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a b s t r a c t

The study of the sub-structure of complex networks is of major importance to relate topology and func-
tionality. Many efforts have been devoted to the analysis of the modular structure of networks using the
quality function known as modularity. However, generally speaking, the relation between topological
modules and functional groups is still unknown, and depends on the semantic of the links. Sometimes,
we know in advance that many connections are transitive, and as a consequence, triangles have a specific
meaning. Here we propose the study of the modular structure of networks considering triangles as the
building blocks of modules. The method generalizes the standard modularity and uses spectral optimiza-
tion to find its maximum. We compare the partitions obtained with those resulting from the optimization
of the standard modularity in several real networks. The results show that the information reported by
the analysis of modules of triangles complements the information of the classical modularity analysis.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The study of the modular (or community) structure of complex
networks has become a challenging subject [1] with potential
applications in many disciplines, ranging from sociology to com-
puter science, see reviews [2–4]. Understanding the modular units
of graphs of interactions (links) between nodes, representing peo-
ple and their acquaintances, documents and their citation rela-
tions, computers and their physical or logical connections, etc., is
of utmost importance to grasping knowledge about the functional-
ity and performance of such systems. One of the most successful
approaches to identify the underlying modular structure of com-
plex networks, has been the introduction of the quality function
called modularity [5,6]. Modularity encompasses two goals: (i) it
implicitly defines modules as those subgraphs that optimize this
quantity, and (ii) it provides a quantitative measure to find them
via optimization algorithms. It is based on the intuitive idea that
random networks are not expected to exhibit modular structure
(communities) beyond fluctuations [7].

A lot of effort has been put into proposing reliable techniques to
maximize modularity [8–16], see review [17]. To a large extent, the
success of modularity as a quality function to analyze the modular
structure of complex networks relies on its intrinsic simplicity.
The researcher interested in this analysis is endowed with a
ll rights reserved.
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non-parametric function to be optimized: modularity. The result
of the analysis will provide a partition of the network into commu-
nities such that the number of edges within each community is lar-
ger than the number of edges one would expect to find by random
chance. As a consequence, each community is a subset of nodes more
connected between them than with the rest of the nodes in the net-
work. The user has to be aware of some aspects about resolution lim-
itations that avoid grasping the modular structure of networks at
low scales using modularity [18]. The problem can be solved using
multiresolution methods [19,20].

The mathematical formulation of modularity was proposed for
unweighted and undirected networks [5] and generalized later to
weighted [6] and directed networks [21]. The generalized defini-
tion is as follows

QðCÞ ¼ 1
2w

XN

i¼1

XN

j¼1

wij �
wout

i win
j

2w

 !
dðCi;CjÞ; ð1Þ

where wij is the strength of the link between the nodes i and j of the
network, wout

i ¼
P

jwij is the strength of links going from i, win
j ¼P

iwij is the strength of links coming to j, and the total strength of
the network is 2w ¼

P
ijwij. Finally, Ci is the index of the community

to which node i belongs to, and d(x,y) is the Kronecker function
assigning 1 only if x = y, and 0 otherwise.

A close look at Eq. (1) reveals that the building block of the com-
munity structure we are looking for, within this formulation, is the
link between two nodes. Every term in Eq. (1) accounts for the dif-
ference, within a module, between the actual existence of a link
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with weight wij and the probability of existence of such a link just
by chance, preserving the strength distribution.

However, in many cases the minimal and functional structural
entity of a graph is not a simple link but a small structure (motif)
of several nodes [22]. Motifs are small subgraphs that can be found
in a network and that correspond to a specific functional pattern of
that network. Statistical over-representation of motifs (compared
with the random occurrence of these sub-structures) has been a
useful technique to determine minimum building blocks of func-
tionality in complex networks, and several works exploit their
identification [22–24]. Among the possible motifs, the simplest
one is the triangle which represents the basic unit of transitivity
and redundancy in a graph, see Fig. 1. This motif is over-repre-
sented in many real networks, for example motifs 12 and 13 in
Fig. 1, the feedback with two mutual dyads and the fully connected
triad respectively, are characteristic motifs of the WWW. Motif 7
(feed-forward loop) is over-represented in electronic circuits, neu-
rons connectivity and gene regulatory transcription networks. The
reason for this over-representation relies on the functionality of
such small subgraphs on the evolution and performance of the spe-
cific network. In the WWW as well as in social networks, the fully
connected triad is probably the result of the transitivity of contents
or human relations, respectively. The feed-forward loop is related
to the reliability or fail tolerance of the connections between
important elements involved in communication chains. The idea
we propose here is that finding modules containing such motifs
as building blocks could improve our information about the mod-
ular structure of complex networks. The importance of transitivity
is traced back to the seminal paper [25] where it is proposed the
clustering coefficient, a scalar measure quantifying the total num-
ber of triangles in a network through the average likelihood that
two neighbors of a vertex are neighbors themselves.

The main goal of our work is to determine communities using as
building blocks triangular motifs. We propose an approach for tri-
angle community detection based on modularity optimization
using the spectral algorithm decomposition and optimization.
The resulting algorithm is able to identify efficiently the best par-
tition in communities of triangles of any given network, optimizing
their correspondent modularity function.
2. Spectral decomposition for triangle community detection

Let G = (V,A) be a weighted undirected graph representing a
complex network, where V represents the vertices set and A the
1 2 3

6 7 8

11 12 13

Fig. 1. List of all possible
edges set. The objective is to identify communities of triangles,
i.e. a partition with the requirement that the density of triangles
formed by any three nodes i, j and k inside the same module is lar-
ger than the triangles formed outside the module. We will define
this objective using a proper adaptation of modularity.

2.1. Triangle modularity tensor

In [26] some of us introduced a mathematical formalism to cope
with modularity of motifs of any size. Capitalizing on this work,
here we study the specificity of triangle modularity QM(C) of a cer-
tain partition C of an undirected graph (the extension to directed
graphs is straightforward, although a little bit more intricate, we
present this extension in the Appendix). The mathematical defini-
tion is

Q
M
ðCÞ ¼

X
i

X
j

X
k

BijkdðCi;CjÞdðCj;CkÞdðCk;CiÞ; ð2Þ

where Ci is the index of the community which node i belongs to, and
Bijk

Bijk ¼
1
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wijwjkwki �

1
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ðwiwjÞðwjwkÞðwkwiÞ; ð3Þ

is a three indices mathematical object (triangle modularity tensor,
from now on) that evaluates for each triad i, j, k, the difference be-
tween the actual density of strength of the triangle in the graph and
the expected density of this triangle in a random configuration with
the same strength distribution (null case). The normalization con-
stant TG is the total number of triads of nodes forming triangles in
the network,

TG ¼
X

i

X
j

X
k

wijwjkwki; ð4Þ

and its counterpart TN for the null case term is

TN ¼
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It is straightforward to check that the triangle modularity ten-
sor satisfies:
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Bijk ¼ 0: ð7Þ
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three-nodes motifs.
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2.2. Spectral optimization of triangle modularity

The computation of the triangle modularity is demanding due to
the combinatorial number of triads that can be formed. The proposal
of any optimization algorithm for this function must be aware of this
cost. Among the possibilities already stated in the literature we de-
vise that the spectral optimization scheme, first proposed in [16], is a
candidate to perform this task efficiently. The idea behind this algo-
rithm is to use the eigenspectrum of the modularity matrix, which
plays a role in community detection similar to that played by the
graph Laplacian, and use a recursion splitting reminiscent of graph
partitioning calculations. The problem we have is that a direct map-
ping to the usual spectral modularity optimization is not straightfor-
ward given the structure of Eq. (2). Basically we need to transform
Eq. (2) in a function with the following structure:

QðCÞ /
X

i

X
j

siMijsj; ð8Þ

where the leading eigenvector of Mij, the modularity matrix, will in-
duce the first recursion step, splitting the network in two parts.

We propose the following transformation: let us assume a par-
tition of the network in two communities, introducing the vari-
ables si, which are +1 or �1 depending on the community to
which node i belongs to, and taking into account that

dðCi;CjÞ ¼
1
2
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where we have made use of s2
i ¼ þ1. Therefore, using Eqs. (6) and (7),
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Defining the triangle modularity matrix
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then
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Thus, we have been able to reduce the optimization of the trian-
gle modularity into the standard spectral algorithm given in [16].

For the case of undirected networks, this matrix is symmetric
and the computation of its eigenspectra gives real values. However,
if the network is directed, this property is not necessarily true, and
then a symmetrization of the matrix is needed before computing
its spectrum (see Appendix).

Once a first division of the network in two parts has been ob-
tained, it is possible to iterate the process, while modularity im-
proves, by a recursive application of the spectral splitting to each
subgraph. To this end, we need the value of the triangle modularity
matrix for any subgraph. Supposing we have a subgraph g to be di-
vided into g1 and g2, the change in triangle modularity is given by

DQ
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and si is +1 for nodes in g1 and �1 for nodes in g2. Therefore, the new
triangle modularity matrix is not just a submatrix of the original
one, but additional terms appear to take into account the connectiv-
ity with the rest of the network.

2.3. Algorithm

Once the triangle modularity has been transformed to the prop-
er form to be optimized by spectral decomposition, we can proceed
to formulate a complete decomposition-optimization algorithm.
After the first analysis of the eigenspectra, the eigenvector associ-
ated to the largest eigenvalue is used to determine the elements
that will be assigned to one of the two communties according to
the sign of their eigenvector component. This process is recursively
executed until no new splits are obtained. The decomposition gi-
ven by the spectral partitioning can be improved by a fine-tuning
of the nodes asignments after the process ends.

We use the Kernighan–Lin optimization method to improve the
modularity as explained in [16]. The main idea is to move vertices
in a group to another increasing the modularity. We move all verti-
ces exactly once. At each step, we choose to move the vertex giving
the best improvement (largest increase in the modularity). When all
vertices are moved, we repeat the process until no improvement is
possible. Some computational issues should be considered here:
the computation of the largest eigenvalue and its corresponding
eigenvector can be efficiently determined using the iterative Lanc-
zos method [27]; the computation of QM(S) is, in principle, of order
O(N3), however it can be done very efficiently by pre-computing
and storing the values of TN and TG, and the lists of triangles to which
each node belongs to; finally, the KL post-processing stage which is
eventually the computational bottleneck of the process, must be
parameterized according to the number of nodes we pretend to
move and the relative improvement of modularity observed.

Algorithm 1: Triangle community detection

Require: Connected network G(V,E)

Ensure: Triangle communities C, Triangle modularity of the

partition QM(C)
1: Read network
2: Current subgraph g G
3: Build modularity matrix M(g)
4: Compute QM(g)
5: Compute leading eigenvalue and eigenvector of M(g)
6: Decomposition of group g in two groups: g1 and g2, using

the signs of eigenvector components
7: Compute the modularity QM(g1,g2) of the initial split of

group g
8: Improve QM(g1,g2) using KL optimization between g1 and g2
9: Compute the modularity QM(g1,g2) of the split of group g
10: if QM(g1,g2) > QM(g) then
11: goto 3 with g g1
12: goto 3 with g g2
13: end if
3. Results

In this section we show the results of the algorithm, applied to
several real networks. We have used the following networks:



Table 1
Comparison of standard and triangle modularities.

Network Nodes Links Q QM D(Q,QM)

Football 115 613 0.604 0.924 0.529
Zachary 34 78 0.419 0.706 0.685
Dolphins 62 159 0.528 0.817 0.547
Adjnoun 112 425 0.308 0.299 �0.029
Elec s208 122 189 0.686 0.998 0.454
Neurons 279 2287 0.405 0.433 0.069
Cortex 55 564 0.372 0.708 0.903
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� Football [1], a network of American football games between
Division IA colleges during regular season Fall 2000.
� Zachary [28], a social network of friendships between 34 mem-

bers of a karate club at a US university in the 1970s.
� Dolphins [29], an undirected social network of frequent associ-

ations between 62 dolphins in a community living off Doubtful
Sound, New Zealand.
� Adjnoun [30], adjacency network of common adjectives and

nouns in the novel David Copperfield by Charles Dickens.
� Elec s208 [22], benchmark of sequential logic electronic circuit.
� Neurons [31], network of neural connectivity of the nematode

C. elegans.
� Cortex [32], network of connections between cortical areas in

the cat brain.

To evaluate the information provided by the new triangle mod-
ularity, we perform a comparison with the standard modularity Eq.
(1). We have developed a comparison in both the values of the
optimal modularity, and the partitions obtained.
3.1. Modularities comparison

Table 1 shows the best standard, and triangle modularities
found using spectral optimization. We define a new parameter
D(Q,QM) = (QM � Q)/Q that measures the relative difference be-
tween both. Positive values of D(Q,QM) indicate that the contribu-
tion of triangles to communities is larger than standard modularity
communities, and the contrary for negative values.
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Fig. 2. Zachary network partitions. Best partitions found by optimization of (a) trian
represented by the shape of the symbols (squares and circles). Colors indicate the assign
figure the reader is referred to the web version of the article.)
From Table 1 we observe that in Adjnoun, which is almost a
bipartite network, the standard modularity is larger than the trian-
gle modularity, in accordance with the absence of these motifs. On
the other side, for the Zachary network, a human social network
where transitivity is implicit in many acquaintances, the triangle
modularity becomes more informative than the standard modular-
ity. Indeed, the optimal standard modularity proposes a decompo-
sition of this network in four groups, while the optimal triangle
modularity is achieved for a partition in two groups plus two iso-
lated nodes (nodes 10 and 12) that do not participate in any trian-
gle. Moreover the partition in two groups is in accordance with the
observed split of this network after a fight between the administra-
tor and the instructor of the club, see Fig. 2.

3.2. Communities comparison

A deeper comparison consists of analyzing the different mod-
ules obtained using the standard and triangle modularity. To this
end, we need some measures to analyze the difference in the
assignments of nodes to modules, taking into account that we will
also have different modular partitions. Here, we use two measures,
the Normalized Mutual Information (NMI) and the asymmetric
Wallace index (AW).

In [33] the authors define the NMI to compare two clusterings.
The idea is the following: let be a clustering A with cA communities
and a clustering B with cB communities, and let us define the con-
fusion matrix N whose rows correspond to the communities of the
first clustering (A) and columns correspond to the communities of
second clustering (B). The elements of the confusion matrix, Nab,
represent the number of common nodes between community a
of the clustering A and community b of the clustering B, the partial
sums Na: ¼

P
bNab and N:b ¼

P
aNab are the sizes of these commu-

nities, and N:: ¼
P

a
P

bNab is the total number of nodes. The mea-
sure NMI between two clusterings A and B is
NMIðA;BÞ ¼
�2
PcA

a¼1

PcB
b¼1Nab log NabN::

Na:N:b

� �
PcA

a¼1Na: log Na:
N::

� �
þ
PcB

b¼1
N:b log N:b

N::

� � : ð16Þ
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Table 2
Comparison of partitions obtained using standard and triangles modularities. The
different measures are explained in the text.

Networks NMI AW1 AW2

Football 0.8903 0.8488 0.6901
Zachary 0.6380 0.7945 0.5524
Dolphins 0.6663 0.4810 0.7838
Adjnoun 0.4888 0.3136 0.3845
Elec s208 0.6098 0.0307 0.9091
Neurons 0.6045 0.7276 0.6954
Cortex 0.8361 0.6841 1.0000
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If the partitions are identical, then NMI takes its maximum va-
lue of 1. If the partitions are totally independent, NMI = 0. It mea-
sures the amount of information that both partitions have in
common.

The asymmetric Wallace index [34] is the probability that a pair
of elements in one cluster of partition A (resp. B) is also in the same
cluster of partition B (resp. A). Using the same definitions as for the
NMI, the two possible asymmetric Wallace indices are:

AW1ðA;BÞ ¼
PcA

a¼1

PcB
b¼1NabðNab � 1ÞPcA

a¼1Na:ðNa: � 1Þ
; ð17Þ

AW2ðA;BÞ ¼
PcA

a¼1

PcB
b¼1NabðNab � 1ÞPcB

b¼1N:bðN:b � 1Þ
: ð18Þ

The asymmetric Wallace index shows the inclusion of a parti-
tion in the other.

In Table 2, we observe that the largest NMI is for the communi-
ties of football network. That means that the standard and triangle
communities found in that network are very similar. Indeed, the
structure of the football network is very dense and almost all nodes
participate in triangles. For the AW2 of the cortex network is equal
to 1, that means that all the triangle communities are included in
the standard ones.

4. Conclusions

We have designed an algorithm to compute the communities of
triangular motifs using a spectral decomposition of the triangle
modularity matrix. The algorithm provides partitions where transi-
tive relations are the building blocks of their internal structure. The
results of these partitions are complementary to those obtained
maximizing the classical modularity, that accounts only for indi-
vidual links, and can be used to improve our knowledge of the
mesoscopic structure of complex networks.
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Appendix A

Here we show the computation of the triangle modularity ma-
trix for a directed motif, in particular motif 7 in Fig. 1, although as
will be shown the process is equivalent for any other motif config-
uration. In this case, we have

Q
M
ðCÞ ¼

X
i

X
j

X
k

BijkdðCi; CjÞdðCj; CkÞdðCk; CiÞ; ð19Þ
where Bijk is

Bijk ¼
1
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wijwjkwki �

1
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The normalization constant TG is now
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Using the transformation proposed in Eq. (10)
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then

Q
M
ðSÞ ¼ 3

4

X
i

X
j

siMijsj: ð24Þ

Owing to the fact that the graph is directed, the modularity ma-
trix Mij may be not symmetric, which causes technical problems.
However, it is possible to restore the symmetry thanks to the scalar
nature of QM(S) [35]. A symmetrization of the triangle modularity
matrix M,

M0 ¼ 1
2

M þMT
� �

ð25Þ

yields

Q
M
ðSÞ ¼ 1

2
Q
M
ðSÞ þ Q

M
ðSÞT

� �
¼ 3

4

X
i

X
j

siM
0
ijsj; ð26Þ

recovering the necessary symmetry to apply the standard spectral
optimization.

In the same manner, we can define the modularity matrix for all
possible motifs of Fig. 1 just by modifying Bijk. For example, for mo-
tif 13 in Fig. 1 we have:

Bijk ¼
1
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wijwjiwjkwkjwkiwik

� 1
TN

wout
i

� �2 win
j
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