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Supplementary Note 1. Robustness of MECLE under changes in the EECC

Here we assess the dependence of the predictions made by the MECLE on the use of different
EECCs found for a given SC K. If the maximal cliques of the underlying graph K(1) of the
latter are all mutually edge-disjoint, then there is a unique EECC. Otherwise, two cases must
be distinguished: (i) K is 0-connected, so the only non-edge-disjoint cliques in K(1) are cliques
also in K (i.e., they are (0, ·)-cliques); (ii) K is non-0-connected, so the non-edge-disjoint cliques
in K(1) can be either cliques or simplices in K (i.e., (0, ·)- or (1, ·)-cliques, respectively). The
MECLE strictly applies only to the case (i) but, as shown in the main text, it keeps working
well when the 0-connectedness is only slightly broken. In order to prove how robust is the
MECLE in both cases, we consider structures possessing high proportions of edges shared by
multiple cliques. Indeed, the higher is the number of times edges are shared, the higher is the
probability that the proposed heuristic returns (proportionally) different EECCs. We recall
that the algorithm is not deterministic only when, at some point, among the cliques with the
minimum score, there are multiple ones having maximum order, among which one is randomly
chosen (step 4(b) of the proposed heuristic).

Let us first focus on case (i). The best way to prove the robustness of the MECLE is, in
this case, considering a graph (i.e., a simplicial 2-complex), so that the number of overlapping
maximal (0, ·)-cliques is maximized; otherwise, some of them would be (1, ·)-cliques, which in
this case are supposed 0-connected and hence not affecting the edge covering. In Supplementary
Fig. 1 we show and discuss the results obtained computing several EECCs of a graph generated
by the Dorogovtsev-Mendes model [1]. Such a graph has no tree-like portions. Despite its high
rate of edge overlap, the prediction made by the MECLE is substantially independent from the
used covering.

Going to case (ii), we consider several EECCs of the clique complex of the Dorogovtsev-
Mendes network used in (i). The clique complex is obtained by converting all the 3-cliques of the
network in 2-faces, so it is strongly non-0-connected. Note that the MECLE could be unreliable
for such structure, since the algorithm destroys so many 2-faces that the resulting EECCs are
too far from the original structure. The results in Supplementary Fig. 2 show the low variability
among the EECCs provided by our heuristic and, consequently, among the predictions made by
the MECLE, even for highly non-0-connected structures. Accordingly, such variability becomes
negligible when the SC only slightly breaks the 0-connectedness condition, so that is sufficient
to consider just one EECC. This is the case for the SCs considered in Fig. 5, for which the
MECLE is still reliable.
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Supplementary Note 2. MECLE for simplicial 2-complexes

We here illustrate the form taken by the MECLE model when the interaction structure is a
simplicial 2-complex, i.e., the (3, 3) implementation of the model. Cliques and faces can only
have order n = 2, 3.

The evolution of the probability P I
i for node i being infected is governed by Eq. (8), which

now takes the form

P I
i (t+ 1) = P I

i (t) (1− µ) + PS
i (t)

(
1− q(1)

i,0 q
(2)
i,0 q

(2)
i,1

)
(S1)

where
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j|i,0

]
(S2a)

q
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According to Eq. (2), the state of a (0, 1)-clique {i, j} is governed by the following equations

P II
ij,0(t+ 1) = PSS

ij,0(t)
(

1− q(1)
i(j),0q

(2)
i,0 q

(2)
i,1

)(
1− q(1)

j(i),0q
(2)
j,0 q

(2)
j,1

)
+ PSI

ij,0(t)
(

1− (1− β(1))q
(1)
i(j),0q

(2)
i,0 q

(2)
i,1

)
(1− µ)

+ P IS
ij,0(t) (1− µ)

(
1− (1− β(1))q

(1)
j(i),0q

(2)
j,0 q

(2)
j,1

)
+ P II

ij,0(t) (1− µ)2 (S3a)

P IS
ij,0(t+ 1) = PSS

ij,0(t)
(

1− q(1)
i(j),0q

(2)
i,0 q

(2)
i,1

)(
q

(1)
j(i),0q

(2)
j,0 q

(2)
j,1

)
+ PSI

ij,0(t)
(

1− (1− β(1))q
(1)
i(j),0q

(2)
i,0 q

(2)
i,1

)
µ

+ P IS
ij,0(t) (1− µ)

(
(1− β(1))q

(1)
j(i),0q

(2)
j,0 q

(2)
j,1

)
+ P II

ij,0(t) (1− µ)µ (S3b)

where q
(1)
i(j),0 coincides with q

(1)
i,0 except for excluding the (0, 1)-clique {i, j} from the product,

and analogously for the other similar terms.
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The state of a (0, 2)-clique {i, j, k} follows the equations
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where q
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i,0 except for excluding the (0, 2)-clique {i, j, k} from the product,

and analogously for the other similar terms.
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Finally, for a (1, 2)-clique {i, j, k}, we get the following equations

P III
ijk,1(t+ 1) = PSSS

ijk,1(t)
(

1− q(1)
i,0 q

(2)
i,0 q

(2)
i(jk),1

)(
1− q(1)

j,0 q
(2)
j,0 q

(2)
j(ik),1

)(
1− q(1)

k,0q
(2)
k,0q

(2)
k(ij),1

)
+ PSSI

ijk,1(t)
(

1−
(

1− β(1)
)
q

(1)
i,0 q

(2)
i,0 q

(2)
i(jk),1

)(
1−

(
1− β(1)

)
q

(1)
j,0 q

(2)
j,0 q

(2)
j(ik),1

)
(1− µ)

+ PSIS
ijk,1(t)

(
1−

(
1− β(1)

)
q

(1)
i,0 q

(2)
i,0 q

(2)
i(jk),1

)
(1− µ)

(
1−

(
1− β(1)

)
q

(1)
k,0q

(2)
k,0q

(2)
k(ij),1

)
+ P ISS

ijk,1(t) (1− µ)
(

1−
(

1− β(1)
)
q

(1)
j,0 q

(2)
j,0 q

(2)
j(ik),1

)(
1−

(
1− β(1)

)
q

(1)
k,0q

(2)
k,0q

(2)
k(ij),1

)
+ PSII

ijk,1(t)

(
1−

(
1− β(1)

)2 (
1− β(2)

)
q

(1)
i,0 q

(2)
i,0 q

(2)
i(jk),1

)
(1− µ)2

+ P ISI
ijk,1(t) (1− µ)

(
1−

(
1− β(1)

)2 (
1− β(2)

)
q

(1)
j,0 q

(2)
j,0 q

(2)
j(ik),1

)
(1− µ)

+ P IIS
ijk,1(t) (1− µ)2

(
1−

(
1− β(1)

)2 (
1− β(2)

)
q

(1)
k,0q

(2)
k,0q

(2)
k(ij),1

)
+ P III

ijk,1(t) (1− µ)3 (S5a)

P IIS
ijk,1(t+ 1) = PSSS

ijk,1(t)
(

1− q(1)
i,0 q

(2)
i,0 q

(2)
i(jk),1

)(
1− q(1)

j,0 q
(2)
j,0 q

(2)
j(ik),1

)(
q

(1)
k,0q

(2)
k,0q

(2)
k(ij),1

)
+ PSSI

ijk,1(t)
(

1−
(

1− β(1)
)
q

(1)
i,0 q

(2)
i,0 q

(2)
i(jk),1

)(
1−

(
1− β(1)

)
q

(1)
j,0 q

(2)
j,0 q

(2)
j(ik),1

)
µ

+ PSIS
ijk,1(t)

(
1−

(
1− β(1)

)
q

(1)
i,0 q

(2)
i,0 q

(2)
i(jk),1

)
(1− µ)

((
1− β(1)

)
q

(1)
k,0q

(2)
k,0q

(2)
k(ij),1

)
+ P ISS

ijk,1(t) (1− µ)
(

1−
(

1− β(1)
)
q

(1)
j,0 q

(2)
j,0 q

(2)
j(ik),1

)((
1− β(1)

)
q

(1)
k,0q

(2)
k,0q

(2)
k(ij),1

)
+ PSII

ijk,1(t)

(
1−

(
1− β(1)

)2 (
1− β(2)

)
q

(1)
i,0 q

(2)
i,0 q

(2)
i(jk),1

)
(1− µ)µ

+ P ISI
ijk,1(t) (1− µ)

(
1−

(
1− β(1)

)2 (
1− β(2)

)
q

(1)
j,0 q

(2)
j,0 q

(2)
j(ik),1

)
µ

+ P IIS
ijk,1(t) (1− µ)2

((
1− β(1)

)2 (
1− β(2)

)
q

(1)
k,0q

(2)
k,0q

(2)
k(ij),1

)
+ P III

ijk,1(t) (1− µ)2 µ (S5b)

P ISS
ijk,1(t+ 1) = PSSS

ijk,1(t)
(

1− q(1)
i,0 q

(2)
i,0 q

(2)
i(jk),1

)(
q

(1)
j,0 q

(2)
j,0 q

(2)
j(ik),1

)(
q

(1)
k,0q

(2)
k,0q

(2)
k(ij),1

)
+ PSSI

ijk,1(t)
(

1−
(

1− β(1)
)
q

(1)
i,0 q

(2)
i,0 q

(2)
i(jk),1

)((
1− β(1)

)
q

(1)
j,0 q

(2)
j,0 q

(2)
j(ik),1

)
µ

+ PSIS
ijk,1(t)

(
1−

(
1− β(1)

)
q

(1)
i,0 q

(2)
i,0 q

(2)
i(jk),1

)
µ
((

1− β(1)
)
q

(1)
k,0q

(2)
k,0q

(2)
k(ij),1

)
+ P ISS

ijk,1(t) (1− µ)
((

1− β(1)
)
q

(1)
j,0 q

(2)
j,0 q

(2)
j(ik),1

)((
1− β(1)

)
q

(1)
k,0q

(2)
k,0q

(2)
k(ij),1

)
+ PSII

ijk,1(t)

(
1−

(
1− β(1)

)2 (
1− β(2)

)
q

(1)
i,0 q

(2)
i,0 q

(2)
i(jk),1

)
µ2

+ P ISI
ijk,1(t) (1− µ)

((
1− β(1)

)2 (
1− β(2)

)
q

(1)
j,0 q

(2)
j,0 q

(2)
j(ik),1

)
µ

+ P IIS
ijk,1(t) (1− µ)µ

((
1− β(1)

)2 (
1− β(2)

)
q

(1)
k,0q

(2)
k,0q

(2)
k(ij),1

)
+ P III

ijk,1(t) (1− µ)µ2 (S5c)

where q
(2)
i(jk),1 coincides with q

(2)
i,1 except for excluding the (1, 2)-clique {i, j, k} from the product,

and analogously for the other similar terms.
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Supplementary Note 3. Epidemic threshold for highly symmetrical struc-
tures

Given the high accuracy of the MECLE —as shown in the main text—, here we make fur-

ther predictions for some particularly symmetrical structures, for which a closed form of β
(1)
cr ,

expressing it in terms of the higher-order infection probabilities, {β(s)}s>1, and the recovery
probability, µ, can be provided from Eq. (19). As a particular case, we show the monotonous

decrease of β
(1)
cr with respect to β(2) in the herein examined 2-dimensional SCs. We stress that

such dependence, as like as any other one, of β
(1)
cr on the higher-order couplings, is completely

overlooked by models treating the nodes’ states as uncorrelated.

Regular SCs. For a SC such that k
(g,r)
i = k(g,r), ∀i ∈ V , ∀(g, r), since all the non-zero

elements of M ′ are equal to the same constant, from the Collatz–Wielandt formula [2] it follows

Λmax

(
M ′
)

=
∑
j

M ′ij =

∑
(g,r) rk

(g,r)
∑r

l=1

(
1− w(r)

l,g

) [(
r−1
l−1

)
X

(r)
l,g +

(
r−1

r−l−1

)
Y

(r)
l,g

]
µ−

∑
(g,r) k

(g,r)
∑r

l=1

(
r
l

) (
1− w(r)

l,g

)
Y

(r)
l,g

(S6)

where both equalities hold for any chosen i ∈ V . Using Eq. (19), Λmax (M ′) = 1, one can solve

with respect to β(1) and express β
(1)
cr in terms of all the other parameters. The decreasing of β

(1)
cr

with β(2) is shown in Supplementary Fig. 3 for two classes of regular simplicial 2-complexes. In
particular, the periodic triangular clique complex, considered in the main text, falls within this
class of structures. Note there is no dependence on the number of nodes, N = |V |.

Friendship SCs. As an opposite case, we consider now extremely heterogeneous SCs. A
Friendship graph Fn is a Windmill graph Wd(m,n) whose “sails” are cliques of order m = 3. It
consists of N = 2n+ 1 nodes, where n is the number of 3-cliques incident on the central node.
Starting from Fn, we convert a fraction p4 of the n 3-cliques in 2-faces. The central node has
k(0,2) = (1 − p4)n ≡ n0 and k(1,2) = p4n ≡ n1. Then, 2n0 of the peripheral nodes have each
k(0,2) = 1 and k(1,2) = 0, while the remaining 2n1 have k(1,2) = 1 and k(0,2) = 0. The greater N
(hence, n), the higher the heterogeneity between the central node and the peripheral ones. In
the large N limit, the average number of neighbors k̄ = 3N−1

N tends to 3, whereas any higher
m-moment diverges as Nm−1. Accordingly, we expect the epidemic threshold to vanish in that
limit.

In order to find a closed expression for the epidemic threshold β
(1)
cr , we take advantage of

the nearly block structure featured by matrix M ′. It can be partitioned as

M ′ =

(
B P
C 0

)
(S7)

where B is a (N − 1)× (N − 1) block diagonal matrix, where each 2× 2 block corresponds to
the peripheral edge of a (0, 3)- or a (1, 3)-clique. That is, B can be put in the form

B = diag(B0, . . . , B0︸ ︷︷ ︸
n0

, B1, . . . , B1︸ ︷︷ ︸
n1

) (S8)

where

Bg =

(
0 M ′(P,g)

M ′(P,g) 0

)
(S9)
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and

M ′(P,g) =
β(1)

(
X

(2)
1,g + Y

(2)
1,g

)
+
(

1−
(
1− β(1)

)2 (
1− gβ(2)

))
X

(2)
2,g

µ− 2β(1)Y
(2)

1,g −
(

1−
(
1− β(1)

)2 (
1− gβ(2)

))
Y

(2)
2,g

(S10)

for g = 0, 1. P is a (N − 1) × 1 matrix whose elements equal M ′(P,0) or M ′(P,1) depending on
whether the peripheral node corresponding to the considered row participates, respectively, to
a (0, 3)- or a (1, 3)-clique. Similarly, C is a 1 × (N − 1) matrix whose elements equal M ′(C,0)

or M ′(C,1) depending on whether the central node participates, respectively, to a (0, 3)- or a

(1, 3)-clique with the peripheral node corresponding to the considered column; where

M ′(C,g) =
β(1)

(
X

(2)
1,g + Y

(2)
1,g

)
+
(

1−
(
1− β(1)

)2 (
1− gβ(2)

))
X

(2)
2,g

µ−
∑

g=0,1 ng

[
2β(1)Y

(2)
1,g +

(
1−

(
1− β(1)

)2 (
1− gβ(2)

))
Y

(2)
2,g

] (S11)

for g = 0, 1.
We now compute the determinant of

M ′ − λIN =

(
B − λIN−1 P

C −λ

)
(S12)

where IN is the N ×N identity matrix. Thanks to the Schur complement formula [2], we can
compute it as

det(M ′ − λIN ) = det(B − λIN−1)
[
−λ− C (B − λIN−1)−1 P

]
(S13)

Using the properties of block diagonal matrices [2],

det(B − λIN−1) =
(
λ2 −M ′(P,0)

2
)n0

(
λ2 −M ′(P,1)

2
)n1

(S14)

implying that λ(P,g) ≡ M ′(P,g), ∀g ∈ {0, 1}, solves det(M ′ − λIN ) = 0; and therefore one
between λ(P,0) and λ(P,1) is the leading eigenvalue of B. However, receiving contributions from
peripheral nodes only, the latter can be shown to never coincide with the largest eigenvalue of
M ′. In particular, when both n0 > 1 and n1 > 1, we already know this is true, for the largest
one is a simple eigenvalue [2]. Therefore, let us suppose λ 6= λ(P,g), ∀g ∈ {0, 1}, and look for
Λmax (M ′) in the other factor, the one containing the contribution coming also from the central
node. It is easily found that

(B − λIN−1)−1 = diag(B̃0
−1
, . . . , B̃0

−1︸ ︷︷ ︸
n0

, B̃1
−1
, . . . , B̃1

−1︸ ︷︷ ︸
n1

) (S15)

being

B̃g
−1

=
1

λ2 −M ′(P,g)
2

(
−λ −M ′(P,g)

−M ′(P,g) −λ

)
(S16)

the inverse matrix of B̃g = Bg − λI2, g = 0, 1. With a few algebra, it follows

C (B − λIN−1)−1 P = −2

(
n0

M ′(P,0)M
′
(C,0)

λ−M ′(P,0)

+ n1

M ′(P,1)M
′
(C,1)

λ−M ′(P,1)

)
(S17)
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We now impose det(M ′ − λIN ) = 0 which, using the previous result λ 6= λ(P,g), ∀g ∈ {0, 1},
reduces to −λ− C (B − λIN−1)−1 P = 0. This can be rearranged in the form

λ3 − λ2
(
M ′(P,0) +M ′(P,1)

)
+ λ

(
M ′(P,0)M

′
(P,1) − 2n0M

′
(P,0)M

′
(C,0) − 2n1M

′
(P,1)M

′
(C,1)

)
+ 2M ′(P,0)M

′
(P,1)

(
n0M

′
(C,0) + n1M

′
(C,1)

)
= 0 (S18)

We finally look for λ = Λmax (M ′) among the solutions of Eq. (S18). As before, we solve

Λmax (M ′) = 1 with respect to β(1) to find β
(1)
cr as a function of the microscopic parameters, β(2)

and µ, and of N and p4. Results are shown in Supplementary Fig. 4, where several values of N
are explored for p4 = 0.5. There is shown that the epidemic threshold vanishes in the limit of
large N , while always decreasing with β(2). Interestingly, the dependence on β(2) grows with N ,
hence with the degree disparity between the central node and the peripheral ones. This, together
with the weaker dependence found for regular structures (Supplementary Fig. 3), suggests that

the dependence of β
(1)
cr on β(2) grows with the heterogeneity of connections. In fact, as shown

in Fig. 4, a very similar dependence is found for Dorogovtsev-Mendes SCs. This indicates
that, despite their simplicity, the Friendship SCs are able to capture some important dynamical
properties of more complex heterogeneous structures. To notice that, a strong correlation
between edge-degree, k(0,1), and triangle-degree, k(1,2), of a node exists in both Dorogovtsev-
Mendes SCs and Friendship SCs.
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Supplementary Note 4. Continuous-time limit of MECLE for simplicial 2-
complexes

It is possible to derive the continuous-time equations of the SIS dynamic in SCs as a limit of
the MECLE model. Here, we show this process for the particular case of interaction structures
arranged in simplicial 2-complexes, i.e., the continuous-time version of Eqs. S1-S5. In order to
take the continuous-time limit, we make the substitutions

µ −→ µ∆t

β(s) −→ β(s) ∆t

where now µ and β(s) represent rates, i.e., probabilities per unit time, instead of the original
discrete-time probabilities [3]. Then, we take the limit ∆t → 0, which means neglecting all
those terms in Eqs. S1-S5 appearing as second or greater powers of ∆t or, equivalently, any
combination of β(1), β(2) and µ. In other words, only single-node state changes are allowed
during an infinitesimal interval dt.

The qs, Eqs. S2a-S2c, now become

q
(1)
i,0 = 1−

∑
j∈Γ

(1)
i,0

β(1)P
I|S
j|i,0 (S20a)

q
(2)
i,g = 1−

∑
{j,k}∈Γ

(2)
i,g

[
β(1)

(
P

IS|S
jk|i,g + P

SI|S
jk|i,g + 2P

II|S
jk|i,g

)
+ gβ(2)P

II|S
jk|i,g

]
(S20b)

from which the term 1− q(1)
i,0 q

(2)
i,0 q

(2)
i,1 , giving the probability that node i gets infected, reads

1− q(1)
i,0 q

(2)
i,0 q

(2)
i,1 =

∑
j∈Γ

(1)
i,0

β(1)P
I|S
j|i,0 +

∑
g=0,1

∑
{j,k}∈Γ

(2)
i,g

[
β(1)

(
P

IS|S
jk|i,g + P

SI|S
jk|i,g + 2P

II|S
jk|i,g

)
+ gβ(2)P

II|S
jk|i,g

]
(S21)

The evolution of the probability P I
i for node i being infected, now takes the form

d

dt
P I
i (t) = −µP I

i (t) + PS
i (t)

(
1− q(1)

i,0 q
(2)
i,0 q

(2)
i,1

)
(S22)

where 1− q(1)
i,0 q

(2)
i,0 q

(2)
i,1 is given by Eq. S21.

The state of a (0, 1)-clique {i, j} is governed by the following equations

d

dt
P II
ij,0(t) = PSI

ij,0(t)
(
β(1) + 1− q(1)

i(j),0q
(2)
i,0 q

(2)
i,1

)
+ P IS

ij,0(t)
(
β(1) + 1− q(1)

j(i),0q
(2)
j,0 q

(2)
j,1

)
− P II

ij,0(t) 2µ (S23a)

d

dt
P IS
ij,0(t) = PSS

ij,0(t)
(

1− q(1)
i(j),0q

(2)
i,0 q

(2)
i,1

)
− P IS

ij,0(t)
(
µ+ β(1) + 1− q(1)

j(i),0q
(2)
j,0 q

(2)
j,1

)
+ P II

ij,0(t) µ (S23b)

where q
(1)
i(j),0 coincides with q

(1)
i,0 except for excluding the (0, 1)-clique {i, j} from the sum, and

analogously for the other similar terms.
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The state of a (0, 2)-clique {i, j, k} follows the equations

d

dt
P III
ijk,0(t) = PSII

ijk,0(t)
(

2β(1) + 1− q(1)
i,0 q

(2)
i(jk),0q

(2)
i,1

)
+ P ISI

ijk,0(t)
(

2β(1) + 1− q(1)
j,0 q

(2)
j(ik),0q

(2)
j,1

)
+ P IIS

ijk,0(t)
(

2β(1) + 1− q(1)
k,0q

(2)
k(ij),0q

(2)
k,1

)
− P III

ijk,0(t) 3µ (S24a)

d

dt
P IIS
ijk,0(t) = PSIS

ijk,0(t)
(
β(1) + 1− q(1)

i,0 q
(2)
i(jk),0q

(2)
i,1

)
+ P ISS

ijk,0(t)
(
β(1) + 1− q(1)

j,0 q
(2)
j(ik),0q

(2)
j,1

)
− P IIS

ijk,0(t)
(

2µ+ 2β(1) + 1− q(1)
k,0q

(2)
k(ij),0q

(2)
k,1

)
+ P III

ijk,0(t) µ (S24b)

d

dt
P ISS
ijk,0(t) = PSSS

ijk,0(t)
(

1− q(1)
i,0 q

(2)
i(jk),0q

(2)
i,1

)
− P ISS

ijk,0(t)
(
µ+ 2β(1) + 2− q(1)

j,0 q
(2)
j(ik),0q

(2)
j,1 − q

(1)
k,0q

(2)
k(ij),0q

(2)
k,1

)
+ P ISI

ijk,0(t) µ

+ P IIS
ijk,0(t) µ

where q
(2)
i(jk),0 coincides with q

(2)
i,0 except for excluding the (0, 2)-clique {i, j, k} from the sum,

and analogously for the other similar terms.
Finally, for a (1, 2)-clique {i, j, k}, we get the following equations

d

dt
P III
ijk,1(t) = PSII

ijk,1(t)
(

2β(1) + β(2) + 1− q(1)
i,0 q

(2)
i,0 q

(2)
i(jk),1

)
+ P ISI

ijk,1(t)
(

2β(1) + β(2) + 1− q(1)
j,0 q

(2)
j,0 q

(2)
j(ik),1

)
+ P IIS

ijk,1(t)
(

2β(1) + β(2) + 1− q(1)
k,0q

(2)
k,0q

(2)
k(ij),1

)
− P III

ijk,1(t) 3µ (S25a)

d

dt
P IIS
ijk,1(t) = PSIS

ijk,1(t)
(
β(1) + 1− q(1)

i,0 q
(2)
i,0 q

(2)
i(jk),1

)
+ P ISS

ijk,1(t)
(
β(1) + 1− q(1)

j,0 q
(2)
j,0 q

(2)
j(ik),1

)
− P IIS

ijk,1(t)
(

2µ+ 2β(1) + β(2) + 1− q(1)
k,0q

(2)
k,0q

(2)
k(ij),1

)
+ P III

ijk,1(t) µ (S25b)

d

dt
P ISS
ijk,1(t) = PSSS

ijk,1(t)
(

1− q(1)
i,0 q

(2)
i,0 q

(2)
i(jk),1

)
− P ISS

ijk,1(t)
(
µ+ 2β(1) + 2− q(1)

j,0 q
(2)
j,0 q

(2)
j(ik),1 − q

(1)
k,0q

(2)
k,0q

(2)
k(ij),1

)
+ P ISI

ijk,1(t) µ

+ P IIS
ijk,1(t) µ

where q
(2)
i(jk),1 coincides with q

(2)
i,1 except for excluding the (1, 2)-clique {i, j, k} from the sum,

and analogously for the other similar terms.
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Evidently, second-order dynamical correlations let β(2) appear in the dynamical equations.
When linearizing Eqs. S20-S25 as done in Methods, the products between a state probability

with some infected node and 1−q(1)
i,0 q

(2)
i,0 q

(2)
i,1 (et similia) disappear as negligible terms, while those

ones corresponding to infections within the considered triangles do not. Consequently, β(2) does

show up in the final eigenvalue equation providing the critical point, β
(1)
cr . In Supplementary

Fig. 5 we report the dependence of β
(1)
cr on β(2) as computed for a Dorogovtsev-Mendes SC.

Non-0-connected structures. Eq. S21 (or Eq. S20b) holds for a 0-connected SC. Nonetheless,
differently from its discrete-time version, it can be adapted to hold for any connectedness.
Indeed, the sum over the (·, 3)-cliques in Eq. S21 (or Eq. S20b) can now be split into two
sums: one regarding the first-order infections coming from the edges of the (·, 3)-cliques, and
one regarding the second-order infections coming from the (1, 3)-cliques. In the former, rather
than over the couples of neighbors of a node, one can sum over its single neighbors, in this

way avoiding to over-count their contribution. To this end, one may define Γ̃
(2)
i as the set of

neighbors of node i such that j ∈ Γ̃
(2)
i if ∃k such that {j, k} ∈ Γ

(2)
i,g , ∀g ∈ {0, 1}. Relaxing the

edge-disjoint requirement, we can now look for a standard edge clique cover of the structure.
Keeping the (g, n) nomenclature for the cliques in the cover, Eq. S21 adopts the form

1− q(1)
i,0 q

(2)
i,0 q

(2)
i,1 =

∑
j∈Γ

(1)
i,0

β(1)P
I|S
j|i,0 +

∑
j∈Γ̃

(2)
i

β(1)P̃
I|S
j|i +

∑
{j,k}∈Γ

(2)
i,1

β(2)P
II|S
jk|i,g (S26)

where P̃
I|S
j|i ≡ P

II|S
jk|i,g + P

IS|S
jk|i,g for k such that {j, k} ∈ Γ

(2)
i,g . Since the edge {i, j} is now allowed

to be included in more than one (·, 3)-clique, k can identify more than one node. Differently
from single nodes, a complete marginalization of the dynamical equation for the edge {i, j},
that would make P̃

I|S
j|i independent from the chosen k, is however unfeasible (and not only with

the chosen closure, Eq. (7)). Therefore, a more symmetrical way to evaluate P̃
I|S
j|i is to compute

it as the average value of P
II|S
jk|i,g + P

IS|S
jk|i,g over all nodes k such that {j, k} ∈ Γ

(2)
i,g , g = 0, 1.

What has been done here for simplicial 2-complexes, can be extended to define the continuous-
time limit of the MECLE for non-0-connected simplicial complexes of any higher dimension.
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Supplementary Figure 1: The robustness of the MECLE under different EECCs is assessed
for a graph generated from the Dorogovtsev-Mendes model, forming a 0-connected simplicial
complex. This boasts a very high rate of edge overlap and, therefore, potentially different EECCs
could lead the MECLE to make notably dissimilar predictions. Indeed, about 34% of the edges
in the network are shared at least by two maximal cliques. Specifically, within that 34%, edges
are shared by about 2.5 maximal cliques on average, with a standard deviation of 0.85 and a
skewness of 2.3. The recovery probability is µ = 0.2. (a) 20 prevalence curves obtained by
20 different EECCs are shown in black, while in red is reported their average curve ρavg(β(1)),
defined by the average value of ρ at each value of β(1). Since the deviations are below the width
of the red line, the black lines are not visible. (b) The ratio σrel between the sample standard
deviation σ and ρavg for each β(1). The value of σrel vanishes everywhere, expect for a small
region around the epidemic threshold. This is below 2.5% for values of ρavg ∼ 10−4 ∼ N−1,
proving the remarkable robustness of the model.
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Supplementary Figure 2: The robustness of the MECLE under different EECCs is assessed
for a non-0-connected simplicial complex generated from the Dorogovtsev-Mendes network used
in Supplementary Fig. 1. The recovery probability is µ = 0.2. (a) 20 prevalence curves obtained
by 20 different EECCs are shown in black, while in red is reported their average curve ρavg(β(1)),
defined by the average value of ρ at each value of β(1). (b) The ratio σrel between the sample
standard deviation σ and ρavg for each β(1). The pick at about β(1) = 0.0047 is due to some
curves transitioning at slightly different values of β(1). In fact, the uncertainty about the location
of the critical point is of only about 0.0002, corresponding to a relative uncertainty of less than
5%. The inset plot shows a zoom of σrel to the right of the transition: σrel stays below the 6%
next to the transition, while rapidly decreasing towards zero for larger β(1)s, hence enlightening
the robustness of the model.
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Supplementary Figure 3: The value of the epidemic threshold β
(1)
cr , as computed from

Eq. (S6), is shown against β(2) for (a) any regular clique 2-complex with k(0,1) = k(0) = 0 and
k(1,2) = k(1) = 3 (the periodic triangular clique complex in the main text falls within this class);
(b) any regular clique 2-complex with k(0,1) = k(0) = 12 and k(1,2) = k(1) = 4 (a proxy for large

random SCs). Note that the mean-field approximation, Eq. (22), wrongly predicts β
(1)
cr = µ/k,

∀β(2), where k = 6 in (a), k = 20 in (b).
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Supplementary Figure 4: The value of the epidemic threshold β
(1)
cr is shown against β(2)

for simplicial 2-complexes constructed from the Friendship graph Fn, a proxy for extremely
heterogeneous structures, where n = N−1

2 . Here p4 = 0.5, thus k(0,2) = k(1,2) = n/2 for

the central node, k(1,2) = 1 and k(0,2) = 0 for half of the peripheral nodes, and k(0,2) = 0 and
k(1,2) = 1 for the other half. The recovery probability is µ = 0.2. The mean-field approximation,

Eq. (22), wrongly predicts β
(1)
cr = µ/k̄, ∀β(2), where k̄ = 3N−1

N . The inset plot shows the curves

β
(1)
cr

√
N vs. β(2). These all collapse to the same value x∗ ≈ 0.27 at β(2) = 0, while being smaller

than x∗ for any β(2) > 0, hence proving that β
(1)
cr → 0 for N →∞, ∀β(2).
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Supplementary Figure 5: The value of the epidemic threshold β
(1)
cr , as predicted in the

continuous-time limit by the MECLE, is shown against β(2) for a Dorogovtsev-Mendes SC with
k̄(0,1) = 1.10 and k̄(1,2) = 1.45. The mean-field approximation, Eq. (22), wrongly predicts

β
(1)
cr = µ/k̄ = 0.05, ∀β(2).
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