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Spreading dynamics in networks under context-dependent behavior
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In some systems, the behavior of the constituent units can create a “context” that modifies the direct
interactions among them. This mechanism of indirect modification inspired us to develop a minimal model of
context-dependent spreading. In our model, agents actively impede (favor) or not diffusion during an interaction,
depending on the behavior they observe among all the peers in the group within which that interaction occurs. We
divide the population into two behavioral types and provide a mean-field theory to parametrize mixing patterns
of arbitrary type-assortativity within groups of any size. As an application, we examine an epidemic-spreading
model with context-dependent adoption of prophylactic tools such as face masks. By analyzing the distributions
of groups’ size and type-composition, we uncover a rich phenomenology for the basic reproduction number and
the endemic state. We analytically show how changing the group organization of contacts can either facilitate or
hinder epidemic spreading, eventually moving the system from the subcritical to the supercritical phase and vice
versa, depending mainly on sociological factors, such as whether the prophylactic behavior is hardly or easily
induced. More generally, our work provides a theoretical foundation to model higher-order contexts and analyze
their dynamical implications, envisioning a broad theory of context-dependent interactions that would allow for
a new systematic investigation of a variety of complex systems.
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I. INTRODUCTION

Real systems often exhibit higher-order, group interactions
that cannot be reduced to combinations of pairwise interac-
tions [1–3]. Even when an interaction is pairwise (e.g., disease
spreading), if the behavior of the involved units is modified
by the co-presence of other units (e.g., other people), the
interaction cannot be considered in isolation. The group as a
whole defines a “context” which alters the (direct) interactions
taking place within it. These higher-order interactions are
known as “indirect modifications” in ecology [4–6], whereby
the functional relationship between two species is altered by
the presence of a third, trophically disconnected species.

In opinion formation, for instance, the direct influence that
an individual can exert on another can be modified by the
opinions [7] or the individual characteristics [8] of the others
in the group. In linguistics, when an individual moves to a
new region, the learning rate of the local language depends
on how often the locals use that language in the presence of
that individual [9]. They could bear the cost of switching to
another language (e.g., English) for a more inclusive conver-
sation, but eventually slowing down the diffusion of the local
one; or could instead stick to it, enforcing its diffusion.

In infectious spreading, recent studies have emphasized
the importance of considering the group organization of
contacts in understanding and controlling the contagion
process [10–13]. In this regard, the adoption of nonpharma-
ceutical prophylactic behavior, such as face mask wearing
and physical distancing, proves to be a viable and effec-
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tive strategy for epidemic control [14–17]. Existing studies
on adaptive network models for the spread of contagious
disease have considered agents whose behavior depends on
individual characteristics, on the observed behavior among
peers, and on external sources of information, within both
well-mixed and structured populations (see references [62–
89] in the review by Benson et al. [18], and the review by
Wang et al. [19]). However, these studies do not distinguish
between potentially infectious contacts that occur in isolation
versus those that occur in the co-presence of other individu-
als. This distinction becomes essential when accounting for
behavioral adoption, and our proposed model addresses this
issue by introducing higher-order context dependence. This
framework provides several benefits over existing models,
including greater theoretical flexibility, the ability to gain
deeper theoretical insights, and the ability to infer parameter
values from real-world data. Moreover, our model allows for
the analysis of the effects of changing the frequency and
assortativity at each group size, which cannot be captured
by simpler adaptive models based on pairwise interactions.
Indeed, even though each transmission concerns only two
people, the likelihood of transmission is indirectly affected by
the way contacts are organized within groups, for the adop-
tion of the prophylactic behavior (e.g., wearing a face mask)
depends on the level of adoption an individual observes in the
entire group [20–22]. Adoption is thus mutable, contextual:
An individual may exhibit one behavior or another depending
on the current context.

This implies that an appropriate description of the system
needs to take into account either that contacts generally occur
within groups, and that, concurrently to the infectious spread-
ing, there is a decision-making process at the group level that

2470-0045/2023/107(6)/064304(16) 064304-1 ©2023 American Physical Society

https://orcid.org/0000-0002-6333-4847
https://orcid.org/0000-0003-1820-0062
https://orcid.org/0000-0003-0937-0334
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.064304&domain=pdf&date_stamp=2023-06-07
https://doi.org/10.1103/PhysRevE.107.064304


BURGIO, GÓMEZ, AND ARENAS PHYSICAL REVIEW E 107, 064304 (2023)

shapes the behavior of the individuals therein. Current models
either consider the group structure [10–13] or the disease-
behavior coupling [18], but never both. In this work, we fill
this gap presenting a general model of context-dependent
spreading. This is representative of an entire class of models,
each identified by the specific spreading process considered
and by how agents’ behavior is affected by the context. Note
that there exist models where behavior is context-independent,
such as epidemic models where individuals can adopt perma-
nent prophylactic tools to avoid transmission (e.g., vaccines),
or information spreading models where agents divide into
active sources or spreaders and passive consumers.

To describe context-dependent behavior we divide indi-
viduals into behavioral types, distinguished by a different
propensity to adopt a certain behavior. The correlation
between individual characteristics and behavior has been ob-
served in various forms, among which in the adoption of
prophylactic measures [23–25]. At the same time, similar
individuals not only behave similarly, they are also more
likely to interact among them than with others, a phenomenon
known in sociology as homophily [26]. The local dynamics—
and the global one emerging from it—is thus determined by
both, the behavior of the types and the way they mix [27–31].
To account for this, we first provide in Sec. III a mean-field
approximation to the higher-order structure of interactions
in a population divided into two types. We thus formulate
an annealed heterogeneous mixing in hypergraphs, which
is a contribution in itself. Then, in Sec. IV, we model the
context-dependency of agents’ behavior. Together, Secs. III
and IV provide the theoretical foundation for the study of
context-dependent processes analytically. As an application
of our theory, in Sec V we consider an epidemic spreading
model incorporating context-dependent adoption of prophy-
lactic behavior, then explored in Sec. VI. There, we reveal a
rich phenomenology for the basic reproduction number and
the endemic state in relation to the size and type-composition
distributions of the groups, unveiling the important dynamical
implications of accounting for the indirect modifications of
the pairwise contagion created by a higher-order context.

II. THE MODEL

Let us consider a population of agents within which a
certain entity (e.g., a pathogen, a rumour) can spread from
one agent to another in a pairwise fashion. Such an inter-
action generally occurs in the presence of other agents not
directly participating to it, i.e., within a group of some size
(in particular, of size two if no other agent is present). If
the co-present agents can affect the pairwise interaction, the
group itself mediates an interaction: An indirect modification.
Thus, we henceforth use the term “group” or “higher-order
interaction” to indicate a group of agents, defining the context
within which the pairwise (direct) interactions conveying the
spread take place between any two agents in the group.

Every agent, during each interaction, can either actively
behave to modify (hinder or favor) the spread or not. Whether
it chooses to adopt such behavior or not is determined by
both the behavior it observes among the peers involved in
the interaction and some intrinsic characteristics of its own.
To account for the latter, suppose to partition the population

into two behavioral types, labeled through letters A and N,
standing for “adoption-inclined” and “not adoption-inclined:”
accordingly, type A is assigned to those agents which are in-
trinsically more prone to adopt an active behavior. Then, every
time a group of agents forms, each of them chooses a behavior
and a spreading event is let to happen within any pair of them.
Note the assumption of timescale separation we are implicitly
making: The agents decide their behavior instantly, as soon
as the group forms, to then let the slow spreading dynamics
unfold throughout the duration of the group interaction. This
is a reasonable (and convenient) hypothesis in some cases, like
the one considered in this work, but could be not in others.
Anyway, there is no technical difficulty in relaxing it, still
leaving intact the core of the model—indirect modifications
generated by context-dependency.

The minimal description given so far does not yet specify
how the interactions take place. Among the many possible
ones, we henceforth consider the following: At time step t , a
generic agent i is involved in k(n)

i (t ) group interactions of size
n ∈ {2, . . . , nmax}. A group of size n can be represented as a
hyperedge of cardinality n (or n-edge) of a hypergraph [32],
whose nodes represent the agents. “Group” and “hyperedge”
are synonyms here, as well as “node” and “agent,” therefore
we will use them indistinctly. The composition of the groups
formed at time t can be encoded in the adjacency tensors
{At

(n)}, where At
(n)
i1,...,in

= 1 if the group {i1, . . . , in} is formed
at time t , and 0 otherwise.

Figure 1 provides an illustrative example of the model,
while showing the inadequacy of a pairwise representation
for context-dependent processes and the consequent need for
higher-order representations. Indeed, since the success of each
pairwise transmission depends on the behavior taken on by all
the agents in the group, the exact description of the whole
process requires knowledge of either the interaction structure
(i.e., who gathers with whom, and when) and the functional
dependence of the agents’ behavior on their type and on
the type-composition of a group. The exact specification of
the interaction structure requires a huge amount of detailed
information. While this is largely unavailable in most of the
cases, we are anyway forced to resort to some approximate
description if we want to gain clear knowledge from analytical
results.

III. MEAN-FIELD THEORY FOR MIXING IN GROUPS

The coarsest approximation is based on the well-mixed
hypothesis, which, assuming that any agent can interact with
any other one in the population, allows us to substitute local
state variables with global aggregates. Nonetheless, we can
enrich and extend this scheme by making the probability
for a given interaction to occur be a function of the type
of the agents it involves. The structure is thus described by
means of probability mass functions providing the probability
for each type to participate to groups of various size and
type-composition. Put differently, we operate a dimensional
reduction based on the assumption that the type of the agents
is the sole property needed to infer the interaction structure.
By taking into account the way the behavioral types mix, such
description allows us to preserve the essential elements that
determine the spreading process.
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FIG. 1. Example of a context-dependent spreading where the
agents can act in order to avoid it (in either directions) by adopt-
ing a prophylactic behavior, represented as a worn face mask. At
each time t , some group interactions (dash-outlined) take place.
During each interaction, an infection can occur from any infected
(red) agent to any susceptible (green) one. In this example, A-type
nodes (represented with a ready-to-use, lowered face mask while
no interacting) are assumed to behave actively no matter what the
others do, while N-type nodes (those without face mask while no
interacting) do it only when they observe another node doing it, i.e.,
when at least one A-type node is in the group. In this setup, any
transmission may be avoided when interacting in groups of three,
whereas all the N-type agents may be infected when interacting in
pairs. Neglecting the group organization of contacts can thus lead
to radically different outcomes, proving the need for a higher-order
representation to account for context.

We first present the general mean-field theory valid for any
group size, and then we provide explicit formulas for rank-3
hypergraphs.

A. General case

Consider a population (a set) of N agents (nodes). Let ρ be
the proportion of A-type agents, hence 1 − ρ the proportion of
N-type agents. We assume here that, at each time step, groups
form at random, with probabilities depending solely on the
types of the agents involved. Accordingly, the value of At

(n)
i1,...,in

depends only on the set {Xi1 , . . . , Xin} of the agents’ types,
and we replace it with its expected value over the ensemble
of hypergraphs parametrized by N , ρ, and a set of mixing
parameters (defined below) regulating the average level of
type-(dis)assortativity in a group. To this end, we need an ex-
pression for the number g(n)

nA,nN
of (nA + nN) edges composed

of nA A-type nodes and nN N-type ones, being subsets of
n-edges (i.e., nA + nN � n � nmax), formed at each time step.

From this we can then derive an expression for the probability
that an agent of a certain type takes part in a group of any given
type-composition. Denoted with e(n) the number of n-edges
formed at each time step, g(n)

nA,nN
is related to it through

p(n)
nA,nN

= g(n)
nA,nN( n

nA + nN

)
e(n)

, (1)

being p(n)
nA,nN

the probability that sampling nA + nN nodes from

a randomly chosen n-edge [there are ( n
nA + nN

)e(n) ways of
doing it], the sample consists of nA A-types and nN N-types.
Also, let p(n)

lA,lN|mA,mN
be the conditional probability that, given

a set of mA A-type and mN N-type nodes in an n-edge, sam-
pling a set of other lA + lN nodes in it (mA + lA + mN + lN �
n), the sample consists of lA A-types and lN N-types. Since
there are (mX + lX

mX
) ways of choosing mX nodes out of mX + lX,

X ∈ {A, N}, and (n − mA − mN
lA + lN

) ways of choosing lA + lN nodes
among the n − mA − mN remaining ones, we get

p(n)
lA,lN|mA,mN

=
(mA+lA

mA

)(mN+lN
mN

)
(n−mA−mN

lA+lN

) g(n)
mA+lA,mN+lN

g(n)
mA,mN

. (2)

In particular, p(n)
lA,lN|1,0 (p(n)

lA,lN|0,1) is the sought probability
that an A-type (N-type) node takes part in a group of size n
which includes other lA A-types and lN N-types. Therefore,
indicated with k(n)

1,0 (k(n)
0,1) the expected n degree of an A-type

(N-type) node, i.e., the expected number of groups of size n to
which it takes part in per time step, and given lA + lN = n −
1, then κ

(n)
lA,lN|1,0 = p(n)

lA,lN|1,0k(n)
1,0 (κ (n)

lA,lN|0,1 = p(n)
lA,lN|0,1k(n)

0,1) is the
expected number of groups of size n in which an A-type (N-
type) takes part with other lA A-types and lN N-types. These
numbers, beside N and ρ, specify completely the interaction
structure.

To compute them, we need an expression for g(n)
nA,nN

.
For mixed subsets, i.e., with nA, nN � 1, we have (see Ap-
pendix A 1 for the detailed derivation)

g(n)
nA,nN

= N0,1k(n)
0,1

nN

(
n − 1

nA + nN − 1

)(
nA + nN − 1

nA

)

× p(n)
0,1|0,1 p(n)

0,1|0,2 · · · p(n)
0,1|0,nN−1

× p(n)
1,0|0,nN

p(n)
1,0|1,nN

· · · p(n)
1,0|nA−1,nN

, (3)

and for uniform N-type and A-type subsets,

g(n)
0,nN

= N0,1k(n)
0,1

nN

(
n − 1

nN − 1

)
p(n)

0,1|0,1 p(n)
0,1|0,2 · · · p(n)

0,1|0,nN−1, (4)

g(n)
nA,0 = N1,0k(n)

1,0

nA

(
n − 1

nA − 1

)
p(n)

1,0|1,0 p(n)
1,0|2,0 · · · p(n)

1,0|nA−1,0. (5)

Inserting Eqs. (3) to (5) into Eq. (2) we are thus ex-
pressing p(n)

lA,lN|mA,mN
only in terms of conditional probabilities

of finding a single node of given type, i.e., of the form
p(n)

1,0|mA,mN
and p(n)

0,1|mA,mN
. The latter are the only free variables

left. To close the theory, given mA + mN = m � n − 1, we
parametrize them as follows:

p(n)
1,0|mA,mN

= α(n)
m,mA

ρ, if mA � mN, (6)

p(n)
0,1|mA,mN

= α(n)
m,mA

(1 − ρ), if mA > mN. (7)
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Their counterparts are found from normalization, e.g.,
p(n)

0,1|mA,mN
= 1 − α(n)

m,mA
ρ if mA � mN. Parameter α(n)

m,mA
gov-

erns the mixing probability in a (m + 1) edge, subset of
an n-edge, conditioned on the presence of mA � m A-type
nodes in it: α(n)

m,mA
= 1 corresponds to homogeneous mixing,

in which case it is only the proportion of the types in the
population to determine the expected mixing; for mA �= mN,
α(n)

m,mA
< 1 (α(n)

m,mA
> 1) indicates (dis)assortativity of the ma-

jority in the subset towards the remaining node, which is
therefore more (less) likely than expected to be of the same
type of the majority; for mA = mN (occurring only for m
even), α(n)

m,mA
< 1 (α(n)

m,mA
> 1) indicates asymmetric prefer-

ence towards N-type (A-type) nodes.
Since mA ∈ {0, . . . , m}, there are m + 1 parameters char-

acterizing the mixing within (m + 1) edges. However, only
one of them is free, eventually implying that the interaction
structure is uniquely determined by at most

(nmax

2

)
parameters

(see Appendix A 2 for proof).
Part of our analysis will focus on how the dynamics is

affected by how type-assortativity is distributed among the
various group sizes. To this end, let us define the level of
pairwise homophily (or just “homophily”) in n-edges, h(n),
as the probability that two agents are of the same type when
interacting within a group of size n,

h(n) = N1,0k(n)
1,0 p(n)

1,0|1,0 + N0,1k(n)
0,1 p(n)

0,1|0,1

N1,0k(n)
1,0 + N0,1k(n)

0,1

= 1 − ρ(1 − ρ)
α

(n)
1,0k(n)

0,1 + α
(n)
1,1k(n)

1,0

k(n)
, (8)

where k(n) = ρk(n)
1,0 + (1 − ρ)k(n)

0,1 is the average n degree. Note
that this is only one of the several ways in which assortativity
can be quantified within groups of size n > 2. Indeed, one can
consider a weaker notion of assortativity by defining an index
for each one of the group compositions where one type is
majoritarian (e.g., for triads, in addition to the index counting
configurations where the three nodes are of the same type,
another one counting those where two of them are of the same
type) [33]. In this sense, assortativity in pairs is exceptional,
for there is only one way of being majoritarian. We choose
to focus on pairwise assortativity because the direct interac-
tions we will consider—those mediating the spreading—are
pairwise, hence knowing how frequently different pairs form
is of primary importance here. Nonetheless, from the previous
analysis we know that fixing h(n) alone is not sufficient to fully
specify the group organization. Therefore, unless otherwise
specified, we fix the higher-order mixing parameters (α(n)

m,mA
,

m > 1) and vary instead the pairwise ones (α(n)
1,mA

, mA = 0, 1).
In particular, chosen a value for the average homophily h =∑nmax

n=2 h(n)(n − 1)k(n)/k, given k = ∑nmax
n=2(n − 1)k(n) the aver-

age pairwise degree (i.e., the average degree over the graph
projection of the hypergraph), we vary the type-assortativities
{h(n)} and analyze how this affects the dynamics. Using
Eq. (8), we find

h = 1 − (α1,0 + α1,1)ρ(1 − ρ), (9)

where α1,0 = ∑nmax
n=2 α

(n)
1,0(n − 1)k(n)

0,1/k = ∑nmax
n=2 α

(n)
1,1(n −

1)k(n)
1,0/k = α1,1 is the average pairwise mixing parameter.

B. Pairs and triads

As a minimal application of this formalism, we will con-
sider agents interacting only within pairs (2-edges) and triads
(3-edges). To start with, Eqs. (6) and (7) read

p(2)
1,0|0,1 = α

(2)
1,0ρ, (10)

p(2)
0,1|1,0 = α

(2)
1,1(1 − ρ), (11)

for n = 2, and

p(3)
1,0|0,1 = α

(3)
1,0ρ, (12)

p(3)
0,1|1,0 = α

(3)
1,1(1 − ρ), (13)

p(3)
1,0|0,2 = α

(3)
2,0ρ, (14)

p(3)
1,0|1,1 = α

(3)
2,1ρ, (15)

p(3)
0,1|2,0 = α

(3)
2,2(1 − ρ), (16)

for n = 3. Choosing then α
(2)
1,0, α

(3)
1,0, and α

(3)
2,1 as the free pa-

rameters, one finds the relations

α
(n)
1,1 = k(n)

0,1

k(n)
1,0

α
(n)
1,0 (n = 2, 3), (17)

α
(3)
2,0 = α

(3)
1,0

(
1 − α

(3)
2,1ρ

)
1 − α

(3)
1,0ρ

, (18)

α
(3)
2,2 = α

(3)
1,1α

(3)
2,1ρ

1 − α
(3)
1,1(1 − ρ)

. (19)

We eventually find the following expressions for the mixing
probabilities in triads conditioned on a single node:

p(3)
2,0|0,1 = α

(3)
1,0ρ α

(3)
2,1ρ, (20)

p(3)
1,1|0,1 = 2α

(3)
1,0ρ

(
1 − α

(3)
2,1ρ

)
, (21)

p(3)
0,2|0,1 = (

1 − α
(3)
1,0ρ

)(
1 − α

(3)
2,0ρ

)
, (22)

p(3)
0,2|1,0 = α

(3)
1,1(1 − ρ)

(
1 − α

(3)
2,1ρ

)
, (23)

p(3)
1,1|1,0 = 2α

(3)
1,1(1 − ρ)α(3)

2,1ρ, (24)

p(3)
2,0|1,0 = [

1 − α
(3)
1,1(1 − ρ)

][
1 − α

(3)
2,2(1 − ρ)

]
, (25)

which, together with Eqs. (10) to (13), specify completely the
mixing patterns for a single node within groups of size n =
2, 3. Note that, to ensure that all the mixing probabilities lie
in [0, 1], the intervals of variation of α

(2)
1,0, α

(3)
1,0, and α

(3)
2,1 must

fulfill the following constraints:

α
(2)
1,0 ∈

[
0, min

{
1

ρ
,

1

1 − ρ
,

k(2)
1,0

(1 − ρ)k(2)
0,1

}]
, (26)

α
(3)
1,0 ∈

[
0, min

{
1

ρ
,

1

1 − ρ
,

k(3)
1,0

(1 − ρ)k(3)
0,1

,
k(3)

3ρ(1 − ρ)k(3)
0,1

}]
,

(27)
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α
(3)
2,1 ∈

[
max

{
0,

2α
(3)
1,0ρ − 1

α
(3)
1,0ρ

2

}
, min

{
1

ρ
,

1 − α
(3)
1,1(1 − ρ)

α
(3)
1,1ρ(1 − ρ)

}]
.

(28)

In particular, the forth upper bound in Eq. (27) guarantees the
feasibility of the structure by constraining the lower bound for
α

(3)
2,1 to stay below its upper bound.

When keeping fixed the average homophily h (hence α1,0),
we get the additional relation

α
(3)
1,0 = 1

2k(3)
0,1

(
α1,0k − α

(2)
1,0k(2)

0,1

)
, (29)

with k = k(2) + 2k(3). Equation (29) puts further bounds on
α

(2)
1,0 in order for α

(3)
1,0 to satisfy Eq. (27).

Dealing with pairs and triads only, it is convenient to switch
to a more explicit notation from now on. In particular, we use
k(n)

N instead of k(n)
0,1, n = 2, 3; κN|N and κA|N instead of κ

(2)
0,1|0,1

and κ
(2)
1,0|0,1, respectively; and κN,N|N, κA,N|N, and κA,A|N instead

of κ
(3)
0,2|0,1, κ

(3)
1,1|0,1, and κ

(3)
2,0|0,1, respectively (analogously when

exchanging N with A). Also, we denote the three free parame-
ters we have as α2 ≡ α

(2)
1,0, α3 ≡ α

(3)
1,0, and β3,1 ≡ α

(3)
2,1, and the

average pairwise mixing parameter as α ≡ α1,0 = α1,1.

IV. CONTEXT-DEPENDENT BEHAVIOR

The next step is to model the behavioral difference be-
tween the two types. The probability of actively modifying
the spread can be thought of as consisting of a type-
specific, context-independent part (e.g., prosociality [34]) and
a context-dependent one, i.e., relying on the observed behav-
ior of the others in the group [20]. The probability of being
active is thus a dynamic object. In this regard, a simplifying
(but, for some applications, seemingly realistic) assumption is
that such probability converges to an equilibrium value during
a timescale which is much shorter than the duration of a group
interaction (e.g., the decision of wearing a face mask may
be considered to be made up in the very first moments of
a gathering). With this timescale separation, the probability
of being active is assumed to instantly attain its equilibrium
value, effectively becoming a time-independent quantity.

Now, given a group of size n, let q(nX−1,n−1)
X be the probabil-

ity that a X-type agent adopts an active behavior when nX − 1
out of the other n − 1 agents in the group are of X types as
well. In accordance to the meaning we associated with the
labels we require that (i) the probability of behaving actively,
within a mixed group, is always higher for an A-type agent
than for an N-type; and (ii) such probability increases with
the number of A-types present in the group. Taken together
they imply the following chain of inequalities:

q(n−1,n−1)
A � q(nA−1,n−1)

A � q(nN−1,n−1)
N � q(n−1,n−1)

N , (30)

for 1 � nA � n − 1, nN = n − nA. Equation (30) defines the
qualitative behavioral difference between the types.

Having access to empirical measurements of the qXs, one
could simply fit them in the dynamic equations. In the absence
of empirical information, we may suppose different functional
forms for them, satisfying Eq. (30). One possibility is to let the
qXs emerge dynamically as a result of a behavioral adaptation,

as shown in Sec. IV A. Another one, presented in Sec. IV B,
is to postulate binary functional forms for the qXs, where
agents of each type are active or inactive in a deterministic
way depending on the composition of the groups they take
part in. The simplicity of the binary forms will allow us to
obtain explicit analytical results, gaining essential insights to
interpret more complicated scenarios.

To notice that any of the behavioral dynamics proposed
here can be easily generalized to accommodate additional
potential factors, such as external sources of influence (e.g.,
mass media), seen as a background context modifying the
baseline probability of adoption, or some coupling with the
spreading dynamics (e.g., awareness raised by information on
an epidemic).

A. Social contagion model

Here we let agents’ behavior emerge through a process
of social contagion [23,35,36] modeled as a susceptible-
infectious-susceptible (SIS) dynamics, where here “S” and “I”
represent nonadoption and adoption of the active behavior,
respectively, with additional endogenous transitions moving
agents from state S to state I and vice versa at rates depending
solely on their type. These rates quantify some cost of adopt-
ing an active behavior (e.g., the discomfort of wearing a face
mask) and the will to bear that cost (e.g., due to prosociality
or vulnerability to a disease). Denoting with cX the I-to-S
rate and with bX the S-to-I rate, X ∈ {A, N}, we describe
the behavioral dynamics via the following system (see the
derivation in Appendix B)

q̇A = nN

n − 1
[qN − qA] + bA[1 − qA] − cAqA, (31)

q̇N = nA

n − 1
[qA − qN] + bN[1 − qN] − cNqN, (32)

where we denoted q(nX−1,n−1)
X (t ) simply as qX for a lighter

notation. The first term of each of the two equations contains
the context-dependent dynamics, which has the form of a
linear consensus formation process [37]; the remaining terms
contain the context-independent, type-specific dynamics.

The system admits a unique solution for each possible
composition of a group (see Appendix B for details). Inter-
estingly, for a wide range of values of the transition rates (bs
and cs) producing a significant behavioral difference between
the types, which is what really motivates their definition, the
equilibrium probability of adoption shows a marked nonlinear
dependence on the number of A-type (or N-type) agents in
the group. This is especially true for qN (qA is always high),
growing nonlinearly from low values in a uniform N-type
group (nA = 0) to medium-high values when all the others in
the group are A-types (nA = n − 1).

B. Binary models

We define here the binary models we call of “easy adapta-
tion” and “hard adaptation.” In both of them qA = 1 always,
i.e., A-type agents are assumed to behave according to their
intrinsic propensity and independently of the context observed
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in a group. We then have the following:
(i) In easy adaptation, qN is 1 when at least an A-type

is present (specifically, for rank-3 hypergraphs, in {A,N},
{A,N,N}, and {A,A,N} groups) and 0 otherwise (that is, in
uniform N-type groups). N-type agents are easily (maximally)
driven by A-types in this scenario.

(ii) In hard adaptation, qN is 1 when all the other individu-
als in the group are A-types ({A,N} and {A,A,N} groups) and
is 0 otherwise, i.e., N-types are hardly (minimally) driven by
A-types in this case.

The only and crucial difference between the two behavioral
models is, for rank-3 hypergraphs, the N-type agents’ behav-
ior in {A,N,N} groups: The presence of the A-type agent
induces active behavior in the two N-types in the easy adap-
tation model, but not in the hard adaptation one. As shown
in the next sections, this difference modifies the spreading
process by making it strongly dependent on the behavioral
dynamics taking place at group-level, hence on the properties
of the higher-order interaction structure.

V. SPREADING DYNAMICS

Once the interaction structure and the behavior’s context-
dependency have been modeled, we are ready to investigate
how they jointly affect a spreading process taking place upon
that structure. For the sake of simplicity, we assume the
spreading process to be represented by a SIS dynamics. The
latter is a basic model in the study of epidemics, which is
precisely the specific application for which the mathematical
machinery we developed will be used below. Without loss of
generality, we will therefore make use of an epidemiological
terminology.

Let thus λ be the transmission rate and μ the recovery rate.
We denote with YX ≡ YX(t ) the fraction of agents of type X ∈
{A, N} in compartment Y ∈ {S, I} at time t . In particular, IX is
the type-specific prevalence for type X, while I = ρIA + (1 −
ρ)IN is the prevalence overall. The dynamics can be modeled
through the following system of differential equations:

İA = − μIA + λSA(IAθA→A + INθN→A), (33)

İN = − μIN + λSN(IAθA→N + INθN→N), (34)

with SX = 1 − IX. Here λθX→Z is the total transmission rate
from a X type to a Z type, reading

θA→A = κA|Ar (1,1)
A s(1,1)

A + κA,N|Ar (1,2)
A s(1,2)

A

+ 2κA,A|Ar (2,2)
A s(2,2)

A , (35)

θN→A = κN|Ar (0,1)
N s(0,1)

A + κA,N|Ar (0,2)
N s(1,2)

A

+ 2κN,N|Ar (1,2)
N s(0,2)

A , (36)

θA→N = κA|Nr (0,1)
A s(0,1)

N + κA,N|Nr (0,2)
A s(1,2)

N

+ 2κA,A|Nr (1,2)
A s(0,2)

N , (37)

θN→N = κN|Nr (1,1)
N s(1,1)

N + κA,N|Nr (1,2)
N s(1,2)

N

+ 2κN,N|Nr (2,2)
N s(2,2)

N 2, (38)

where λr (nX−1,n−1)
X s(nZ−1,n−1)

Z is the effective transmission rate
for an interaction occurring within a n-edge composed of nX

X-type and nZ Z-type agents. This is written as the product
of an out-going (i.e., depending on the infected, an X-type)
transmission probability r (nX−1,n−1)

X and an in-going (i.e., de-
pending on the susceptible, a Z-type) transmission probability
s(nZ−1,n−1)

Z . With the same notation used in Sec. IV, the super-
script (nX − 1, n − 1) indicates how many of the other n − 1
nodes in the group are of type X (subscript), given at least an
X type is present. In other words, rX and sX encode the context
within which a direct interaction occurs from the perspective
of a X-type agent. Their form is dictated by the specific
mechanism through which transmission can be modified and,
via their dependence on the agents’ probability to adopt active
behavior, by how the mechanism is affected by the size and the
type composition of a group. For prophylactic mechanisms, rX

and sX act as reduction factors of the transmission probability.
Going back to Eqs. (33) and (34) and linearizing

them around the epidemic-free equilibrium, (IA, IN, SA, SN) ≈
(0, 0, 1, 1), the associated Jacobian matrix reads

J =
(

λθA→A − μ λθN→A

λθA→N λθN→N − μ

)
, (39)

i.e., J = λ� − μI2×2, with � being the matrix with entries
{θX→Z}, and I2×2 the 2 × 2 identity matrix. The basic repro-
duction number R is then given by the largest eigenvalue of
the next-generation matrix (NGM) [38], NGM = (λ/μ)�, as

R = λkeff

μ
. (40)

with

keff = 1
2 [θA→A+ θN→N +

√
(θA→A− θN→N)2+ 4θN→AθA→N]

(41)

being the largest eigenvalue of �, representing the effective—
for spreading—average pairwise degree. Imposing R = 1
provides the epidemic threshold λc = μ/keff, above which the
epidemic-free equilibrium is unstable and an endemic state is
reached. If there is no modification of the transmission (i.e.,
rX = sX = 1, ∀ X) and there is no correlation between type
and degree (k(n)

0,1 = k(n)
1,0 = k(n), ∀ n), all agents are equiva-

lent and mixing is irrelevant, hence keff = k, R = R0 ≡ λk/μ

(λc = μ/k), and the homogeneous mean-field threshold of the
SIS model on networks is recovered.

Notice that it is possible to get a closed form for the
endemic solution of Eqs. (33) and (34). However, the com-
plicated form of the solution does not allow us to draw any
noteworthy conclusion directly from it, hence we do not report
its expression here. Nonetheless, an approximate solution that
preserves the qualitative behavior of the system can be found
under high prophylactic efficacy (see Appendix D). Moreover,
we anticipate that no qualitative changes are observed in the
results presented below when, instead of a SIS dynamics, a
susceptible-infectious-recovered (SIR) one is considered. In
that case, the results refer to the final attack rate (total fraction
of agents that got infected during an outbreak) rather than to
the equilibrium prevalence.

Application to face-mask adoption

To describe an epidemic spreading in the presence of
face masks, we need to specify a suitable form for the
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probabilities rX and sX appearing in Eqs. (35) to (38). To this
end, let εout, εin ∈ [0, 1] be the out- and in-going efficacy of
a face mask, respectively. The quantities εoutq

(nX−1,n−1)
X and

εinq(nX−1,n−1)
X are then the probabilities that an X-type indi-

vidual wears a mask and that the mask avoids, respectively,
out-going transmission when the X type is infectious, and
in-going transmission when the X type is exposed to an in-
fection. In more general terms, they quantify how strongly the
spreading process can be affected by an agent’s behavior: For
perfect efficacy, the success of a spreading event is decided
in a deterministic way by the eventually adopted behavior; on
the contrary, for null efficacy, spreading and behavior fully
decouple. Thus we have

r (nX−1,n−1)
X = 1 − εoutq

(nX−1,n−1)
X , (42)

s(nX−1,n−1)
X = 1 − εinq(nX−1,n−1)

X . (43)

In the following we assume εout = 0.9 and εin = 0.5. The
effect of varying each efficacy will be discussed whenever
significant.

VI. RESULTS

To study how the group structure of the contacts affects the
spreading dynamics, we vary the interaction structure along
two directions. For given average values of degree k and
assortativity α, we ask what is the effect of distributing (i)
the degree (k(n)

A and k(n)
N ) and (ii) the assortativity (α(n)

1,0 and

α
(n)
1,1) differently at the varying of the group size n. To isolate

the role of the mixing, we assume that type and degree are
hereafter independent random variables. Therefore, a priori,
k(n)

A = k(n)
N = k(n), ∀ n, and consequently α

(n)
1,1 = α

(n)
1,0 ≡ αn.

We consider individuals gathering in pairs and triads, i.e.,
n = 2, 3.

In the following, we display and analyze the results for
the social contagion model of Sec. IV A. To this end, we
leverage the basic understanding provided by the binary
models of Sec. IV B. We fix the adoption probabilities by
taking cA = cN = 0.05, bA = 20cA = 1.0, and bN = cN/20 =
0.0025, yielding a probability of adoption of around 95% and
5% in a uniform A-type and N-type group, respectively. In
an {A, N} 2-edge, the adoption probability jumps to around
87% for the N-type agent and decreases to around 91% for
the A-types. In an {A, N, N} 3-edge, it goes to around 80% for
the N-types and to 88% for the A-types, while in a {A, A, N}
one, to around 89% and 93%, respectively. Apart from the
numerical details, what ultimately matters is that the A-type
agents act as indirect modifiers of the infectious interactions
in a group by lowering the transmission probability through
the prophylaxis induced in the N-types.

A. Varying the degree distribution among group sizes

Suppose that the mixing parameters for each group size,
α2, α3, and β3,1, are given. We then vary k(2) and k(3) respect-
ing the constraint k = k(2) + 2k(3) and study how this affects
the dynamics.

1. Reproduction number

Let us first consider the basic reproduction number R. The
behavior of R generally depends on both the mixing pattern
(α2, α3, β3,1) and the type composition of the population (ρ),
but in a different way depending on the system being closer to
the easy or the hard adaptation scenario. This is observed, for
example, for the intermediate scenario we used (see Fig. 2)—
of which the easy adaptation limit is a good proxy. Assuming
an ideal perfect protection in at least one direction (i.e., εout =
1 and/or εin = 1), we provide explicit conditions for those
dependencies (see Appendix C 1 for derivation). In particular,
in easy adaptation, there exists a threshold value

ρ̃ = 2α3 − α2

α3β3,1
(44)

at which a N-type individual has the same probability of find-
ing at least an A-types—and so be induced to adoption—in
a pair or in a triad. That probability becomes lower in a pair
when ρ < ρ̃, leading R to increase with k(2) (for fixed k); vice
versa, it decreases with k(2) when ρ > ρ̃. As a consequence,
expressed the critical threshold as the value ρ = ρc at which
R = 1 (e.g., red curves in Fig. 2), the threshold moves up or
down with k(2) depending on whether ρc < ρ̃ or ρc > ρ̃. No-
tice that ρ̃ ∈ [0, 1] requires α3 ∈ [α2/2, α2/(2 − β3,1)]. When
α3 < α2/2, ρ̃ < 0 and R thus decreases with k(2), for it is
easier for a N-types to find at least an A-type in a pair than in
a triad, whatever the fraction ρ of A-types in the population.
Said differently, the induced prophylaxis is less frequent in
triads than in pairs because the former are comparatively too
much assortative, therefore R is minimized by interacting in
pairs only. In the opposite case in which α3 > α2/(2 − β3,1),
ρ̃ > 1 and R thus always increases with k(2), for a N-types is
always more likely to find at least an A-types in a triad than in
a pair in this case. Among the groups containing type A, while
an {A,A,N} triad is dynamically equivalent to an {A,N} pair,
an {A,N,N} triad has the advantage of weakening the N-N
contact, with the result that R is minimized by interacting in
triads only.

Going back to the scenario considered in Fig. 2, we see
that, treating it as if it were an easy adaptation scenario with
perfect unilateral protection, ρ̃ � 1 for α2 � α3 (since β3,1 =
1), while ρ̃ ≈ 0.65 for α2 = 1.15 and α3 = 0.85, which is
anyway not far from the true threshold (ρ ≈ 0.60). This is
consistent with the results reported in Fig. 2, confirming the
explanatory power of the simplified dynamics assumed to
derive Eq. (44).

In the hard adaptation limit, under the same assumptions
(see Appendix C 1), the shape of R is instead always mono-
tonic, increasing or decreasing with k(2) solely depending on
whether α2 is smaller or larger than α3, respectively. Indeed,
since there is no indirect mechanism at work in the {A,N,N}
triads in this case, reducing R simply amounts to rise disassor-
tativity and in turn increase the frequency of adoption for the
N-types.

All in all, this analysis proves that, depending on the behav-
ioral properties of the agents, solely changing the group-size
distribution can move the system from the subcritical (disease-
free state) to the supercritical phase (endemic states), and vice
versa.
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FIG. 2. Normalized reproduction number R/R0 = keff/k computed from Eq. (41) as a function of the proportion of 2-edges, k(2)/k, and of
the A-type proportion in the population, ρ, for β3,1 = 1.0, R0 = k = 6, and (a) α2 = 0.85 and α3 = 1.15, (b) α2 = α3 = 1.0, (c) α2 = 1.15 and
α3 = 0.85. Since k = k(2) + 2k(3), k(2)/k = 0 means nodes interacts only within triads, while k(2)/k = 1 means they do it just in pairs. White
curves report the levels indicated in the respective color bar. The red one indicates the critical curve R = 1 (R/R0 = 1/6), above which the
disease-free state is stable.

2. Prevalence

Looking now at the levels of prevalence at equilibrium, we
can appreciate how differently the two types are affected by
the interaction structure. We can first observe that IN qualita-
tively behaves like R [compare, for example, Figs. 3(c), 3(f),
and 3(i) with Fig. 2], therefore the analysis following Eq. (44)

approximately applies to IN, too. This correspondence be-
tween IN and R is actually expected whenever there is a
substantial behavioral difference between the two types and
prophylactic efficacy is high. In such case (see Appendix D
for proof) the epidemic pressure mainly comes from type
N and the dynamics for the latter is well approximated by

FIG. 3. Equilibrium endemic state [fixed point of the system of Eqs. (33) and (34)] as a function of the proportion of 2-edges, k(2)/k, and
of the A-type proportion in the population, ρ, for β3,1 = 1.0, R0 = k = 6, and (a)–(c) α2 = 0.85 and α3 = 1.15, (d)–(f) α2 = α3 = 1.0, (g)–(i)
α2 = 1.15 and α3 = 0.85. (a), (d), (g) Overall prevalence I , (b), (e), (h) prevalence for type A, IA, and (c), (f), (i) prevalence for type N, IN.
Since k = k(2) + 2k(3), k(2)/k = 0 means nodes interacts only within triads, while k(2)/k = 1 means they do it just in pairs. White curves report
the levels indicated in the respective color bar. The red one indicates the critical curve R = 1, above which the disease-free state is stable.
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a one-type population SIS where both IN and R are largely
determined by θN→N. On the other hand, since θN→A can show
a different and opposite dependence on the parameters com-
pared with θN→N, IA might not generally follow R, as seen,
for instance, comparing Figs. 3(b), 3(e), and 3(h) with Fig. 2.
The results for IA thus require a more detailed inspection.
For the considered scenario, they broadly overlap with those
obtained in the easy adaptation one (compare with Fig. S2
of the Supplemental Material [39]). A clear exception is the
case α2 = α3 [Fig. 3(e)], for which, in easy adaptation, IA

always increases with k(2). The discrepancy is explained by
observing that, on one hand, such increase gradually vanishes
when ρ approaches small values. Indeed, with a low pro-
portion of A-type individuals in the population, the indirect
mechanism weakening the N-N interactions which makes IN,
and consequently IA, smaller, is largely compensated by the
high epidemic pressure that anyway emerges via the more
frequent N-type uniform groups. On the other hand, in the
hard adaptation limit (see Fig. S4 of the Supplemental Ma-
terial [39]), IA decreases rapidly for low values of ρ. In this
limit, since there is no indirect modification of the N-N in-
teractions, IN is not directly affected by group size, whereas
IA decreases when trading {A, N, N} triads for {A, N} pairs
thanks to the gained bilateral protection. {A, N} and {A, N, N}
are thus the groups that regulate the dependence of IA on k(2),
but also those within which the A-type individuals interact
the most when ρ is small. Combining the fact that in the
intermediate scenario qN in a {A, N, N} triad is not as high
as in a {A, N} pair, thus departing from the easy adaptation
limit, with the fact that by decreasing ρ the effect of k(2) on
IA gets weaker in easy adaptation but stronger in hard adap-
tation, results in the decrease of IA seen in Fig. 3(e) for low
enough ρ. Such sort of competition between easy and hard
adaptation, determining what we observe in an intermediate
scenario, is certainly present also for α2 �= α3. However, it has
no qualitative impact when α2 and α3 are not too close to each
other. In such case, the considered intermediate scenario has
the same qualitative behavior than the easy adaptation one.
Accordingly, for α2 < α3 (notice β3,1 = 1 here), increasing
k(2), not only makes the weakening of the N-N interactions
sparser, but also increases the rate at which N-N interactions
take place, yielding a rapid increase of IN (as we already
know from R) which, in turn, pushes up IA. At the same time,
especially for lower ρ, type A benefits from the increase in
homophily provided by a higher k(2), as it isolates it from
the more infectious type N. Eventually, when ρ is not too
high and the increase of IN gets slower [see Fig. 3(c)], the
two contributions to IA become comparable, giving the latter
the nonmonotonic shape observed in Fig. 3(b). This holds
whenever efficacy is high at least in one way, so that there
is a substantial difference between the epidemic pressures of
the two types; otherwise, homophily looses importance and IA

just grows driven by IN.
Finally, for α2 > α3 [see Figs. 3(h) and 3(i)], IA mainly

behaves as IN. Indeed, since pairs are now less assortative than
triads, type A cannot benefit from mixing to compensate for
the larger exposure to type N implied by a higher k(2).

All in all, it is IN to be the main driver of the observed
phenomenology in the easy adaptation scenario. This leads to
the conclusion that, by exploiting the indirect weakening of

FIG. 4. Monte Carlo results for the equilibrium endemic state as
a function of the proportion of 2-edges, k(2)/k, for a regular rank-
3 hypergraph of N = 1000 nodes and pairwise degree k = k(2) +
2k(3) = 12. Here, λ = 0.1, μ = 0.2, and α2 = α3 = β3,1 = 1.0 (ho-
mogeneous mixing). (a) Prevalence for type A, IA, and (b) for type N,
IN. Each point is obtained by averaging over 2500 runs with random
initial conditions (infectious state and type assignment). Error bars,
representing standard deviations, are smaller than point size. Solid
lines represent the results found under the mean-field approximation.

the N-N contacts, the system (made few exceptions) benefits
from interacting more in triads than in pairs. In the limit of
hard adaptation that role is instead played by IA (see Sec. S2.1
of the Supplemental Material for a detailed discussion about
the results in this scenario). As observed before, while type
N is not directly affected by group size in this case, type A
benefits from the bilateral protection induced in {A, N} pairs,
making pairs preferable to triads for the system overall. What
is found for any intermediate scenario, as the one we derived
from the social contagion model, eventually depends on how
close this is to either one limit or the other.

At last, we considered quenched contact structures (see
Appendix E for the numerical implementation of the model)
to test whether the presence of topological correlations
changed the phenomenology predicted by the mean-field
model. Specifically, keeping fixed the mixing parameters to
some values, we varied k(2)/k for rank-3 hypergraphs and
looked at the equilibrium endemic state. As Fig. 4 shows, the
qualitative behavior is accurately reproduced by the mean-
field model. Note that the systematic overestimation of the
prevalence is actually expected for approximation schemes
that ignore dynamical correlations when the system is enough
above the epidemic threshold [40].

B. Varying the type-assortativity distribution among group sizes

We briefly summarize here the results obtained when dis-
tributing the assortativity differently between 2- and 3-edges.
That is, we fix α and vary α2, with the constraint α3 = α +
(α − α2)k(2)/(2k(3) ) [Eq. (29)].

In Appendix C 2 we prove that the reproduction number
increases with α2 in the easy adaptation scenario, whereas it
decreases in the hard adaptation one.
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The same holds also for each type-specific prevalence,
hence for the prevalence overall (see Figs. S3 and S5 of the
Supplemental Material [39]) and is explained as follows: In
the easy adaptation limit, a higher (lower) α2 (α3) means
a lower rate at which {A, N, N} triads form, implying that
less N-N interactions are weakened. As a consequence, the
N-types prevalence, IN, increases. At the same time, since in
this scenario the A-N interactions are dynamically equivalent
whether they occur isolated or within a triad, the A-types
probability of infection is not directly affected by the assor-
tativity distribution. However, since IN increases, IA increases
as well (unless εin = 1), although in a milder way being the
A-N contacts always bilaterally protected. In hard adaptation,
instead, there is no indirect mechanism modifying the N-N
interactions, hence IN is not directly affected by the assor-
tativity distribution. On the other hand, rising (lowering) α2

(α3) means increasing the rate at which the A-N interactions
are bilaterally protected, implying a lower IA. In any case,
infection from an A-types is unlikely (unless εin and εout are
both small), therefore IN is only slightly reduced by α2.

As already observed in Sec. VI A, what to expect in any
intermediate behavioral scenario depends then on how close
it is to either one of the two limit scenarios, the results being
generally an interpolation between the two (see Sec. S3 of
the Supplemental Material [39] for the results found in the
intermediate scenario used in Sec. VI A).

To close the analysis, note that the same qualitative effects
of increasing (decreasing) α2 (α3) are also implied by increas-
ing the higher-order mixing parameter β3,1, for the frequency
of the {A, N, N} triads is either way reduced (see Sec. S3
and Fig. S6(b) of the Supplemental Material [39]). While this
should not be surprising, as β3,1 determines the structure as
much as any pairwise parameter (α2 and α3), it remarks the
fact that exclusively relying on pairwise information may not
guarantee an accurate description of the system.

VII. CONCLUSIONS

We define a minimal model of context-dependent spread-
ing where, during an interaction, an agent either actively
behaves to alter the diffusion or not depending on the be-
havior it observes among the co-present peers. Considering
populations where agents are divided into two types (encoding
different intrinsic inclinations to take on active behavior), we
provide what a mean-field approximation for heterogeneous
mixing in hypergraphs, allowing to parametrize mixing pat-
terns of arbitrary type-(dis)assortativity within groups of any
size. Choosing then a (spreading) dynamics, the theory makes
it possible to obtain analytical results that provide a basic
understanding of the system.

Referring to an epidemic spreading model where context-
dependency concerns the adoption of prophylactic behavior
like face-mask wearing, we have shown that accounting for
the behavioral dynamics unfolding at the higher-order level
of organization of the interactions can lead to important
deviations from what can be expected based on pairwise in-
formation alone. We have revealed that the direction and the
magnitude of those deviations primarily depend on the prop-
erties of the behavioral dynamics; more specifically, on how
effective are the (non) adoption-inclined agents in inducing

(inhibiting) adoption of active behavior on the others. Then,
depending also on the proportion of adoption-inclined agents
in the population and the way type-assortativity distributes
among the group sizes, and, secondarily, on the prophylactic
efficacy, gathering more often in pairs than in triads (larger
groups) can either facilitate or impede the spreading. We have
proven this analytically for the basic reproduction number and
shown how exclusively changing the group-size distribution
can determine whether an outbreak will be subcritical and
eventually vanish—or supercritical—leading to endemicity.

More specifically, either for the reproduction number and
the prevalence, we can conclude that in general (made few
exceptions) when prophylactic behavior is easy to induce,
then the system generally benefits by interacting in larger
groups, for many otherwise unprotected contacts would be
now protected thanks to the elicited adoption. Moreover, the
benefit increases when the smaller (larger) groups are the
more (dis)assortative. On the contrary, when adoption is hard
to induce (e.g., when some majority rule applies), smaller (and
disassortative) groups become preferable.

Looking at each type-specific prevalence, we have seen
that the type of an agent, not only—as expected—strongly
affects its infection risk but also changes the qualitative de-
pendence of that risk on the parameters characterizing the
contact structure. Observing this becomes especially impor-
tant when, for instance, adoption is mostly driven by the
vulnerability to the spreading disease. For example, if elderly
and young people have very different chances of suffering
from severe symptoms—as it is for COVID-19 [41] or in-
fluenza [42]—they may also have a dissimilar propensity to
protect themselves and the others [43–46]. In such cases,
the overall prevalence might not be the most useful indica-
tor, for the prevalence within the vulnerable (and probably
adoption-inclined) class does not generally follow the same
phenomenology.

Our work stimulates a new direction in the discourse on the
interplay between behavior and epidemic spreading. It helps
to understand the role of contextual information in decisions
to reduce the impact of infectious spreading and provides the-
oretical support for epidemic control policies based on public
gathering restrictions.

In the end, the mean-field approximation provided here
opens new possibilities in the modeling of higher-order sys-
tems, specifically serving as a basic theory to investigate
virtually any process for which mutable and contextual factors
can be relevant. Inspired by growing evidence in ecology,
we have studied one of such processes and suggested a few
more, but perhaps many others have not yet been recognized.
We hope that other researchers will be encouraged to look
for mechanisms of indirect interaction also in other systems
and address the highly challenging problems their complexity
entails.
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APPENDIX A: MEAN-FIELD MIXING IN GROUPS

1. Counting the subsets of given type composition

In this section we derive the expression for g(n)
mA,mN

, given in
Eqs. (3) to (5). Consider a subset {A1, . . . , AmA , N1, . . . , NmN}
of mA � 1 A-type nodes and mN � 1 N-type nodes. We
want to calculate the probability of finding the other
mA + mN − 1 nodes in the subset conditioned on a single
node that we can choose to be, for instance, N1, that is,
P({A1, . . . , AmA , N2, . . . , NmN}|N1). There are (mA + mN −
1)! different ways of writing this probability, one for each
possible order in which the mA + mN − 1 nodes can be
found. We can thus choose one particular ordering, say
(N2, . . . , NmN , A1, . . . , AmA ), and apply recursively the defi-
nition of conditional probability [i.e., P({x, y}) = P(y)P(x|y)
and P({x, y}|z) = P(y|z)P(x|{y, z}] to get

P({A1, . . . , AmA , N2, . . . , NmN}|N1)

= (mA + mN − 1)!

× P(N2|N1)

...

× P(NmN |{N1, . . . , NmN−1})

× P(A1|{N1, . . . , NmN})

...

× P(AmA |{N1, . . . , NmN , A1, . . . , AmA−1}). (A1)

If we are not interested in the label of the nodes but exclu-
sively in their type, using the notation mX to denote a set of m
X-type nodes, Eq. (A1) becomes

P(mAA, (mN − 1)N|N)

=
(

mA + mN − 1

mA

)

× P(N|N)P(N|2N) · · · P(N|(mN − 1)N)

× P(A|mNN) · · · P(A|mNN, (mA − 1)A), (A2)

where we divided by (mN − 1)! and mA!, which are the num-
ber of permutations of the mN − 1 N-type and mA A-type
nodes in the sequence, respectively, equally contributing to
P(mAA, (mN − 1)N|N).

If the mA + mN − 1 nodes are drawn from a set of n − 1 �
mA + mN − 1 nodes, there are

( n−1
mA+mN−1

)
distinct ways of

doing it for any sequence chosen for the mA + mN − 1 nodes.
Then, if there is a total of NN N-type nodes in the population
and, on average, each one is included in k(n)

N n-edges per
time step, the expected number g(n)

mA,mN
of (mA + mN) edges

composed of mA A-type nodes and mN N-type nodes, subsets

of n-edges, can be written as

g(n)
mA,mN

= NNk(n)
N

mN

(
n − 1

mA + mN − 1

)(
mA + mN − 1

mA

)

× P(N|N)P(N|2N) · · · P(N|(mN − 1)N)

× P(A|mNN) · · · P(A|mNN, (mA − 1)A), (A3)

where the term 1/mN accounts for the fact that there are mN N-
type nodes to condition upon in the set. If the subset is N-type
uniform, we can just take mA = 0 in Eq. (A3) to obtain

g(n)
0,mN

= NNk(n)
N

mN

(
n − 1

mN − 1

)

× P(N|N)P(N|2N) · · · P(N|(mN − 1)N). (A4)

Analogous expressions are found by initially conditioning on
an A-type. Apart from the more explicit notation used here,
Eqs. (A3) and (A4) are identical to Eqs. (3) and (4).

2. Number of free parameters

Since mA ∈ {0, . . . , m}, Eqs. (6) and (7) imply that there
are m + 1 parameters characterizing the mixing within (m +
1) edges. To see that only one of them is free, observe from
Eq. (2) that the number of mixed groups g(n)

mA+lA,mN+lN
(mA,

mN � 1) can be expressed in terms of both p(n)
lA,lN|mA,mN

and

p(n)
lA−1,lN+1|mA+1,mN−1 if lA = 1 (lN = 0), establishing a relation

between α(n)
m,mA

and α
(n)
m,mA+1, or, alternatively, in terms of both

p(n)
lA,lN|mA,mN

and p(n)
lA+1,lN−1|mA−1,mN+1 if lN = 1 (lA = 0), pro-

viding a relation exists between α(n)
m,mA

and α
(n)
m,mA−1. Since

there are m distinct mixed group configurations (one for each
mA ∈ {1, . . . , m}), there are m constraints relating the m + 1
mixing parameters, which can thus be expressed in terms of
only one of them. Those relations can be found by simply sub-
stituting Eqs. (6) and (7) into Eqs. (3) to (5) and, as explained
before, comparing related pairs of conditional probabilities
(or, equivalently, expressing g(n)

mA,mN
using different orders of

search). Notice also that the sets {α(n)
m,mA

} and {α(n′ )
m,mA

}, m <

min{n, n′}, satisfy the same set of relations, as the form of
Eqs. (6) and (7) does not depend on m: α(n)

m,mA
and α(n′ )

m,mA
can

only differ in their value, given they computed on different
sets (n and n′ edges, respectively). Therefore, we can find
all the relations by just considering the case m = n − 1 for
each n ∈ {2, . . . , nmax}. Having one free parameter for each
m ∈ {1, . . . , n − 1}, we get n − 1 parameters to fix for group
size n. Given n ∈ {2, . . . , nmax}, the interaction structure is
then determined by at most

∑nmax
n=2(n − 1) = (nmax

2

)
parameters.

APPENDIX B: DERIVATION OF THE SOCIAL
CONTAGION MODEL

We detail here the derivation of the social contagion model
presented in Sec. IV A. Consider a group of size n, composed
of nA and nN agents of types A and N, respectively, and denote
with qX(t ) the probability of adopting an active behavior for a
X types at time t . An A-type agent in the adopter state is in-
duced (e.g., through peer pressure) to switch to the nonadopter
state by the currently nonadopters in the group. These are, on
average, [1 − qA(t )](nA − 1) + [1 − qN(t )]nN. If, instead, the
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A-type is in the nonadopter state, it is induced to switch to the
adopter one by the qA(t )(nA − 1) + qN(t )nN adopters that, on
average, it currently finds in the group. The same holds for a
N-type agent given nA − 1 and nN in the expressions above
are replaced by nA and nN − 1, respectively. Additionally,
agents can spontaneously move between the two behavioral
compartments at rates depending solely on their type. These
rates quantify some cost of adopting an active behavior and
the will to bear that cost. Denoting with cX the I-to-S rate and
with bX the S-to-I rate, for type X, the adaptive behavioral
dynamics is described by the following system of two differ-
ential equations

q̇A = (1 − qA)

[
qA

nA − 1

n − 1
+ qN

nN

n − 1

]

− qA

[
(1 − qA)

nA − 1

n − 1
+ (1 − qN)

nN

n − 1

]

+ bA(1 − qA) − cAqA, (B1)

q̇N = (1 − qN)

[
qN

nN − 1

n − 1
+ qA

nA

n − 1

]

− qN

[
(1 − qN)

nN − 1

n − 1
+ (1 − qA)

nA

n − 1

]

+ bN(1 − qN) − cNqN, (B2)

where qX ≡ q(nX−1,n−1)
X (t ) for a lighter notation. The n − 1

in the denominator comes from assuming that each of the
n − 1 sources weighs the same in affecting the behavior of
a focal agent. It is immediate to see that the terms involving
only one type [∝(1 − qX)qX], as well as the mixed quadratic
terms (∝qAqN), cancel out. Therefore, we are left with the
linear system defined by Eqs. (31) and (32), and the solutions
described after it.

In the solution for mixed groups (i.e., 1 � nA � n − 1),
the constants C1 and C2, which depend on all the figuring
parameters, read

C1 = (n − 1)bAbN + ∑
X=A,N nXbX

(n − 1)(bA + cA)(bN + cN) + ∑
X=A,N nX(bX + cX)

,

(B3)

C2 = n − 1

(n − 1)(bA + cA)(bN + cN) + ∑
X=A,N nX(bX + cX)

.

(B4)

The difference qA − qN = C2(bAcN − bNcA) requires
bAcN > bNcA in order for A-type agents to be actually more
inclined to be adopters than N-types are. We can thus choose
bA > cA (or bA 
 cA) and bN < cN (or bN � cN). Also, it
requires C2 to be large enough and, from Eq. (B4), we see
this means considering not too large values for the rates
(specifically for bA and cN, when bA 
 cA and bN � cN).
The equilibrium adoption probability for the two types as a
function of the composition of a group for different values
of the A-type adoption rate, bA, is shown in Sec. S1 of
the Supplemental Material [39] for groups of n = 2, 3, 4
individuals, making evident the nonlinear dependence on the
composition. The nonlinearity increases with bA and tends to
disappear only for bA approaching cA.

APPENDIX C: DEPENDENCE OF THE BASIC
REPRODUCTION NUMBER ON THE STRUCTURAL

PARAMETERS

1. Degree

The basic reproduction number R = λkeff/μ is here stud-
ied as a function of the 2 degree k(2), while keeping fixed
the total pairwise degree k = k(2) + 2k(3). We assume type
and degree to be uncorrelated, i.e., k(n)

A = k(n)
N = k(n). For

any fixed k, we want to establish the sign of ∂R/∂k(2)|k =
(λ/μ)∂keff/∂k(2)|k . To this end, given the complicated expres-
sion of keff [Eq. (41)], we simplify it by referring to the binary
behavioral scenarios presented in Sec. IV B. In both of them,
it holds rA = 1 − εout and sA = 1 − εin. Moreover, we assume
perfect protection in at least one way; that is, εin = 1 and/or
εout = 1.

a. Easy adaptation. Here, rN = 1 − εout and sN = 1 − εin

for 1 � nN � n − 1, with εin = 1 and/or εout = 1, and rN =
sN = 1 for nN = n. Only θN→N is nonzero, hence keff = θN→N

and is given by

keff = k(2)(1 − α2ρ) + (k − k(2) )[1 − α3ρ(2 − β3,1ρ)],
(C1)

where the two terms multiplying the degrees account for the
probability that an N-type individual takes part to a type-N
uniform group of size 2 and 3, respectively, for these are the
groups where it is not an adopter. Then we obtain

∂keff

∂k(2)

∣∣∣∣
k

= ρ[α3(2 − β3,1ρ) − α2], (C2)

and equaling it to zero, we get the solutions ρ = 0 and ρ = ρ̃,
with

ρ̃ = 2α3 − α2

α3β3,1
, (C3)

given α3β3,1 �= 0. Also, note that ρ̃ ∈ [0, 1] requires α3 ∈
[α2/2, α2/(2 − β3,1)]. Technically, ρ̃ results from the fact that
the frequency of the {A,A,N} and {A,N,N} triads are both
quadratic (respectively, increasing and decreasing) functions
of ρ2, whereas the frequency of the {A,N} pairs increases
linearly with ρ. Finally, differentiating Eq. (C2) with respect
to ρ and computing it at ρ = 0 and ρ = ρ̃, one finds

∂

∂ρ

∂keff

∂k(2)

∣∣∣∣
k

=
{

2α3 − α2 at ρ = 0
α2 − 2α3 at ρ = ρ̃.

(C4)

Thus, given ρ̃ > 0 (i.e., α3 > α2/2), it follows that
∂keff/∂k(2)|k is positive for ρ ∈ (0, ρ̃ ) and negative for
ρ ∈ (ρ̃, 1]; otherwise, ∂keff/∂k(2)|k < 0 for any ρ ∈ (0, 1].
Rephrasing it, keff (hence R) is an increasing or decreasing
function of k(2) depending on whether ρ is lower or higher
than ρ̃.

b. Hard adaptation. In this scenario, rN = 1 − εout and
sN = 1 − εin for nN = 1, with εin = 1 and/or εout = 1, and
rN = sN = 1 otherwise. We get

keff = k(2)(1 − α2ρ) + (k − k(2) )(1 − α3ρ), (C5)

the two terms—notice that both are linear in ρ—accounting
for the probability that an N-type individual finds at least
another N-types in a group of size 2 and 3, respectively, not
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being an adopter in such cases. We obtain

∂keff

∂k(2)

∣∣∣∣
k

= ρ(α3 − α2), (C6)

therefore keff (R) increases or decreases with k(2) solely
depending on whether α3 is larger or smaller than α2,
respectively.

2. Assortativity

Here we study how the basic reproduction number is af-
fected by the way in which assortativity is distributed between
2- and 3-edges. No correlation is assumed between type and
degree. Fixed the average pairwise mixing parameter, α =
(α2k(2) + 2α3k(3) )/k, with k = k(2) + 2k(3), we want to estab-
lish the sign of ∂R/∂α2|α = (λ/μ)∂keff/∂α2|α

a. Easy adaptation. Here, rN = 1 − εout and sN = 1 − εin

for 1 � nN � n − 1, and rN = sN = 1 for nN = n. After some
algebra, one gets to

∂keff

∂α2

∣∣∣∣
α

= k(2)

2
ρ(1 − β3,1ρ)(εout + εin − εoutεin )

× C+ {C2+ [2kα(1 − εout)(1 − εin )]2ρ(1 − ρ)} 1
2

{C2+ [2kα(1 − εout)(1 − εin )]2ρ(1 − ρ)} 1
2

(C7)

� k(2)

2
ρ(1 − β3,1ρ)(εout + εin − εoutεin )

× C + |C|
{C2 + [2kα(1 − εout)(1 − εin )]2ρ(1 − ρ)} 1

2

� 0.

(C8)

Whatever the value of C, which is a function of the various
parameters, since the first term in Eq. (C7) is non-negative
[recall the condition β3,1 � 1/ρ, Eq. (28)] and the second
term within the square root as well, immediately follow both
inequalities. From Eq. (C7) we see that ∂keff/∂α2|α is strictly
positive when at least one between εout and εin is nonzero,
i.e., trivially, whenever there is protection. Additionally, we
note that the dependence of keff on α2 is reduced by making
1 − β3,1ρ smaller. From Eqs. (15) and (21) we see that that
means lowering the frequency of {A, N, N} triads, confirming
them as the responsible for that dependence.

b. Hard adaptation. In this scenario, rN = 1 − εout and
sN = 1 − εin for nN = 1, and rN = sN = 1 otherwise. With a
bit of algebra, one finds

∂keff

∂α2

∣∣∣∣
α

∝ −k(2)ρ(1 − ρ)(1 − β3,1ρ)(1 − εout)(1 − εin)

×
[
εout + εin − 2εoutεin

×
(

β3,1ρ + (1 − β3,1ρ)
α2k(2)

αk

)]
αk (C9)

� −k(2)ρ(1 − ρ)(1 − β3,1ρ)(1 − εout)(1 − εin)

× (εout + εin − 2εoutεin)αk � 0, (C10)

where the constant of proportionality in Eq. (C9) is positive.
The first inequality comes from the constraints α2 � αk/k(2),
ensuring α3 � 0 [combining Eqs. (27) and (29)], and β3,1 �
1/ρ [Eq. (28)], so that the term in square brackets is a de-
creasing function of α2 and thus takes its minimum value at
α2 = αk/k(2). This yields the first inequality in Eq. (C10) and,
since the remaining terms are all non-negative, we finally have
∂keff/∂α2|α � 0. Comparing with the previous case, we see
that the sign of ∂keff/∂α2|α is thus dictated by whether the
adaptation by the N-type individuals is easy or hard. From
Eq. (C9) we note that, in this scenario, the derivative goes to
zero for either full out-going (εout = 1) or in-going (εin = 1)
protection (besides εout = εin = 0). In such cases, secondary
infections are exclusively generated by N-types but, in ab-
sence of indirect modifications, their state is unaffected by
how assortativity is distributed among group sizes. In the end,
as before, lowering 1 − β3,1ρ reduces the dependence of keff

on α2, confirming the role of the {A, N, N} triads.

APPENDIX D: APPROXIMATE DYNAMICS FOR HIGH
PROPHYLACTIC EFFICACY

Let us assume that the probability of adoption is low in
type-N uniform groups and high for type A in any group.
Considering first the limit of high out-going prophylactic effi-
cacy, i.e., 1 − εout � 1, we have θA→A, θA→N ≈ O(1 − εout),
hence θA→A � θN→A and θA→N � θN→N. In such a regime,
Eqs. (33) and (34) approximate to

İA ≈ −μIA + λ(1 − IA)INθN→Ay, (D1)

İN ≈ −μIN + λ(1 − IN)INθN→N. (D2)

Equation (D2) is a standard SIS dynamics for IN, hence its
nonzero fixed point (stable for λθN→N � μ) reads

IN

 = 1 − μ

λθN→N
≈ 1 − 1

R
, (D3)

where the approximation comes from keff ≈ θN→N [see
Eq. (41)]. As a consequence, IN


 and R share the same de-
pendence on the various parameters. The nonzero fixed point
for IA is then

IA

 = 1

1 + μ

λθN→AIN



≈ λ

μ
θN→AIN


. (D4)

In particular, if also the in-going efficacy is high, then
Eq. (D4) implies I


A � I

N. From Eqs. (D3) and (D4), is easy

to see how IN

 and IA


 can show different shapes. For in-
stance, everything else left unchanged, an overall increased
homophily yields a higher θN→N but a lower θN→A, therefore
IN


 grows (as R does) but IA

 can either increase or decrease

depending on whether the rate at which θN→A decreases is
lower or higher than that at which IN


 (growing with θN→N)
increases. In other words, the reproduction number may not
be informative about the endemic equilibrium for type A—not
even qualitatively, although it generally may for type N.

Considering now the limit of high in-going prophylactic
efficacy, i.e., 1 − εin � 1, we get θA→A, θN→A ≈ O(1 − εin ),
implying that I


A ≈ O(1 − εin ) is the only solution. In turn, the
latter yields I


N as given—again—by Eq. (D3), the solution of
Eq. (D2).
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FIG. 5. Exact versus approximated prevalence as given by
Eqs. (D3) and (D4) (dotted). Here, α2 = α3 = α, β3,1 = 1.0, ρ =
0.45, k = k(2) + 2k(3) = 6, and λ/μ = 1.0.

Figure 5 gives an example of how the approximation per-
forms for either high out-going or in-going efficacy. It is less
accurate in the former case for type A because, not being the
in-going efficacy high enough, the A-to-A infection rate is not
so small as assumed. In any case, the approximation preserves
the qualitative behavior.

APPENDIX E: NUMERICAL SIMULATION OF
THE MICROSCOPIC SPREADING DYNAMICS

The microscopic SIS spreading dynamics is simulated
as a discrete-time Markov process. Letting �t � 1 be the
time-step duration, the local state of the nodes is updated
synchronously at the discrete times t = 0, �t , 2�t, . . . , up
to a maximum time step. At each step, every node interacts
within each of the k(n)

i n-edges including it. The contact
structure is encoded in the adjacency tensors {A(n)} such that
A(n)

i1,...,in
= 1 if nodes i1, . . . , in form a n-edge and 0 other-

wise. In the following we consider n = 2, 3. Denoting with
σi(t ) ∈ {0, 1} the binary variable representing the state of node
i ∈ {1, . . . , N} at time t [σi(t ) = 0 if susceptible, σi(t ) = 1
if infected], we need to compute the transition probabili-
ties of infection, P(σi(t + �t ) = 1|σi(t ) = 0), and recovery,
P(σi(t + �t ) = 0|σi(t ) = 1). Finally, let Xi ∈ {A, N} be the
type of node i.

If the interaction occurs in a 2-edge, we have four pos-
sible values for the transmission probability, depending on
the types of the two involved nodes, say i and j. If i is the
susceptible node and j the infected one, then the transmission
rate is λr (1,1)

X j
s(1,1)

Xi
if Xi = X j and λr (0,1)

X j
s(0,1)

Xi
if Xi �= X j .

Accordingly, the transmission probability from j to i during
the time interval [t, t + �t] is, respectively, λr (1,1)

X j
s(1,1)

Xi
�t and

λr (0,1)
X j

s(0,1)
Xi

�t . The out-going and in-going probabilities, r and
s, are given in Eqs. (42) and (43) and are computed at the
equilibrium of the adoption dynamics [i.e., using the fixed

point of Eqs. (31) and (32)]. The probability w
(2)
i (t ) that i does

not get infected via any of the 2-edges incident on it thus reads

w
(2)
i (t ) =

N∏
j=1

A(2)
i, j

[
1 − σ j (t )λτ

(2)
i, j �t

]
, (E1)

where

τ
(2)
i, j ≡ τ (2)(Xi, X j )

= δXi,X j r
(1,1)
X j

s(1,1)
Xi

+ (1− δXi,X j )r
(0,1)
X j

s(0,1)
Xi

, (E2)

with δx,y being the Kronecker delta.
If the interaction is part of a 3-edge, the transmission

probability can take eight different values, depending on the
type of all the three nodes, say i, j, and l . Focusing on the
interaction between i and j, if the former is susceptible and
the other one is infected, we have λr (2,2)

X j
s(2,2)

Xi
if Xi = X j =

Xl ; λr (1,2)
X j

s(1,2)
Xi

if Xi = X j �= Xl ; λr (1,2)
X j

s(0,2)
Xi

if Xi �= X j and

X j = Xl ; and λr (0,2)
X j

s(1,2)
Xi

if Xi �= X j and Xi = Xl . Then, the

probability w
(3)
i (t ) that i does not get infected within any of

the 3-edges it takes part to reads

w
(3)
i (t ) =

N∏
j=1

N∏
l> j

A(3)
i, j,l

[
1 − σ j (t )λτ

(3)
i, j;l�t

]

× [
1 − σl (t )λτ

(3)
i,l; j�t

]
, (E3)

where

τ
(3)
i, j;l ≡ τ (3)(Xi, X j ; Xl

)
= δXi,X j

[
δXi,Xl r

(2,2)
X j

s(2,2)
Xi

+ (1 − δXi,Xl )r
(1,2)
X j

s(1,2)
Xi

]
+ (

1 − δXi,X j

)
× [

δXi,Xl r
(0,2)
X j

s(1,2)
Xi

+ (1 − δXi,Xl )r
(1,2)
X j

s(0,2)
Xi

]
. (E4)

All in all, the probability that a susceptible node i gets
infected via at least one of its contacts is

P(σi(t + �t ) = 1|σi(t ) = 0) = 1 − w
(2)
i (t )w(3)

i (t ), (E5)

while its probability of recovery if infected is simply

P(σi(t + �t ) = 0|σi(t ) = 1) = μ�t . (E6)

The stochastic process is implemented by drawing a value
for ui ∼ Uniform(0, 1) independently for each node i, and
at each time step. If node i is susceptible, it gets infected if
P(σi(t + �t ) = 1|σi(t ) = 0) > ui; if infected, it recovers if
P(σi(t + �t ) = 0|σi(t ) = 1) > ui.

The continuous dynamics corresponds to the limit �t → 0,
as only the terms linear in �t survive. In the simulation, we
took �t = 0.05. Using the quasistationary state (QS) method
(with 50 stored active states and a 25% probability of up-
date) [47], we let the system run for a transient of 1000 time
steps and then averaged over the last 500 time steps.
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