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Contagion processes relying on the exposure to multiple sources are prevalent in social systems, and are
effectively represented by hypergraphs. In this Letter, we derive a mean-field model that goes beyond node-
and pair-based approximations. We reveal how the stability of the contagion-free state is decided by either
two- or three-body interactions, and how this is strictly related to the degree of overlap between these
interactions. Our findings demonstrate the dual effect of increased overlap: it lowers the invasion threshold,
yet produces smaller outbreaks. Corroborated by numerical simulations, our results emphasize the
significance of the chosen representation in describing a higher-order process.
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Behaviors, strategies, and conventions often require some
form of reinforcement for their adoption [1–6]. Spreading
among individuals through learning and imitation, their
diffusion can be studied as a contagion process [7–10].
Differently from epidemics, however, repeated exposures to
the same contagious source (e.g., an individual with a given
behavior) are not always sufficient for transmission and
multiple sources are required, defining a complex contagion
[1,4,5,11–13].When transmission depends on the exposures
being simultaneous, as when interacting in a group, a
spreading event becomes a many-body interaction [14].
Similarly, in biochemical systems, oftentimes a species
needs simultaneous exposure to one or more other species
in order for the reaction to occur [15,16].
Here we focus on social contagion [1,3,10,17–19]. This

can be mapped to a susceptible-infectious-susceptible (SIS)
process on a hypergraph [14,20,21], a generalization of a
graph where an n-edge (i.e., an edge incident on n nodes) is
used to represent an n-body interaction [22]. We assume
that a susceptible node (individual) becomes infected at rate
βð1Þ in a two-body interaction (2-edge) with an infected

individual (Sþ I⟶
βð1Þ

2I), at rate βð2Þ in a three-body
interaction (3-edge) with two infected individuals

(Sþ 2I⟶
βð2Þ

3I), and so on for larger groups. Infected

individuals recover at rate μ (I⟶
μ
S). Within this higher-

order setting, Iacopini et al. [14] found a phenomenology
(the appearance of a saddle-node bifurcation implying
critical-mass behavior) that is effectively equivalent to
the one already uncovered by Dodds et al. [3]. The latter
used a threshold model (where transmission generally
requires multiple exposures) over two-body interactions
only. One might thus believe that accounting for higher-
order, group interaction is only a marginal refinement, if
not an unnecessary complication.

In this Letter, we challenge this belief by demonstrating
that the outcome of the contagion process is fundamentally
linked to how interactions of different orders are arranged
in the system. Having developed a clique-based mean-field
model that accounts for local dynamical correlations, we
reveal that, contrary to the predictions made by node-based
approximations [14,20], the invasion threshold, βð1Þcr , at
which the inactive (contagion-free) state becomes unstable,
does depend on βð2Þ [21]. This dependence is proven to be
strictly related to the degree of overlap between three- and
two-body interactions. Having derived an explicit expres-
sion for the critical surface, we demonstrate that the overlap
has a double-edged effect: it lowers the invasion threshold,
but also makes the outbreaks generally smaller.
Let us start from the closure approximation we apply to

the exact microscopic equations on hypergraphs. We track
the state evolution of subsets of nodes which form maximal
cliques (i.e., cliques not subsets of larger ones) in the
projection graph constructed by associating cliques to
edges of the hypergraph. Accordingly, considering up to
three-body interactions, we account for the evolution of the
state probability Pσi

i for node i to be in state σi, P
σiσj
ij for the

maximal link ij to be in state σiσj, P
σiσjσl
ijl for the (maximal)

3-clique ijl to be in state σiσjσl. Notice that a 3-clique,
when projected back to the hypergraph, comes in one of
three flavors: a length-3 cycle (or 3-cycle), conveying three
two-body interactions, a 3-edge, conveying a three-body
interaction, or a 2-simplex (or triangle), conveying all of
them.
The state probability of other local structures is approxi-

mated in terms of the maximal cliques composing it. We
consider random hypergraphs that are sparse to the extent
that the probability for two maximal cliques to share more
than one node vanishes in the infinite-size limit [23]. We
thus need a closure only for the following local structures:
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two connected maximal links, a maximal link connected to
a 3-clique, and two connected 3-cliques. We approximate
their state as follows [21]:

P
σiσjσl
ijl ≈ P

σiσj
ij P

σjσl
jl =P

σj
j ; ð1aÞ

P
σiσjσlσh
ijlh ≈ P

σiσj
ij P

σjσlσh
jlh =P

σj
j ; ð1bÞ

P
σiσjσlσhσk
ijlhk ≈ P

σiσjσl
ijl Pσlσhσk

lhk =Pσl
l ; ð1cÞ

where the underline indicates the shared node. We refer to
Eqs. (1) as the triadic approximation [24].
The higher-order interaction structure is encoded in the

following binary tensors: Að1Þ, such that Að1Þ
ij ¼ 1 if the

maximal link ij exists; Að1;0Þ and Að0;1Þ, such that Að1;0Þ
ijl ¼ 1

(Að1;0Þ
ijl ¼ 0) and Að0;1Þ

ijl ¼ 0 (Að0;1Þ
ijl ¼ 1) if ijl is a 3-cycle (3-

edge); and such that Að1;0Þ
ijl Að0;1Þ

ijl ¼ 1 if ijl is a triangle (for

later convenience, we introduce Að1;1Þ ¼ Að1;0Þ ⊙ Að0;1Þ).
Specifically, if for any 3-clique ijl, Að0;1Þ

ijl ¼ 1 ⇒

Að1;0Þ
ijl ¼ 1, the hypergraph is a simplicial 2-complex, for

the existence of a 3-edge implies the existence of the 2-edges

it includes [26]. If, instead, Að0;1Þ
ijl ¼ 1 ⇒ Að1;0Þ

ijl ¼ 0, it is a
linear hypergraph, for any two edges will share at most one
node [26]. Any hypergraph is located in between these two
limits, depending on the degree of overlap between three-
and two-body interactions.
Having rescaled time by μ, the process is described by

the following system of microscopic equations,

ṖI
i ¼ −PI

i þ βð1Þ
X
j

Að1Þ
ij P

SI
ij þ 1

2

X
j;l

h
Að1;0Þ
ijl βð1ÞðPSSI

ijl þ PSIS
ijl þ 2PSII

ijl Þ þ Að0;1Þ
ijl βð2ÞPSII

ijl

i
; ð2aÞ

ṖSI
ij ¼ −ð1þ βð1ÞÞPSI

ij þ PII
ij − βð1Þ

X
l≠j

Að1Þ
il P

ISI
jil þ βð1Þ

X
l≠i

Að1Þ
jl P

SSI
ijl

−
1

2

X
l;h

h
Að1;0Þ
ilh βð1ÞðPISIS

jilh þ PISSI
jilh þ 2PISII

jilh Þ þ Að0;1Þ
ilh βð2ÞPISII

jilh

i
þ fi ↔ jg; ð2bÞ

ṖSSI
ijl ¼ −ð1þ 2Að1;0Þ

ijl βð1ÞÞPSSI
ijl þ PISI

ijl þ PSII
ijl

− βð1Þ
X
h≠j;l

Að1Þ
ih PSISI

jlih − βð1Þ
X
h≠i;l

Að1Þ
jh P

SISI
iljh þ βð1Þ

X
h≠i;j

Að1Þ
lh P

SSSI
ijlh

−
1

2

X
h;k≠j;l

h
Að1;0Þ
ihk βð1ÞðPSISIS

jlihk þ PSISSI
jlihk þ 2PSISII

jlihk Þ þ Að0;1Þ
ihk βð2ÞPSISII

jlihk

i
− fi ↔ jg þ fi ↔ lg; ð2cÞ

ṖSII
ijl ¼ −ð2þ 2Að1;0Þ

ijl βð1Þ þ Að0;1Þ
ijl βð2ÞÞPSII

ijl þ Að1;0Þ
ijl βð1ÞðPSSI

ijl þ PSIS
ijl Þ þ PIII

ijl

− βð1Þ
X
h≠j;l

Að1Þ
ih P

IISI
jlih þ βð1Þ

X
h≠i;l

Að1Þ
jh P

SISI
iljh þ βð1Þ

X
h≠i;j

Að1Þ
lh P

SISI
ijlh

−
1

2

X
h;k≠j;l

h
Að1;0Þ
ihk βð1ÞðPIISIS

jlihk þ PIISSI
jlihk þ 2PIISII

jlihk Þ þ Að0;1Þ
ihk βð2ÞPIISII

jlihk

i
þ fi ↔ jg þ fi ↔ lg; ð2dÞ

where fi ↔ jg denotes that obtained by swapping i and j in
the explicit term (excluding the sign in front) on the
same line and taking i and j in state S. The other
state probabilities are found as PS

i ¼ 1 − PI
i , PSS

ij ¼ 1−
PI
i − PSI

ij , PII
ij ¼ PI

i − PIS
ij , PSSS

ijl ¼ 1 − PI
i − PSII

ijl −
PSSI
ijl − PSIS

ijl , and PIII
ijl ¼ PI

i − PISI
ijl − PIIS

ijl − PISS
ijl . Equa-

tions (2) are closed through Eqs. (1). The system consists
then ofN þ Lþ 2ðTð1;0Þ þ Tð0;1Þ þ Tð1;1ÞÞ equations, being
N,L, Tð1;0Þ, Tð0;1Þ, and Tð1;1Þ, the number of nodes, maximal
links, 3-cycles, 3-edges, and triangles, respectively.

To make this model analytically tractable, we perform a
mean-field approximation by regarding all the nodes and
cliques as equivalent to their average counterparts.
Accordingly, every node is assumed to be part of the same
number of maximal links kð1Þ—3-cliques, kð1;0Þ; 3-edges,
kð0;1Þ; and triangles, kð1;1Þ—and thus participates in κð1Þ ¼
kð1Þ þ 2ðkð1;0Þ þ kð1;1ÞÞ two-body interactions and κð2Þ ¼
kð0;1Þ þ kð1;1Þ three-body interactions (see Fig. 1 for illus-
tration). The state probabilities Pσ

i , P
σσ0
ij , and Pσσ0σ00

ijl , with
σ; σ0; σ00 ∈ fS; Ig, are taken equal to their respective
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averages, Pσ ¼ P
i P

σ
i =N, Pσσ0 ¼ P

i;j A
ð1Þ
ij P

σσ0
ij =Nkð1Þ, and Pσσ0σ00

x ¼ P
i;j;l A

x
ijlP

σσ0σ00
ijl =2Nkx, the index x∈ fð1; 0Þ;

ð0; 1Þ; ð1; 1Þg indicating the type of the considered 3-clique [27].
Using the indicator function 1p, giving 1 if condition p is fulfilled and 0 otherwise, the reduced system reads

ṖI ¼ −PI þ βð1Þkð1ÞPSI þ 2βð1Þ
h
kð1;0ÞðPSSI

ð1;0Þ þ PSII
ð1;0ÞÞ þ kð1;1ÞðPSSI

ð1;1Þ þ PSII
ð1;1ÞÞ

i
þ βð2Þ

h
kð0;1ÞPSII

ð0;1Þ þ kð1;1ÞPSII
ð1;1Þ

i
; ð3aÞ

ṖSI ¼ −ð1þ βð1ÞÞPSI þ PII − βð1Þðkð1Þ − 1ÞPSI P
SI − PSS

PS

−
�
2βð1Þ

h
kð1;0ÞðPSSI

ð1;0Þ þ PSII
ð1;0ÞÞ þ kð1;1ÞðPSSI

ð1;1Þ þ PSII
ð1;1ÞÞ

i
þ βð2Þ

h
kð0;1ÞPSII

ð0;1Þ þ kð1;1ÞPSII
ð1;1Þ

i�PSI − PSS

PS ; ð3bÞ

ṖSSI
x ¼ −2ð1þ βð1Þ1x≠ð0;1ÞÞPSSI

x þ 2PSII
x − βð1Þkð1ÞPSI 2P

SSI
x − PSSS

x

PS

− 2βð1Þ
h
ðkð1;0Þ − 1x¼ð1;0ÞÞðPSSI

ð1;0Þ þ PSII
ð1;0ÞÞ þ ðkð1;1Þ − 1x¼ð1;1ÞÞðPSSI

ð1;1Þ þ PSII
ð1;1ÞÞ

i 2PSSI
x − PSSS

x

PS

− βð2Þ
h
ðkð0;1Þ − 1x¼ð0;1ÞÞPSII

ð0;1Þ þ ðkð1;1Þ − 1x¼ð1;1ÞÞPSII
ð1;1Þ

i 2PSSI
x − PSSS

x

PS ; ð3cÞ

ṖSII
x ¼ −ð2þ 2βð1Þ1x≠ð0;1Þ þ βð2Þ1x≠ð1;0ÞÞPSII

x þ 2βð1Þ1x≠ð0;1ÞPSSI
x þ PIII

x − βð1Þkð1ÞPSI P
SII
x − 2PSSI

x

PS

− 2βð1Þ
h
ðkð1;0Þ − 1x¼ð1;0ÞÞðPSSI

ð1;0Þ þ PSII
ð1;0ÞÞ þ ðkð1;1Þ − 1x¼ð1;1ÞÞðPSSI

ð1;1Þ þ PSII
ð1;1ÞÞ

iPSII
x − 2PSSI

x

PS

− βð2Þ
h
ðkð0;1Þ − 1x¼ð0;1ÞÞPSII

ð0;1Þ þ ðkð1;1Þ − 1x¼ð1;1ÞÞPSII
ð1;1Þ

iPSII
x − 2PSSI

x

PS ; ð3dÞ

where PS ¼ 1 − PI, PSS ¼ 1 − PI − PSI , PII ¼ PI − PSI ,
PSSS ¼ 1 − PI − PSII − 2PSSI , PIII ¼ PI − PSSI − 2PSII .
To correctly locate the phase transition, we linearize

Eqs. (3) around the inactive state by regarding of the same
order ϵ ≪ 1 the probabilities of infected states, i.e.,
PI; PSI; PII; PSSI

x ; PSII
x ; PIII

x ∈OðϵÞ [21]. The rightmost
eigenvalue of the Jacobian matrix associated with the
resulting linear system crosses the imaginary axis when
the following is satisfied [28]:

kð1Þ
βð1Þ

1þ βð1Þ
þ kð1;0Þ

2βð1Þð1þ βð1ÞÞ
1þ 2βð1Þð1þ βð1ÞÞ

þ kð1;1Þ
βð1Þð2þ 2βð1Þ þ βð2ÞÞ

1þ βð1Þð2þ 2βð1Þ þ βð2ÞÞ ¼ 1: ð4Þ

Equation (4) defines the critical surface in the parameter
space [see Fig. 2(a)]. There is no solution when either
βð1Þ ¼ 0 or there are only three-body interactions
(κð2Þ ¼ kð0;1Þ, κð1Þ ¼ 0). This reveals that a three-body
interaction cannot affect the stability of the inactive state
unless “activated” by the presence of two-body inter-
actions within the same subset of nodes. Two-body
interactions are thus needed to destabilize the inactive
state. That activation occurs in triangles. Since each term
in the l.h.s. of Eq. (4) is a strictly increasing function of
the infection rates, given kð1;1Þ > 0, the larger is βð2Þ

(βð1Þ), the smaller is βð1Þ ¼ βð1Þcr (βð2Þ ¼ βð2Þcr ) solving
Eq. (4). In particular, when triangles can percolate the

structure (i.e., kð1;1Þ > 1), βð1Þcr can be made arbitrarily
small by increasing βð2Þ. Moreover, by imposing βð2Þ ¼ 0

in Eq. (4), we find that a simple contagion suffices to

cause extensive spreads at βð1Þcr ∈ ½βð1Þð1Þ; β
ð1Þ
ð1;0Þ�, being βð1Þð1Þ ¼

1=ðκð1Þ − 1Þ and βð1Þð1;0Þ ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4=ðκð1Þ − 2Þ

q
− 1�=2 the

critical point for, respectively, a locally treelike network
(κð2Þ ¼ 0, κð1Þ ¼ kð1Þ) and a 3-cycle-based network
(κð2Þ ¼ 0, κð1Þ ¼ 2kð1;0Þ). In agreement with previous
studies proving clustering to raise the critical point of
simple [29,30] and slightly nonlinear [31] conta-

gions, βð1Þð1;0Þ > βð1Þð1Þ.

FIG. 1. Example showing how the neighborhood of a focal
node changes with kð1;1Þ for fixed κð1Þ, kð1Þ (zero here), and κð2Þ.
The node takes part to κð1Þ ¼ 4 two-body and κð2Þ ¼ 2 three-body
interactions, but their degree of overlap changes.
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Considering then a triangle-based network (κð2Þ ¼ kð1;1Þ,
κð1Þ ¼ 2kð1;1Þ), i.e., a homogeneous simplicial 2-complex,

we find that the critical point, βð1Þð1;1Þ, reads

βð1Þð1;1Þ ¼
βð2Þ þ 2

4

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16

ðκð1Þ − 2Þðβð2Þ þ 2Þ2
s

− 1

#
: ð5Þ

βð1Þð1;1Þ thus vanishes as 1=β
ð2Þ for large βð2Þ [see Fig. 2(b)].

Observe that Eq. (5) reflects the fact that extensive
contagions are possible only for κð1Þ > 2 (kð1;1Þ > 1), when
a giant connected component can exist.
To isolate the effect of the overlap between two- and

three-body interactions, we fix κð1Þ, kð1Þ, and κð2Þ, and
increase kð1;1Þ from 0 to κð2Þ (correspondingly, kð1;0Þ and
kð0;1Þ both decrease). Importantly, a larger kð1;1Þ implies a
smaller and more redundant neighborhood (see Fig. 1). One
may thus expect that the critical point increases with kð1;1Þ.

As shown in detail in Fig. 2(a), instead, either βð1Þcr and βð2Þcr

decrease with kð1;1Þ, taking the lowest values in a simplicial
complex and the highest in a linear hypergraph (for which,

being kð1;1Þ ¼ 0, βð1Þcr is unaffected by βð2Þ). Since 3-edges
yield a negligible contribution around the inactive state,
exchanging them for triangles helps the spread to thrive. As
Figs. 2(c) and 2(d) show, this holds also for the equilibrium
fraction of infected nodes, I⋆, when βð1Þ is close enough to
the threshold for the simplicial complex. For larger infec-
tion rates, however, that redundancy becomes detrimental,
for potentially infectious edges lead to nodes which are
already infected. The largest spreads are thus found for
linear hypergraphs, ensuring the least-redundant, widest
neighborhoods. Finally, notice in Fig. 2(c) how solely
varying the overlap can change the nature of the phase
transition.
We test the model on random regular hypergraphs,

generated through a standard configuration model in which
every node is assigned the same degrees kð1Þ, kð0;1Þ, kð1;0Þ,

(a)

(b)

(c)

(d) (f )

(e)

FIG. 2. Predictions from the mean-field model. (a) Critical surface ðkð1;1Þ; βð1Þ; βð2ÞÞcr defined by Eq. (4) for hypergraphs with κð1Þ ¼ 6

two-body (kð1Þ ¼ 0) and κð2Þ ¼ 3 three-body interactions per node. The white solid curves correspond to the values of βð2Þ indicated in

the color bar (limited at 7 for better readability), the curve βð2Þ ¼ 0 being thicker. The dashed line denotes βð1Þð1Þ ¼ 1=5, associated to the

locally treelike network with the same κð1Þ. (b) Critical threshold βð1Þcr ≡ βð1Þð1;1Þ, Eq. (5), for homogeneous simplicial 2-complexes.

(c)–(d) Equilibrium prevalence, I⋆, for βð2Þ ∈ f0.25; 1.00g, and kð1;1Þ from 0 (lightest shade) to 3 (darkest shade) in steps of 0.5. The

dashed line indicates βð1Þð1Þ ¼ 1=5. (e)–(f) Comparison of the model (solid lines) with numerical simulations performed on random regular

hypergraphs with N ¼ 5000, κð1Þ ¼ 8, kð1Þ ¼ 2, κð2Þ ¼ 3, and kð1;1Þ ¼ 3 (simplicial complex) and kð1;1Þ ¼ 0 (linear hypergraph). Points
and error bars denote averages and standard errors computed over 20 random initializations. The arrows help to distinguish the forward
and backward curves in hysteresis cycles.
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and kð1;1Þ. As reported in Figs. 2(e) and 2(f), numerical
simulations confirm the (quantitative) predictions made by
the mean-field model.
We further test those predictions on hypergraphs con-

structed from real-world datasets, containing record of
face-to-face interactions during a conference [32], and
proximity data within a university campus [33]. We refer
to the Supplemental Material [34] for the procedure used to
convert each dataset into a binary network. The hyper-
graphs are then constructed by adding three-body inter-
actions to either 3-cycles with probability h, converting
them in triangles, or to randomly selected triplets of
unconnected nodes otherwise, forming 3-edges. Even
though the basic assumptions of homogeneity and sparse-
ness that we made are heavily violated in more realistic
structures (see [34]), the numerical results reported in Fig. 3
show that the qualitative phenomenology uncovered by the
mean-field theory remains valid. This confirms its struc-
tural origin: the overlap between three- and two-body
interactions. We thus conjecture that a similar picture holds
for other contagion models as well, as we already verified
for a SIR process (see Supplemental Material [34]).
Through a more refined mean-field model, this study

reveals a fundamental relation between the behavior of
complex contagion processes and the way interactions
are arranged in the higher-order structure. Extending
beyond node- and pair-based approximations, our analysis

establishes how three-body interactions contribute to desta-
bilizing the inactive state, proving their contribution is
contingent on overlapping with two-body interactions.
Examining the boundary structures, we demonstrated that
simplicial complexes and linear hypergraphs—having
maximal and no overlap, respectively—exert diametrically
opposed dynamical effects. The former lower the critical
point, while often resulting in smaller spreads; the latter
heighten the critical point, yet typically leading to larger
spreads. Complementing recent findings in synchronization
[39], our investigation underscores the necessity of iden-
tifying the most suitable representation for specific higher-
order processes.
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S1. Hypergraphs from real-world data

S1.1. Generation and properties

We first describe the procedure used to generate the hypergraphs used in Fig. 3 of the main
text. We used two real-world dataset. One dataset contains face-to-face interactions recorded
during a conference [3], the other one proximity data recorded within a university campus [8].
The procedure is the same for both datasets.

These consist of time-resolved interactions (each representing a face-to-face interaction or
proximity between two people) which, once aggregated, yields very dense networks [3]. Therefore,
we first build a static pairwise network where each edge is assigned a weight equal to its number
of appearances (i.e., how many times the interaction between the two agents has been detected
throughout the entire observation time) and then threshold it.

Starting from an empty network with only the nodes in the dataset (N = 219 for the confer-
ence’s and N = 672 for the university campus’), edges are listed in decreasing order of weight
and added to the network starting from the first one. Since some nodes only participate to edges
with very low weight, waiting until all nodes are included would yield a network identical to the
original one, except for just few missing edges. To avoid this, we stop including edges when the
95% of the nodes has been connected to some other node (notice that disconnected components
may still exist at this point), indeed thresholding the original network1. The remaining degree-0
nodes are then connected to the other nodes at random. If the network is disconnected, the
connected components are connected to the largest connected component by adding an edge at
random between each of them and the latter. In practice, at the moment in which the 95% of
the nodes is reached, there exists a component containing almost all nodes and very few other
components of very few nodes. Consequently, the few edges added to connect the network do
not affect the properties of the thresholded network.

The binary network obtained in this way represents the backbone to which we add three-
body interactions in order to get rank-3 hypergraphs. To do this, we first list all the 3-cliques in
the network2. Then, to each 3-clique, we add a three-body interaction (i.e., a 3-edge containing
the three nodes) with probability h, such that, if the addition occurs, a 2-simplex (triangle)

1The original networks include many large cliques. Since our model assumes cliques of up to 3 nodes, when
an edge is included as above we check whether a 4-clique formed, in which case the edge is ignored. Including
4-cliques or larger ones does not change qualitatively the results. On the other hand, avoiding them makes the
network less dense and the phenomenology easier to appreciate.

2Notice that some 3-cliques share two nodes with other 3-cliques, meaning that those 2-cliques which are
part of more than one 3-clique appear multiple times in the list. Each appearance is considered as a different
interaction. An alternative method that would avoid repeated 2-cliques consists in finding an edge-disjoint edge
clique cover of the network [1], where, for instance, the motif made of two 3-cliques sharing a 2-clique would be
decomposed in (and considered as) one 3-clique (that includes the shared 2-clique) and two 2-cliques. Using this
method just changes the number of 2-cliques and 3-cliques in the network, but the results remain qualitatively
unaffected.
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is formed. Otherwise (occurring with probability 1 − h), the 3-edge is added to three uncon-
nected nodes chosen at random, so that a three-body interaction not overlapped with two-body
interactions is formed. Notice that the total number of three-body interactions added is inde-
pendent from h; only their distribution over the system changes with it. Setting h = 0 yields a
linear hypergraph. Increasing h, more and more frequently three-body interactions overlap with
two-body interactions. At h = 1, the structure becomes a simplicial 2-complex.

Conference’s dataset. The hypergraphs generated from this dataset consists of N = 219
nodes. The 2-degree κ(1) (number of 2-edges incident on a node) is distributed heterogeneously.
The first and the second raw moments of the 2-degree distribution are ⟨κ(1)⟩ ≈ 33.05 and

⟨κ(1)2⟩ ≈ 2034.16, giving a high variance of var(κ(1)) ≈ 941.84. The structure also shows 2-
degree assortativity (coefficient r = 0.1 [7]). At last, the first and the second raw moments
of the 3-degree (number of 3-edges incident on a node) distribution are ⟨κ(2)⟩ ≈ 16.22 and

⟨κ(2)2⟩ ≈ 280.03, giving a low variance of var(κ(2)) ≈ 16.97.

University campus’s dataset. The hypergraphs generated from this dataset consists of
N = 672 nodes. The 2-degree κ(1) is distributed heterogeneously. The first and the second

raw moments of the 2-degree distribution are ⟨κ(1)⟩ ≈ 15.3 and ⟨κ(1)2⟩ ≈ 479.67, giving a
high variance of var(κ(1)) ≈ 245.56. The structure also shows 2-degree assortativity (coefficient
r = 0.19 [7]). At last, the first and the second raw moments of the 3-degree distribution are

⟨κ(2)⟩ ≈ 7.06 and ⟨κ(2)2⟩ ≈ 57.68, giving a low variance of var(κ(2)) ≈ 7.84.

S1.2. Comparison with the mean-field model

In Fig. S1 we report the results shown in Fig. 3 of the main text, with the addition of the
predictions made by the mean-field model (Eq. (3)). We also show the 2-degree and 3-degree
distributions. These are well reproduced by exponential and gaussian distributions, respectively.
Given the 2-degree heterogeneity and assortativity of the generated networks, is no surprise
the poor performance of the mean-field approximation, especially in predicting the invasion
threshold. The latter is always heavily overestimated. The reasons for this are multiple.

A first reason, valid for any h, is the 2-degree heterogeneity (see panels (b) and (f) in Fig. S1).
Given that adding three-body interactions can only lower the invasion threshold, an upper bound
for the threshold is found considering only two-body interactions, or equivalently, h = 0 (since,
as we proved, 3-edges not overlapped with 2-edges do not affect the threshold). A rough estimate

of the upper bound is provided by ⟨κ(1)⟩/⟨κ(1)2⟩, as predicted by a heterogeneous (node-based)
mean-field approximation, which yields a much smaller threshold than a homogeneous mean-field
approximation when var(κ(1)) is large3.

A second reason is that, on one hand, it has been shown that degree assortativity lowers
the threshold [2]; on the other hand, mean-field approximations have been observed to perform
exceptionally poorly against assortative networks [4]. These two facts together strongly suggest
an additional contribution to the error made by the mean-field model.

Finally, increasing h, this model further overestimates the threshold, for it does not account
for triangles sharing two nodes (i.e., a 2-edge), indeed present in the generated hypergraphs. In
fact, once two nodes belonging to n triangles are both infected, n different three-body interac-
tions become simultaneously active. This results in a smaller threshold than the one predicted
by the mean-field model, given the sparsity it assumes (i.e., n = 1 only). To notice that the
presence of triangles with shared 2-edges also explains the much lower prevalence observed for
high h compared to that predicted by the mean-field model. Indeed, a set of n triangles sharing
a given 2-edge, involves only n + 2 nodes. If they shared only one node, the involved nodes
would be 2n + 1; if they were all disconnected, the involved nodes would become 3n. That is,

3Actually, the prediction made by the heterogeneous mean-field approximation underestimates the threshold.
We are indeed dealing with highly clustered networks, for which the threshold is higher than for random networks
with the same degree distribution.
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Figure S1: Comparison between the predictions made by the mean-field model (solid lines)
and the numerical simulations (points) performed on the hypergraphs constructed from the
conference’s ((a) and (c)) and the university campus’ ((e) and (f)) datasets. Points denote
medians computed over 20 random initializations; ribbons cover from the 5-th to the 95-th
percentile. The added three-body interactions form triangles with probability h = 0 (linear
hypergraph), h = 0.5, and h = 1 (simplicial complex). ((b) and (d)) 2-degree and 3-degree
distributions of the hypergraphs generated from the conference’s dataset, shown to be well
reproduced by an exponential distribution (mean: 1/⟨κ(1)⟩) and a gaussian distribution (mean:
⟨κ(2)⟩; variance: var(κ(2))), respectively (red curves). ((f) and (h)) As panels (b) and (d), but
for the hypergraphs generated from the university campus’ dataset.

the more frequently triangles share nodes, the more redundant is the structure and, in turn, the
smaller are the outbreaks.

It should be noted that a mean-field model is very much expected to fail in providing quan-
titatively accurate predictions for quenched structures [5]. In fact, the accuracy our mean-field
theory shows for the configuration-model hypergraphs in Fig. 2 is not so obvious. For instance,
a less refined node-based mean-field model would be very imprecise even in that case, especially
in predicting the invasion threshold. In light of this, we can rather appreciate the significant
aspect of the results reported in Fig. S1: that the phenomenology our theory revealed is, not
only still valid for structures violating the assumptions of homogeneity and sparseness, but is
actually greatly emphasized!

S2. Results for the SIR model

We show here the results of numerical simulations we performed using a susceptible-infectious-
recovered (SIR) contagion model, where upon recovery individuals move to the recovered (R)
compartment instead of entering back the susceptible one (S). This higher-order generalization
of the SIR model has been very recently analyzed in detail by Lv et al. [6]. The authors showed
that, as in the SIS model, sufficiently high values of the three-body infection rate, β(2), make
the phase transition discontinuous in both homogeneous and heterogeneous simplicial complexes.
Using however a node-based approximation, their approach is insensible to the way in which
two- and three-body interactions are arranged in the structure, hence to their degree of overlap.
Consequently, it is not possible to discern a simplicial complex from a linear hypergraph (or any
other intermediate structure).

In Fig. S2, we show the results for hypergraphs generated from the university campus’
dataset. The order parameter for a SIR-like model is the final attack rate, R∞, which is the total
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Figure S2: Numerical simulations performed on the hypergraphs constructed from the university
campus’ [8] datasets when the contagion dynamics is a SIR process. (a) Final attack rate, R∞,
versus the two-body infection rate, β(1). Points denote medians computed over 100 random
initializations; ribbons cover from the 25-th to the 75-th percentile. The added three-body
interactions form triangles with probability h = 0 (linear hypergraph; blue curve) and h = 1
(simplicial complex; red curve). Clearly, turning off the three-body interactions (β(2) = 0),
varying h has no effect on the dynamics (grey curve). (b) Same as panel (a), but with logarithmic
abscissa to stretch the low-β(1) interval and better appreciate the shift of the invasion threshold.

fraction of nodes that got the infection (and eventually recovered) during the entire outbreak
(the infected compartment is empty at equilibrium). The simulations confirm the generality of
the phenomenology our mean-field model revealed: (i) three-body interactions affect the invasion
threshold only if they overlap with two-body interactions (h > 0); (ii) a larger overlap (higher
h) implies lower invasion thresholds but also smaller outbreaks; and (iii) varying exclusively the
degree of overlap can change the nature of the phase transition. About the last point, it should
be noted that the discontinuity of the transition for β(2) = 2 and h = 0 is blurred by strong
finite-size effects.
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