the contagion term βSI and the recovery term μI vanish
so the system of Eqs. (1)–(3) can be approximated by:

dS0
dt

¼ δR0; ð8Þ

dR0

dt
¼ �δR0; ð9Þ

whose analytical solutions are governed by exponential functions. The full
calculations atfirst order togetherwith all the definitions can be found in the
Methods section. The full solution for t ⩾ tstop then reads:

SðtÞ ¼ 1� RðtstopÞe�δðt�tstopÞ þ fΔSðIðtÞ; tÞ; ð10Þ

RðtÞ ¼ RðtstopÞe�δðt�tstopÞ þ fΔRðIðtÞ; tÞ; ð11Þ

IðtÞ ¼ IðtstopÞ exp ðβ� μÞðt � tstopÞ �
βRðtstopÞ

δ
ð1� e�δðt�tstopÞÞ

� �
;

ð12Þ

where fΔSðIðtÞ; tÞ; fΔRðIðtÞ; tÞ and I(t) are the first-order contributions, and
S(tstop),R(tstop) and I(tstop) are the value for each compartment right after the
end of the vaccination process (the agreement between these equations and
thenumerical solution is shown inFig. S1 of the SupplementaryMaterial). It
is important to note that these equations are applicable only for a certain
period after tstop. Indeed, as long as the number of infected I(t) stays low, the
contributions of fΔSðIðtÞ; tÞ and fΔRðIðtÞ; tÞ also remain small, allowing for
the zeroth order of Eqs. (10)–(11) to dominate and the susceptible
compartment to approach its limit S→ 1.

Despite their limitations, these equations provide valuable insights and
allowus todraw a causal connection between the strength of the vaccination
campaign and the height of the rebound. For instance, we know that the
approximation stops working at the time tp where the number of infected,
Eq. (12), reaches its theoretical upper bound, i.e., I(tp) = 1− μ/β. A closed,
although complicated, expression for tp exists and thanks to that it is still
possible to demonstrate that

∂tp
∂SðtstopÞ < 0 and

∂tp
∂IðtstopÞ < 0 (see proof in Section

S1 of the SupplementaryMaterial). This implies that the smaller the number
of susceptible and infective individuals remaining after vaccination, the
larger tp will be; thus, the validity of the exponential solutions to Eqs.
(10)–(11) extends over a longer time period. Since tp is connected to the
growing phase of the zeroth order susceptible in Eq. (10), a larger tp also
means a larger build-up in the susceptible compartment and therefore a
larger peak of susceptibles Smax. Finally, one can prove, albeit based on other
simplifying assumptions (see Section S2 of the Supplementary Material),
that a larger Smax results in a taller epidemic peak (i.e., the height of the first
peak of infectives following vaccination). This, therefore, demonstrates that
a robust vaccination campaign can cause the rebound peak to be taller.

Timing as a fundamental feature to avoid the rebound
In the preceding section, we exclusively examined scenarios where the
vaccination campaign commenced after the standard SIRS model had
reached its equilibrium. Furthermore, the campaign had a designated
duration intended to allow the system enough time to stabilize into a new

equilibrium state under the influence of vaccination before returning to its
initial condition upon the campaign’s completion. However, vaccination
campaigns frequently overlap with epidemic waves that are still far from
equilibrium, and their durations may differ. This highlights the importance
of identifying the optimal timing and duration of vaccination campaigns to
reduce the rebound effect while the epidemic is still ongoing.

To address this challenge, we have developed a simulation framework
to systematically evaluate a broad spectrum of vaccination strategies,
spanning various starting times and durations. Our objective is to find the
strategy that most effectively counters the rebound effect by specifically
aiming to minimize the height of the next largest peak (which usually
coincides with the second peak, but that is not always the case, as shown in
Fig. S4 in the SupplementaryMaterial.), which defines our optimal criterion
in this context.

To achieve this, we initially conduct a simulation without any vacci-
nation to establish a baseline that serves as a reference point for comparing
all subsequent vaccination scenarios. In simulations that incorporate vac-
cination, we preserve the baseline scenario’s parameters and initial condi-
tions. A vaccination campaign is characterized by a specific starting day and
duration.Note that thedurationof the campaign is inverselyproportional to
the rate of vaccination α. We perform a separate simulation for each
potential start day, ranging fromday 1 to the daywhen the baseline scenario
reaches its second peak (indicated by the second vertical line in Fig. 4(a)).

Additionally, we vary the duration of the vaccination campaign,
exploring periods between 30 and 150 days. In all simulations, the total
number of vaccines is fixed, equal to 30% of the population. This quantity
ensures that, under the fastest rollout scenario of 30 days, the daily vacci-
nation rate reaches 1% of the population. We select this rate as the max-
imum feasible daily coverage in a realistic scenario. The decision to use a
fixed total quantity of vaccineswasdrivenbyour aim tooptimize theuse of a
resource we consider to be finite.

Our goal is to identify the strategy that maximizes the benefits derived
from the limitednumber of vaccines available. This approach is basedon the
understanding that having access to additional vaccines would be advan-
tageous, as a greater quantity of vaccines generally leads to more favorable
outcomes. This assumption is corroborated by the data presented in Fig. S2
in the Supplementary Material, which illustrates the inverse relationship
between the total number of vaccines and the cumulative number of cases.
However, it is critical to recognize thatmerely increasing the vaccine supply
does not unequivocally resolve all challenges. Specifically, as the vaccine
allocation escalates, the rebound effect may become more pronounced, as
evidenced in Fig. S3 of the Supplementary Material. This observation
highlights the need to develop strategies that not only make the most of the
existing vaccine supply but also minimize the risk of a rebound effect. By
doing so, we can improve the overall effectiveness of vaccination campaigns
in controlling epidemic outbreaks.

Our findings are illustrated in Fig. 4b, where we present the outcomes
of vaccination campaigns that start on different days. Each bar in these plots
corresponds to a specific start day for the vaccination, with the bar’s color
indicating the campaign’s duration and the height indicating the relative
reduction or increase in the size of the subsequent peak compared to the
baseline scenario. A bar extending upwards signifies an increase in the next
peak, indicating a rebound effect, whereas a downward extension suggests a
reduction in peak size, indicating no rebound effect. It is important to note
that although multiple scenarios with varying durations were analyzed for
each start day, the plots only display the outcome of the optimal strategy,
defined as the one resulting in the smallest subsequent peak.

Fromour analysis, wefind that if the vaccination roll-out starts around
the time of the first peak, even themost successful vaccination strategies will
suffer from the rebound effect. This can be seen in Fig. 4b, where we see that
those simulations that consider a starting time around the first peak
experience the rebound effect, indicated by bars with positive heights, sig-
nifying an increase in the epidemic’s peakmagnitude. In turn, strategies that
start after the first peak have a better chance of avoiding any resurgence,
particularly when vaccines are administered over an extended period (i.e.,
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with vaccination within the coexistence regime). The optimal strategy
observed occurs just a few days following the first peak and is the only
approach that achieves a complete flattening of the infectious curve. This is
evident from its proximity to the dashed line in Fig. 4b, which indicates a
reduction making the second peak equivalent to the equilibrium value.
Outside of this optimal strategy, determining a straightforward rule for how
soon before the second peak to start and the ideal length of the campaign
proves challenging.

To test the idea introduced in theprevious section, i.e., that the rebound
effect is caused by an excessive departure of the susceptible and infected
from their equilibrium values S* and I*, we introduce a new kind of vacci-
nation campaign. Previously, ourmodel used constant, nonzero vaccination
ratesα(t) during a specific time frame, with rates dropping to zero outside of
this interval. To avoid pulling the number of susceptible too far away from

their equilibrium and thus cause the rebound effect, we test a new vacci-
nation strategy. Here we introduce a new formula for the vaccination rate
α(t, S) ∝ Θ(S − S*), where Θ indicates the Heaviside function. This func-
tional form ensures that the vaccination will only be active when the sus-
ceptibles are above their equilibrium number. The vaccination finally stops
at the moment in time when all the doses at our disposal (30% of the
population in this case) run out. Please note that this strategy is character-
ized by intermittent activation, as the susceptible population’s numbers
oscillate around the equilibrium point. This fluctuation causes the vacci-
nation campaign to switch on and off, until it finally ceases when the supply
of vaccines is fully depleted. It can be seen in Fig. 4(c) that this “fine-tuned”
strategy works wonderfully, resulting in a consistent relative reduction
across a wide range of starting times and almost always outperforming the
constant strategy. The only exception to this rule are the truly optimal

Fig. 4 | Best vaccination strategy for each possible starting day before the
second peak. a Illustrates the proportion of infectious individuals over time in the
baseline scenario, i.e., without vaccination. The vertical dashed lines indicate the
peaks of the epidemic and act as reference points in the subsequent panels. b The
variation in the height of the subsequent largest peak relative to the baseline (vertical
axis) due to the most effective vaccination strategy initiated on each day (horizontal
axis). Here, the term “best” strategy refers to the approach that results in the greatest
reduction in the height of the subsequent largest peak. The color of each bar indicates

the vaccination rate of that strategy. cThe same quantities as (b) but, instead of using
a constant vaccination rate α, we have used a vaccination rate α(t, S)∝Θ(S− S*), i.e.,
a vaccination that is only active when the susceptible compartment exceeds its
stationary value. The horizontal black dashed lines in panels b) and c) correspond to
themaximum possible reduction, obtained when the second peak is just as tall as the
equilibrium value. In this case, the strategy that comes closer to achieve the optimal
value is the one in panel b) that starts on day 89 with speed α = 0.002.
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solutions leading to the total flattening of the second peak, that can only be
obtained with the constant strategy.

Adding complexity: rebound effect in an age-stratified
metapopulation model
In the preceding section, we explored how the rebound effect is influenced
by two factors: the vaccination start day and its duration. To verify the
rebound effect’s consistency inmore complex scenarios, we transition to the
model by Arenas et al.9, which was developed to simulate the spread of
COVID-19 during its initial outbreak. A brief overview of this model’s key
components is provided here, with a comprehensive explanation available
in the Methods section and further details in Sections S3 and S4 of the
Supplementary Material, while a discussion of the rebound effect in this
model can be found in Fig. S9.

Building upon the conventional SIRS framework, thismodel integrates
further phases of the infection cycle, notably the exposed (E) and asymp-
tomatic (A) stages, in addition to hospitalization (H) and death (D).
Additional compartments were introduced to accurately represent the
timeframes leading to hospitalization and death. An illustration of the
compartmental model is provided in Fig. 5. The model employs a meta-
population approach, incorporating the movement-interaction-return
mechanism43. This implies that the population is distributed across var-
ious patches, with individuals moving to adjacent areas and then returning
to their original locations, without permanent migration. Moreover, the
model incorporates age stratification, categorizing individuals as young,
adult, or old, to account for the infection’s outcome varying significantly
with age. However, the original model in9 does not account for vaccination
and waning immunity. Therefore, we adapted the model to include these
aspects, as shown in Fig. 5.

As with the SIRS model, we start by running a baseline simulation
without vaccination (see Fig. S5 in the Supplementary Material). Then, we
run an extensive number of simulations where we systematically explored
various combinations of durations, starting days, and age priorities, all while
maintaining a constant total number of vaccines.Wevary the starting dayof
the vaccination, considering all days between the beginning of the simula-
tion and themidpoint between thefirst and secondpeak. For the durationof
the vaccination, we use 30, 60, 90, and 120 days and we keep the total
number of doses fixed (so that all strategies deliver the same amount of
vaccines). To explore the age group priority, we used all the possible com-
binations of strictly positive values that aremultiples of 10%and that sumup
to 100%. The resulting strategies are then categorized as young, adult, old, or
mixed based on the priority levels of each age group. For instance, a strategy

labeled “young”means that the priority given to the young group is higher
than any of the priorities given to the two remaining groups. The mixed
strategies are those that do not fulfill the previous condition.

This time, to determine the optimal strategy, we employ two metrics:
the relative variation of the height of the second peak, as in the previous
section, and the relative variation of cumulative deaths compared to the
baseline simulation. Our objective is to minimize both metrics simulta-
neously by identifying Pareto-optimal solutions. These are solutions where
improvements in one metric would lead to worsening the other. The latter
metric, introduced due to the inclusion of age structure in our model,
accounts for varying risk levels across different age groups,making it crucial
for evaluating the impact of prioritizing one age group over another in
vaccination plans. However, this metric is significantly affected by the total
runtime of the simulation. To circumvent arbitrary decision-making, we
conclude the simulation after the epidemic’s transient phase.

The results are shown in Fig. 6. It can be seen that most of the simu-
lations (each represented by a point) fall on positive values of the difference
in cases, meaning that they perform poorly or are counterproductive, so we
restrict our attention to those solutions that are able to improve the baseline
scenario. Among those, the optimal ones are the ones that satisfy the
aforementionedPareto condition. Suchpoints lay at the left-most side of the
scatter plot and taken together lay on a line called the Pareto front, whichwe
highlight in Fig. 7, where we also show a detailed description of the features
of each of these optimal solutions. From this figure, it emerges that there are
two kinds of optimal strategies, each distinctly different from the other. The
first type, that wemark as Type 1, contains all those strategies that are better
at reducing the number of deaths while overlooking the height of the next
largest peak. In order to achieve this the vaccination has to start before the
first peak is reached, it must be fast and must prioritize old people. On the
other hand, the second type performs better at lowering the height of the
next largest peakwhile allowing for a larger number of deaths. In this second
case the vaccination has to start well after the first peak, must have a longer
duration, and should also prioritize old people.

An analogous analysis optimizing the number of hospitalizations
instead of cases can be found in Figs. S6 and S7. This analysis demonstrates
similar behavior, as the strategies are divided into the same two groups.
However, the transition between Type 1 and Type 2 strategies is much
smoother and does not present the characteristic right angle that we see in
Fig. 6. This can be attributed to the fact that hospitalizations’ peak and
cumulative deaths are closely connected and therefore the strategies to
optimally reduce the first are bound to have a deep impact on the second as
well. Furthermore, in the case of daily hospitalization, the rebound effect

Fig. 5 | Compartments of the epidemic model for COVID-19. The acronyms
correspond to susceptible (Sgv), exposed (Eg

v), asymptomatic infectious (Ag
v), symp-

tomatic infectious (Igv), pre-hospitalized in ICU (Pg
Hv), pre-deceased (Pg

Dv), in ICU

before recovery (Hg
Rv), in ICUbefore death (Hg

Dv), deceased (D
g
v), and recovered (R

g
v),

where g denotes the age stratum of all compartments and v the vaccination status.
The arrows indicate the transition probabilities.
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disappears almost entirely, due to the fact that the vaccines are modeled to
give long-lasting protection against the risk of hospitalization. Different
strategies still produce widely heterogeneous outcomes, but in almost all of
them, the second peak is lower than the one in the no-vaccines scenario. It is
interesting to note that strategies that fall on the Pareto front in Fig. 6 are not
the same strategies that constitute the Pareto front in Fig. S6. In otherwords,
the strategies that minimize cases and deaths are not the same than those
that minimize hospitalizations and deaths, although some overlap can be
found (see the asterisks in Fig. 7). This means that, perhaps unsurprisingly,
cases and hospitalizations are not interchangeable asmetrics of the outcome
of an epidemic, especially when age-specific risk factors are included in
a model.

Discussion
From our analysis, it emerges that the outcome of a vaccination
campaign, assuming vaccine waning and immunity decay, is more
strongly influenced by the timing of its initiation than by any other
factor. This finding is in agreement with previous studies29,40. Even
when we have a large number of vaccines at our disposal, a poor choice
in the vaccination timing could lead to counterproductive effects. This
happens because two forces are at play: on the one hand, vaccines have
a high impact in the short term, helping to reduce the number of cases
and fatalities; on the other hand, if the vaccination reduces the
infections well below their equilibrium value, that can provoke a rise in
the susceptible population and a subsequent increase in the severity of
subsequent waves. This rebound effect is the main obstacle to an
efficient vaccination strategy and it is therefore a phenomenon worth
studying. For this reason in this work we investigated this effect by
giving it a mechanistic explanation based on an approximation of the

SIRS model. In this regard, all the simulations hint to the fact that the
best time to start vaccinating is before the cases start rising, i.e., either
before or after the epidemic peak. Given the non-linear origin of the
effect, it could not be eliminated even by using vaccination boosters,
since every subsequent campaign would obey the same trade-off of the
one that came before. The best one can do in order to avoid the
rebound completely is using a fined-tuned strategy specifically created
to keep the number of susceptible people close to their equilibrium
value. Finally, in a more complex scenario, different strategies are
available depending on the aim of the campaign and of time at our
disposal: to minimize deaths, the priority should be given to fast and
early strategies; if instead our goal is to lower the peak prevalence,
slower and later strategies are the better solution.

Unfortunately, the rebound effect we identified and its depen-
dency on timing is hard to observe empirically, even in principle. The
main problem to overcome would be the lack of a counterfactual
scenario (similar to our baseline simulation) to compare the outcome
of the any vaccination strategy against. The ideal setup to deal with this
is a natural experiment in which two countries, as similar as possible to
each other in health standards, age distribution and vaccination sta-
tuses, react to the same epidemic wave with differently timed vacci-
nation campaigns; any difference in the resulting outcome could then
be interpret in light of such a difference in timing. Situations like these
are hard to achieve in a real-world scenario, first and foremost because
countries are complex systems, containing a multitude of potentially
alternative explanatory variables to the one we are trying to test. A
more indirect way to demonstrate the potential existence of a rebound
phenomenon would be to show that the hidden mechanism behind it
(i.e., the slow build-up of the susceptible population) does in fact

Fig. 6 | Analysis of the vaccination strategies. In this scatter plot, each point
corresponds to a unique simulation based on a distinct vaccination strategy. The
horizontal axis displays the relative variation in the number of cases at the next
largest peak relative to the baseline case, while the vertical axis represents the relative
variation in the number of cumulative deaths, both with respect to the baseline. Our
objective is to minimize these two metrics in order to identify strategies that out-
perform the baseline scenario. Each plot point conveys three distinct variables: color,
shape, and size. The color signifies the strategy’s implementation time (tstart), with
brighter shades indicating later starting time. The point’s shape indicates the

primary age group targeted by the strategy, and the point’s size reflects the cam-
paign’s duration, where larger sizes denote longer duration. It is important to note
that the total number of vaccines administered remains constant, irrespective of the
campaign’s duration. As we can see, many of the analyzed strategies yield negative
outcomes. Points on the positive side of the horizontal axis indicate an increase in the
number of cases during the second peak. However, it is important to note that none
of the simulations results in an increase in the number of deaths. Finally, the black
solid line marks the Pareto front, which indicates the optimal strategies.
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produce long periods of calm followed by large outbreaks, even if said
mechanism has a different origin than the one discussed in this paper.
An example of such an empirical confirmation comes from all the
instances of re-emergences of diseases in highly vaccinated popula-
tions: measles in Japan (2007)44, France (2011)45 and various countries
in Southern Africa (2009-2010)46. In all these examples the effect is not
as pronounced as the one we have shown here, and the reason for that
is probably that in none of these cases the vaccination coverage ever
drops to zero.

Finally, we recognize that from a public health perspective, the
suggestion of delaying the beginning of a vaccination campaign right
when cases are ramping up might be hard to apply, given the strong
pressure that policymakers would likely be facing at such a moment.
However, it is worth to point out that our study offers some insights
into how to handle that situation as well, and it can help to decide
whether a slow or a fast roll-out is preferable depending on where we
are, relative to the epidemic peak. This task can be performed with the
forecasting methods available to us (the discussion of which is beyond
the scope of this paper) whose uncertainties are usually small enough
to provide us with a satisfactory knowledge of the state of the epidemic.
Finally, our work not only offers insights on how to react during the
rapid unfolding of events, but also within the context of proactive and
preventive planning. It is in fact clear from our analysis that, nomatter
how small the number of infected individuals is, the susceptible
population should not be left free to grow uncontrollably, but should
be kept under control with timely interventions.

Methods
No-infected approximation of the SIRS model
As already mentioned, once a vaccination campaign in the eradication
regime comes to an end, it is possible tofind an approximate solution for the
evolution of the system. That happens because in that timeframe the
number of infectious individuals is so small that the systemstarts evolving as
if there were no infections nor recoveries and the whole dynamics was
dominatated by the waning immunity. That means that the system is
evolving according to the no-infected equations in (8) and (9), whose
solution are

S0ðtÞ ¼ 1� RðtstopÞe�δðt�tstopÞ ð13Þ

R0ðtÞ ¼ RðtstopÞe�δðt�tstopÞ ð14Þ
where S0(t) + R0(t) = 1, since we explicitly assume that I0(t) = 0. The
subscript 0 has been introduced to differentiate the solution of this sim-
plified system from those of the full SIRS model. Furthermore, we can
introduce the quantitiesΔS(t)≡ S(t)− S0(t) andΔR(t)≡R(t)−R0(t), which
are the differences between the solutions of the full SIRS model and the
solutions of the infected-less system. Both of these terms are of order O(I),
therefore as long as I(t) stays small they will also remain small. Finally it
should be noted that since we know that S(t)+ I(t)+ R(t) = 1 and S0(t)+
R0(t) = 1 it follows that ΔS(t) + I(t) + ΔR(t) = 0.

By rewritingEq. (2) using the definition ofΔS(t) anddropping the term
which is of order O(I2), we can obtain an approximated equation for the

Fig. 7 | Features of the Pareto-optimal strategies. This table shows the char-
acteristics of Pareto-optimal strategies alongside a scatter plot that includes only
those data points belonging to the Pareto front. The columns of the table provide
information on the duration and starting time of each strategy, the priority vector
that determines the vaccines distribution by age group (ordered as [Young, Adult,
Old]), aswell as the age stratum that ismost prioritized for each strategy. The asterisk
indicates simulations that are optimal for reducing both the number of cases and the
number of hospitalizations (see Fig. S7). It is possible to identify two different sets of

strategies, highlighted by yellow and violet ovals and labeled Type 1 and Type 2. In
Type 1 strategies, the primary objective is to minimize the number of deaths, indi-
cated by the lower values on the vertical axis. This is best achieved by vaccinating
early, before the first peak, and using short-duration campaigns. Conversely, Type
2 strategies aim to reduce the number of cases, indicated by the lower values on the
horizontal axis. To achieve this goal, it is optimal to vaccinate later, before the second
peak, and use longer duration campaigns. Both types suggest to strongly prioritize
elderly people over everyone else.
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infected compartment I(t)

dI
dt

¼ βSðtÞIðtÞ � μIðtÞ ð15Þ

¼ βðS0ðtÞ þ ΔSðtÞÞIðtÞ � μIðtÞ ð16Þ

¼ βS0ðtÞIðtÞ � μIðtÞ þ OðI2Þ ð17Þ

The solution to this equation is found through the method of separation of
variables and is given in Eq. (12). By repeating the same process with Eq. (3)
we can then use the newly found I(t) to find a first order estimation of the
function ΔR(t), which we call fΔRðIðtÞ; tÞ

dfΔR
dt

¼ μIðtÞ � δfΔRðtÞ ð18Þ

This equation can be solved by recognizing that it is a linear equation where
I(t) plays the role of a forcing term. The solution is:

fΔRðIðtÞ; tÞ ¼ ΔRðtstopÞe�δðt�tstopÞ þ μ

Z t

tstop

e�δðt�uÞIðuÞdt ð19Þ

Finally, a first order estimate of fΔSðIðtÞ; tÞ can be found by exploiting the
relation ΔS(t) + I(t) + ΔR(t) = 0. This, in turn, allows us to numerically
estimate both the magnitude of the maximum value reached by the sus-
ceptible compartment Smax as well as the time at which it is reached tmax by
looking for the point in which the condition d

dt ðS0ðtÞ þ fΔSðIðtÞ; tÞÞ ¼ 0 is
satisfied, see the Supplementary Material.

Details of the COVID-19 model
As alreadymentioned, the COVID-19model that we used in this work is an
extension of themodel introduced by Arenas et al.9 and, therefore, similarly
to that model, it has a compartmental dynamics that includes susceptible,
exposed, asymptomatic, infected, hospitalized, recovered and deceased,
togetherwith someadditional compartments to regulate the latencyperiods.
All of these groups are arranged as shown in Fig. 5. Similarly to the original
model, the current version also takes place on a metapopulation network
where themobility is recurrent andmodeled through theMIR (Movement-
Interaction-Return) framework43.

However, differently from the original, the version presented here
introduces some features (such as vaccinations and reinfections) that make
this model more useful to describe the late stages of the pandemic. In
particular, vaccinations have been designed to realistically resemble the
mass vaccination campaigns that started in 2021. First of all, unlike all the
other transition terms (see Eqs. (S.28)–(S39) in the Supplementary Mate-
rial), the rate of vaccinationdoesnot dependon thenumberof unvaccinated
individuals, but rather involves a fixed number of vaccines that are dis-
tributed among the population according to two rules. The first rule
prioritizes patches with a high population density, while the second rule
assigns different levels of priority to different age groups according to εg.
Using these rules, we obtain ϵgi ðtÞ, which represents the absolute number of
vaccine doses per age g and location i, as follows:

ϵgi ðtÞ / ngi � εg ; ð20Þ

where the normalization is chosen so that the number of doses per day is
fixed.Additionally, we introduced amechanism to limit and redistribute the
doses whenever the number of vaccinated people outnumbers the total
number of people in each patch.

From the modeling perspective, being in a vaccinated compartment
signifies reduced probabilities of initial infection or, if already infected, of
transmitting the disease, being hospitalized, or dying, compared to those in
the non-vaccinated compartment.After a certain latencyperiod, individuals
lose their vaccine-acquired immunity. However, they transition to a “post-

vaccinated” status rather than reverting to full susceptibility. In this status,
their risk of infection and transmission aligns with that of unvaccinated
individuals, but their chances of hospitalization or death remain as low as
those who are vaccinated.

Several technical details of our simulations were shared across all
simulated scenarios. The specific parameter values used are compiled in
Tables S1 to S4 in the Supplementary Material, along with the rationale
behind their selection. Some parameters were based on our own assump-
tions or those of previous studies9, while others were estimated using sci-
entific reports47,48 and through a calibration process. The initial conditions
for our simulations included 10000 individuals in each of the exposed,
asymptomatic, and infected compartments. The rest of the population was
assumed to be in the susceptible non-vaccinated compartment. The simu-
lations were run for a duration of 600 days, whichwas chosen to ensure that
both the first two infectious peaks were included in the analysis, indepen-
dently of the vaccination strategy.

Data availability
Data sharing is not applicable to this article as no new data were created or
analyzed in this study.
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Fig. S1: No-infected approximation of the SIRS model. Comparison between the nu-
merical solution of the SIRS model (solid lines) and the analytical formulas (dotted lines). The
analytical formulas are the ones displayed in Eqs. (10)–(12) and obtained in the no-infected
approximation. Here, only the susceptible and infected curves are shown. The two vertical
lines correspond to tmax and tp, which are the times at which the maximum of the susceptible
curve Smax is reached and the estimated time of the peak, respectively. Simulation with β = 1,
µ = 0.5, δ = 0.01, S(0) = 0.1, I(0) = 10−4, here displayed only between the times t = 100 to
t = 200.
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Fig. S2: Relative reduction in cumulative cases. Relative reduction in cumulative cases
with respect to the scenario with no vaccines as a function of the vaccine coverage, defined as
the ratio of vaccines with respect to the total population. Each circle in the figure denotes a
specific simulation characterized by a constant vaccine coverage, starting time, and campaign
duration. It is evident from the data that vaccine coverage is the primary factor influencing the
reduction in total cases. The other two parameters, while less significant, become increasingly
noticeable as the vaccine coverage increases.
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Fig. S3: Relative variation of the number of cases at the second peak and cumulative
cases due to vaccination strategies with varying durations. The three vaccination
volume levels depicted in this figure correspond to 0.1, 0.3 and 0.5 vaccines per person. The
duration of each vaccination campaign is constant and equal to 60 days. The curves have been
obtained running the SIRS model with vaccination. The horizontal axis is the starting day of
the vaccination campaign, and the vertical axis is the relative height variation of the second peak
of cases (top), and the cumulative number of cases (bottom). The variation is measured relative
to the baseline scenario with no vaccines. The dashed vertical lines indicate the location of the
first and second peaks in the baseline simulation. Observing the bottom plot, we see that those
strategies that deliver more vaccines over time produce better results in terms of containing
the number of cumulative cases. However, looking at the top plot, we see that the same longer
duration strategies also cause a larger rebound effect. Simulations run with β = 1, µ = 0.5,
δ = 0.01, I(0) = 10−4.
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Fig. S4: Appearance of subsequent peaks due to improper timing of the vaccination
strategies. The dark blue line shows the outcome of the baseline scenario where no vaccination
campaign is active, while the orange line is the result of a certain vaccination strategy where
the timing of the campaign during the second wave exacerbates the third wave. The shaded
area denotes the duration of the campaign, which starts at t = 251 and lasts for 90 days.
Here, the age priority vector is set to [0.1, 0.4, 0.5]. This example shows that an improperly
timed vaccination during the second peak can significantly amplify the following third peak.
This observation highlights the generalizability of the conclusions regarding the first and second
peaks to any consecutive peaks in the epidemic, emphasizing the importance of well-timed
vaccination strategies to mitigate the severity of future waves.
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Fig. S5: Number of cases, hospitalizations and cumulative number of deaths in the
baseline scenario, for different age strata. This figure illustrates the breakdown of cases,
hospitalizations, and cumulative deaths in the baseline scenario (without an active vaccination
campaign) across different age groups. As we can see on the top plot, the adult population
contributes most to active cases, followed by the young and elderly. However, hospitalizations
(middle plot) predominantly affect the elderly, followed by adults and the young. In terms of
fatalities (bottom plot), the elderly group significantly dominates the numbers.

6



-0.5

-0.4

-0.3

-0.2

-0.1

0.0

-0.6 -0.4 -0.2 0.0

Relative variation of hospitalizations in second peak

R
e
la

ti
v
e
 v

a
ri

a
ti

o
n
 o

f 
d
e
a
th

s

0

50

100

150

200

250

Starting time

Age priority

Young

Adult

Old

Mixed

Duration (days)

30

60

90

120

Fig. S6: Analysis of the vaccination strategies (hospitalizations). In this scatter plot,
each point corresponds to a unique simulation based on a distinct vaccination strategy. The
horizontal axis represents the variation in the number of hospitalizations at the second peak
relative to the baseline case, whereas the vertical axis depicts the relative variation in the
number of deaths. The color, shape, and size of each point carry the same meaning as those in
Fig. 6, i.e., they indicate the starting day, age priority, and duration of each vaccination strategy,
respectively. The black solid line represents the Pareto front, indicating the optimal strategies
that provide the best way to simultaneously minimize hospitalizations and deaths. We can see
that in this case, the rebound effect disappears almost completely since in this model vaccines
offer long-term protection against hospitalization. The shape of the Pareto front also changes,
as the distinction between Type 1 and Type 2 strategies disappears.
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Fig. S7: Features of the Pareto-optimal strategies (hospitalizations). This table shows
the characteristics of Pareto-optimal strategies alongside a scatter plot that includes only those
data points belonging to the Pareto front. The columns of the table provide information on the
duration and starting time of each strategy, the priority vector that determines the vaccines
distribution by age group (ordered as [Young, Adult, Old]), as well as the age stratum that
is most prioritized for each strategy. The asterisk indicates simulations that are optimal for
reducing both the number of cases and the number of hospitalizations. As illustrated in the
table equivalent to the one presented here, but using cases as the measure (see main text), we
can still identify two distinct types of vaccination strategies. However, in this case, the transition
between the two kinds is smoother. This can be attributed to the fact that hospitalizations and
deaths are more dependent on each other than cases and deaths, and therefore the strategies to
optimally reduce one of them are bound to have a certain impact on the other one as well.
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The orange line corresponds to real data [1] while the blue line corresponds to the best model
prediction. The shadowed area represents the 95% confidence interval.
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Fig. S9: Examples of rebound in the absence of ages, migration, or both. To demon-
strate that the rebound effect is independent of both the metapopulation network and the age
structure, we present figures where the rebound occurs even when both these factors are ex-
cluded. The black lines represent the baseline with no vaccination, while the red lines depict
scenarios resulting from vaccination within the time window indicated by the green area. In
a) and c), inter-patch mobility has been disabled by setting all elements of the parameter pg

to zero; in b) and c) the age structure was eliminated by turning the contact matrix Cgh into
a diagonal matrix. The rest of the parameters and initial conditions were the same as used in
the simulation explained in Sections S3 and S4. It is evident from all three figures that the
qualitative behavior is remarkably similar: after a brief period of lower prevalence, the cases in
the vaccinated scenarios consistently rise above the baseline in all scenarios, thereby confirming
that neither migrations nor age structures are sufficient to disrupt the rebound effect.
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Section S1. Rebound timing and its dependence on vaccination6

As we already mentioned in the Methods section of the paper, the solution for the infected7

individuals after the end of an eradication-type vaccination campaign is:8

I(t) = I(tstop) exp

[
(β − µ)(t− tstop)− βR(tstop)

δ
(1− e−δ(t−tstop))

]
. (S.1)

Since it is reasonable to think that the no-infection approximation stops working right around9

the time the infectious peak is reached, this allows us to use the time tp where the formula loses10

meaning as an estimate of the timing of the next epidemic peak. In particular tp is defined as11

the time such that I(tp) = 1 − µ/β, which is an upper-bound for the height of any peak. We12

know this because Eqs. (1)–(3) of the SIRS model imply that, when İ = 0 (e.g., in a maximum13

for I(t)), the value of the susceptible compartment should be S = µ/β, which in turn puts a14

strong constrain on the sum of the other two compartments.15

A closed formula for tp can be obtained using Lambert W function [2] as follows:

tp = tstop+
β

β − µ
R(tstop)

δ
− 1

β − µ
ln
βI(tstop)

β − µ

+
1

δ
W

(
−βR(tstop)

β − µ
exp

{
−βR(tstop)

β − µ
+

δ

β − µ
ln
βI(tstop)

β − µ

})
. (S.2)

This expression is too complex to be used in regular calculations, but it allows us to understand16

how the rebound timing tp depends on the strength of the previous vaccination through its17

dependencies on I(tstop) and S(tstop). We do this by looking at the partial derivatives
∂tp

∂I(tstop)
18

and
∂tp

∂S(tstop)
. We consider I(tstop) and S(tstop) as the independent variables, and substitute19

R(tstop) using the normalization condition, i.e., R(tstop) = 1− S(tstop)− I(tstop). Thus,20

∂R(tstop)

∂I(tstop)
=
∂R(tstop)

∂S(tstop)
= −1 . (S.3)

Furthermore, we will use the following property of the principal branch of the Lambert W21

function:22

dW (x)

dx
=

W (x)

x(W (x) + 1)
> 0 , ∀x > −1

e
. (S.4)

We introduce two auxiliary variables A and B, where A corresponds to the argument of the23

exponential inside the Lambert W function, and B is the argument of the Lambert function24

itself:25

A = −βR(tstop)

β − µ
+

δ

β − µ
ln
βI(tstop)

β − µ
, (S.5)

B = −βR(tstop)

β − µ
exp{A} = −βR(tstop)

β − µ
exp

{
−βR(tstop)

β − µ
+

δ

β − µ
ln
βI(tstop)

β − µ

}
, (S.6)

thus Eq. (S.2) can be rewritten as26

tp = tstop −
A

δ
+
W (B)

δ
. (S.7)
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Before we proceed to calculate the derivatives of the time tp with respect to I(tstop) and27

S(tstop), it is useful to calculate the derivatives of A and B:28

∂A

∂I(tstop)
=

β

β − µ
+

δ

I(tstop)(β − µ)
, (S.8)

∂A

∂S(tstop)
=

β

β − µ
, (S.9)

∂B

∂I(tstop)
= B

(
∂A

∂I(tstop)
− 1

R(tstop)

)
, (S.10)

∂B

∂S(tstop)
= B

(
∂A

∂S(tstop)
− 1

R(tstop)

)
. (S.11)

Note that Eqs. (S.8) and (S.9) are always positive. Armed with these definitions we write the29

first partial derivative of tp as follows:30

∂tp
∂I(tstop)

= −1

δ

∂A

∂I(tstop)
+

1

δ

dW (B)

dB

∂B

∂I(tstop)
(S.12)

= −1

δ

∂A

∂I(tstop)
+

1

δ

dW (B)

dB
B

(
∂A

∂I(tstop)
− 1

R(tstop)

)
(S.13)

= −1

δ

∂A

∂I(tstop)
− 1

δ

dW (B)

dB

βR(tstop)

β − µ
exp{A}

(
∂A

∂I(tstop)
− 1

R(tstop)

)
. (S.14)

We immediately notice that this partial derivative is negative if the term in the parenthesis is31

positive, which can be written as32

∂A

∂I(tstop)
− 1

R(tstop)
> 0 ⇐⇒ R(tstop) >

(β − µ)I(tstop)

βI(tstop) + δ
. (S.15)

Since we are currently working with vaccination, in the eradication regime we can safely assume33

that I(tstop)� 1 and, therefore, that the above inequality is satisfied and34

∂tp
∂I(tstop)

< 0 . (S.16)

On the other hand, the other partial derivative reads35

∂tp
∂S(tstop)

= −1

δ

∂A

∂S(tstop)
+

1

δ

dW (B)

dB

∂B

∂S(tstop)
(S.17)

= −1

δ

∂A

∂S(tstop)
+

1

δ

dW (B)

dB
B

(
∂A

∂S(tstop)
− 1

R(tstop)

)
(S.18)

= −1

δ

β

β − µ
− 1

δ

dW (B)

dB

βR(tstop)

β − µ
exp{A}

(
β

β − µ
− 1

R(tstop)

)
. (S.19)

As before, this expression is negative if the term inside the parenthesis is positive. We can write36

such condition as37

β

β − µ
− 1

R(tstop)
> 0 ⇐⇒ S(tstop) <

µ

β
, (S.20)

which is always true in the eradication regime, therefore proving that, in this scenario,38

∂tp
∂S(tstop)

< 0 . (S.21)

To sum up, what we have found is that, the smaller I(tstop) and S(tstop), the larger tp will39

be. Furthermore, since in the eradication regime both of these quantities are related to the40

rate of vaccination α, what we have demonstrated here is that, the stronger the vaccination41

campaign (i.e., the larger α), the more delayed the rebound will be.42
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Section S2. Rebound height and its dependence on vaccination43

Finding a good way of estimating the height of an epidemic peak is challenging, and every44

estimate ends up relying on a number of uncontrolled assumptions. However, in our case we45

are not so much interested in its numerical estimation, but in finding a formula that displays a46

similar qualitative behavior.47

Our estimate of the epidemic peak relies on the connection between it and the slope of the48

susceptible curve at time tp. The two are connected by the Eq. (1) in the following way:49

Ṡ(tp) = −βS(tp)I(tp) + δR(tp) . (S.22)

By using the facts that S(tp) = µ/β and R(t) = 1 − S(t) − I(t), rearranging the terms we get50

that:51

I(tp) = I∗ − Ṡ(tp)

µ+ δ
, (S.23)

where I∗ = δ
µ+δ

(
1− µ

β

)
is the equilibrium value of the epidemic compartment in the SIRS52

model without vaccination. Notice that Eq. (S.23) holds true for every maximum and minimum53

of the function I(t), but we are here only interested in the first maximum.54

The problem now becomes to find the slope of the function S(t) at time tp. We achieve this55

with a quadratic approximation Ŝ(t) = at2 + bt+ c that satisfies the following three conditions:56

Ŝ(tmax) = Smax, Ŝ(tp) =
µ

β
, Ŝ′(tmax) = 0, (S.24)

where Smax is the maximum value reached by the susceptible compartment before it starts to57

decrease, while tmax is the time at which that happens. In our approximation we make this point58

coincide with the vertex of the parabola. The three conditions in Eq. (S.24) give us a system59

of three equations with three unknowns, i.e., the parameters of the parabola. It is therefore60

always possible to find an explicit solution:61

a = −Smax − µ/β
(tp − tmax)2

, b = −2tmaxa, c = Smax + at2max . (S.25)

Next, we can simply compute the derivative of the parabola at time tp, Ŝ(tp) = 2atp + b, which62

gives us an estimate for the slope of the susceptible curve at that point63

Ṡ(tp) = −2
Smax − µ/β
tp − tmax

. (S.26)

Finally, thanks to Eq. (S.23), we get an estimate for the height of the peak as a function of the64

peak in susceptibles preceding the rebound65

I(tp) = I∗ +
2(Smax − µ/β)

(µ+ δ)(tp − tmax)
. (S.27)

The conclusion we can draw from this estimation is that, the larger the build-up in suscep-66

tibles before an epidemic wave (i.e., Smax), the taller the subsequent peak will be.67
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Section S3. Equations of the age-stratified COVID-19 model68

The variables of our system of equations are {ρm,gi,v (t)}, which indicate the density of individuals69

in the compartment m, age stratus g, location i and vaccination status v at time t (measured70

in days). In the following, we write the equations for the temporal evolution of these quantities.71

Note that, for the majority of these compartments, the indexes g, i and v can be left implicit,72

while in the case of the compartment S, the index v must be specified because the form of the73

equation changes according to it. Apart from adding the vaccination state, only the equations74

for compartments S and R have been changed with respect to the work by Arenas et al. [3]:75

ρS,gi,0 (t+ 1) = (1−Πg
i,0(t))ρ

S,g
i,0 (t)− εgi /n

g
i , (S.28)

ρS,gi,1 (t+ 1) = (1−Πg
i,1(t))ρ

S,g
i,1 (t)− ΛρS,gi,1 (t) + εgi (t)/n

g
i , (S.29)

ρS,gi,2 (t+ 1) = (1−Πg
i,2(t))ρ

S,g
i,2 (t) + ΛρS,gi,1 (t) + Γ(ρR,gi,0 (t) + ρR,gi,1 (t) + ρR,gi,2 (t)) , (S.30)

ρE,gi,v (t+ 1) = (1− ηg)ρE,gi,v (t) + Πg
i,v(t)ρ

S,g
i,v (t) , (S.31)

ρA,gi,v (t+ 1) = (1− αg) ρA,gi,v (t) + ηg ρE,gi,v (t) , (S.32)

ρI,gi,v (t+ 1) = (1− µg) ρI,gi,v (t) + αg ρA,gi,v (t) , (S.33)

ρPD,g
i,v (t+ 1) = (1− ζg) ρPD,g

i,v (t) + µg θgv ρ
I,g
i,v (t) , (S.34)

ρPH ,g
i,v (t+ 1) = (1− λg) ρPH ,g

i,v (t) + µg (1− θgv) γgv ρ
I,g
i,v (t) , (S.35)

ρHD,g
i,v (t+ 1) = (1− ψg) ρHD,g

i,v (t) + λg ωgv ρ
PH ,g
i,v (t) , (S.36)

ρHR,g
i,v (t+ 1) = (1− χg) ρHR,g

i,v (t) + λg (1− ωgv) ρPH ,g
i,v (t) , (S.37)

ρD,gi,v (t+ 1) = ρD,gi,v (t) + ζg ρPD,g
i,v (t) + ψg ρHD,g

i,v (t) , (S.38)

ρR,gi,v (t+ 1) = ρR,gi,v (t) + µg (1− θgv) (1− γgv ) ρI,gi,v (t) + χg ρHR,g
i,v (t)− ΓρR,gi,v (t) . (S.39)

The following normalization relations hold:76 ∑
m

∑
v∈{0,1,2}

ρm,gi,v (t) = 1, ∀g, i, t, (S.40)

which can be easily checked by looking at the system of Eqs. (S.28) to (S.39).77

Let us describe the compartmental dynamics of our model. The three vaccination statuses,78

denoted by 0, 1, 2, represent the natural progression of vaccine-associated defense changes within79

an individual. Respectively, they correspond to: a completely defenseless person; a person80

with high defenses against both infection and hospitalization; and finally, a person with high81

defenses against hospitalization but who remains totally susceptible to infection. Initially, a82

fraction εgi /n
g
i of the susceptible population is vaccinated. Although vaccinated individuals will83

still go through the same epidemiological compartments, their transition rates will differ based84

on their vaccination status. We assume that vaccine-induced immunity diminishes with rate Λ.85

Susceptible individuals become infected when they come into contact with asymptomatic or86

infected individuals, with the probability of transmission denoted by Πg
i,v (further explained in87

the next section). If transmission occurs, the previously susceptible individual moves to the88

exposed compartment. An exposed individual transitions to the asymptomatic compartment89

with rate ηg and subsequently to the infected compartment with rate αg. From the infected90

compartment, several outcomes are possible, that are reached at a rate µgv. One possibility is91

recovering after the infection without hospitalization, with probability (1−θgv) (1−γgv ). Another92

possibility is having a severe course of infection and requiring hospitalization, with probability93

(1 − θg1)γg1 and a delay governed by rate λg. At this point, individuals can either receive a94
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fatal prognosis with probability ωgv leading to death at a rate ψg, or a good prognosis with95

probability 1− ωgv , leading to recovery at a rate χg. The last possibility is dying without being96

hospitalized with probability θgv after a latency period governed by rate ζg. Finally, individuals97

in the recovered compartment who are not vaccinated might transition again to the susceptible98

compartment with probability Γ. All the numerical values of these parameters can be found in99

Tables S1, S2 and S3.100

Section S4. Social contacts and infection probability101

It is important to specify how the infection probability Πg
i,v(t) is calculated. This probability102

represents the probability of an individual associated to patch i, age stratum g, and vaccination103

status v to be infected at time t. Following Arenas et al. [3], the infection probability is calculated104

as105

Πg
i,v(t) = (1− pg)P gi,v(t) + pg

∑
j

RgijP
g
j,v(t) , (S.41)

where the first term indicates the probability of susceptible individuals to get infected in their106

“home” patch while the second term indicates the probability of getting infected elsewhere. In107

particular pg is the probability to travel from your patch to another and Rgji is the probability108

that an individual of age g will go from i to j, given that it will move (no correlation is assumed109

between the vaccination status v and the mobility of an individual). Furthermore P gi,v(t) denotes110

the probability that an agent of age g and status v gets infected inside patch i. This is, in turn,111

expressed as112

P gi,v(t) = 1−
∏
h,j,w

∏
m∈{A,I}

[
1− βm(1− rv)(1− bw)

]Tm,h,w
j→i

, (S.42)

where rv is the vaccine efficacy in preventing infections while bw is the vaccine efficacy in113

preventing transmission once already infected. The exponent Tm,h,wj→i indicates the effective114

number of contacts made by an agent of age h, compartmentm (either infected of asymptomatic)115

and vaccination status w that traveled from patch j to patch i. This quantity is calculated as116

follows:117

Tm,h,vj→i = zg 〈kg〉 f(ngi /si)C
gh
nm,h,vj→i

ñhi
. (S.43)

Here, the term zg 〈kg〉 f(ngi /si) represents the total number of contacts that people of age g118

make inside patch i. Those contacts increase monotonically with the population density in that119

patch, and the function that we use to model this dependency is the following [3]:120

f(x) = 1 + (1− e−ξx) . (S.44)

Since we want the overall number of contacts to depend on the average number of connections of121

each age group, we introduce 〈kg〉 multiplied by a normalization factor zg such that the average122

degree of population belonging to age group g is exactly 〈kg〉. From [3] we know that:123

zg =
ng∑NP

i=1 f( ñi
si

)ñgi
, (S.45)

where si is the surface of the patch i, and the symbols ñi and ñgi refer to the number of people124

present in patch i during the commuting phase, given by:125

ñi =

NG∑
g=1

ñgi (S.46)
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and126

ñgi =

NP∑
j=1

Mg
jin

g
j , (S.47)

For convenience, we also define the mobility matrix as127

Mg
ji = (1− pg)δji + pgRgji , (S.48)

being δji the Kronecker delta function. Then, the total number of contacts must be multiplied128

by Cgh, which specifies the fraction of all the contacts that individuals in age group g have with129

individuals in age group h. Finally, the last term in the exponent indicates how many of these130

contacts were with infected or asymptomatic people coming from node j:131

nm,h,vj→i (t) = nhj ρ
m,h
j,v (t)Mh

ji . (S.49)

All the numerical values of the parameters in this section can be found in Table S4.132

16



Symbol Description Estimates in Spain Assignment

βI Infectivity of symptomatic 0.056 Calibrated
βA Infectivity of asymptomatic βI/2 Assumed
ηg Exposed rate 0.127 Calibrated
αg Asymptomatic rate 0.306 Calibrated
µg Infectious rate 0.589 Calibrated

Table S1: Epidemic parameters. Parameters of the epidemic, determined through calibra-
tion with real data on the number of active cases of COVID-19 in Spain between the 1st of
December 2021 and the 7th of March 2022 [1], see Fig. S8. The calibration was carried out
using the Turing package of the Julia language, which relies on a Markov Chain Monte Carlo
approach with a No-U-Turn sample [4].

Symbol Description Estimates in Spain Assignment

θgv Direct death probability 0.0 [5]
{γgv} ICU probability (0.003, 0.01, 0.08)g ⊗ (0, 0.15)v [5, 6]
{ωgv} Death probability in ICU (0, 0.04, 0.3)g ⊗ (0, 0.1)v [5, 6]
λg Prehospitalized in ICU rate 4.084 days−1 [3]
ζg Predeceased rate 7.084 days−1 [3]
ψg Death rate in ICU 7 days−1 [3]
χg ICU discharge rate 21 days−1 [3]

Table S2: Clinical parameters. Clinical parameters, taken from Arenas et al. [3].

Symbol Description Estimates in Spain Assignment

Γ Reinfection rate 100 days−1 Assumed
Λ Waning immunity rate 50 days−1 Assumed
{rv} Risk Reduction of infection probability (0.0, 0.6) [6]
{bv} Risk Reduction of transmission probability (0.0, 0.4) [6]

Table S3: Vaccination and immunity parameters. Selected vaccination and immunity
parameters.

Symbol Description Estimates for g ∈ {Y,M,O} in Spain

{Ng} Population by age stratum (12M, 26,4M, 8,9M) [7]
ngi Region population [8]
si Region surface [8]
Rgij Mobility matrix (non-diagonal) [9]

〈kg〉 Average total number of contacts [3]
Cgh Contacts-by-age matrix [3]
ξ Density factor 0.01 km2 [3]
{pg} Mobility factor (0.3, 1.0, 0.05) [3]

Table S4: Social parameters. Parameters of the model related to geographic and population
data, including mobility, and their values for Spain.
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