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Urban systems are characterized by populations with heterogeneous characteristics, and
whose spatial distribution is crucial to understand inequalities in life expectancy or
education level. Traditional studies on spatial segregation indicators focus often on
first-neighbour correlations but fail to capture complex multi-scale patterns. In this
work, we aim at characterizing the spatial distribution heterogeneity of socioeconomic
features through diffusion and synchronization dynamics. In particular, we use the time
needed to reach the synchronization as a proxy for the spatial heterogeneity of a
socioeconomic feature, as for example, the income. Our analysis for 16 income
categories in cities from the United States reveals that the spatial distribution of the
most deprived and affluent citizens leads to higher diffusion and synchronization times. By
measuring the time needed for a neighborhood to reach the global phase we are able to
detect those that suffer from a steeper segregation. Overall, the present manuscript
exemplifies how diffusion and synchronization dynamics can be used to assess the
heterogeneity in the presence of node information.
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1 INTRODUCTION

The expansion of urbanization and progressive increase of the population in cities has intensified the
concern over the many dimensions of segregation—i.e., school, economic or ethnics—that have a
tangible impact in the health, education and equal opportunities of citizens [1–8]. In fact, quantifying
the extent of segregation and the identification of economically and socially isolated neighborhoods
has been a topic of wide interest that first led to the development of global metrics, and which were
later extended to spatial metrics [9–14]. Most of the initial spatial measures were limited to first
neighbour indices, which facilitated the development of multi-scalar indices that provide a more
nuanced picture of segregation [15–21], yet understanding the role played by each of the scales and
their interplay still remains a challenge.

Dynamical processes in general, and in particular diffusion [22–30] and synchronization [31–35]
dynamics, have been widely studied in complex networks on account of their relation with the spread
of diseases and information [36, 37] and real-world phenomena in social or economic systems
[38–40]. Interestingly, they provide insights on the topological scales and structure of networks and
reveal the existence of functional meso-scale structures [27, 30, 32, 34, 41].

Here we use previous knowledge on diffusion and synchronization dynamics to assess the multi-
scale patterns of residential segregation. By moving the focus from the network topology and
organization to the node states, we are able to measure how well distributed a population with a
certain characteristic is using the time needed to reach the absorbing state. Our framework requires
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thus the implementation of a population dynamic to drive the
system towards the homogeneous state, in our case diffusion and
synchronization dynamics. None of them constitute here an
attempt to model or predict the changes in the spatial
distribution of a population characteristic but are highly
stylized simplifications of their evolution that allow us to
measure the time needed to attain the homogeneous state,
which we consider to be the non-segregated scenario.
Dynamical approaches are thus introduced here not because
they provide a realistic approximation to the evolution of
population dynamics but because they offer a significant
advantage to measure multi-scale correlations as they do not
require to take distance explicitly into account. Moreover, the
assumption that cities converge towards uniformity is rather
unrealistic without a heavy external driver, and is only a
means to construct our measures.

As case studies we provide an analysis on the distribution of
citizens of a certain income category in cities from the
United States, and the distribution of a set of socioeconomic
indicators in the city of Paris throughout an average day (see
Supplementary Material Section 2 and Supplementary Figures
S8–S10). The analysis on the spatial organization of income
categories reveals that the most deprived and affluent sectors
display higher diffusion and synchronization times linked to a
higher heterogeneity, and allow us to split the cities in two groups
depending on the difference on the level of segregation. Finally,
we evaluate the level of synchronization at the neighborhood level
which allow us to spot the more sensitive places in a city.

2 RESULTS

2.1 Diffusion Dynamics and Income
Segregation
Citizens exhibit a huge diversity of characteristics usually
captured by socioeconomic indicators such as education level,
income or ethnicity, and they are often heterogeneously
distributed in space: those individuals with similar
characteristics tend to live close between them. To assess the
heterogeneity of a population with a characteristic k ∈ K, we
consider a graph G(V, E) with adjacency matrix A = {aij} in which
the spatial units are represented as a set of nodesV connected by a
set of edges E. The adjacency matrix A we have considered takes
aij = 1 when spatial units i and j are adjacent and aij = 0 otherwise,
which is the traditional connectivity matrix used to capture
residential segregation. Still, other types of (weighted) matrices
could be considered to assess, for example, the impact of mobility
in segregation. The state of a node xk

i is given by the fraction of
citizens living in node i that belong to socioeconomic category (or
class) k, written as

xk
i �

nki∑
k′
nk′i

, (1)

where nki is the total number of citizens in unit i that belong to
category k. As extreme cases, xk

i � 0 when there are no citizens of

category k living in i, and xk
i � 1 when all the citizens in node i

belong to category k. Of course, the normalization condition

∑
k∈K

xk
i � 1 (2)

is fulfilled for all nodes i.
To measure the multi-scalar patterns of segregation, our

assumption is that cities suffering from stronger residential
segregation are further from the stationary state where the
citizens of category k are homogeneously distributed in space.
Although cities are in continuous change and most likely far from
equilibrium, similar approaches such as the long-standing
Schelling and the Alonso-Muth-Mills models have been able
to draw relevant conclusions from the equilibrium state [42, 43].

By adopting diffusion dynamics we do not refuse the high
complexity of population dynamics influenced by a wide variety
of demographic, economic, political, and behavioral factors
[44–47] but avoid introducing further parameters and factors
that could hinder our aim of characterizing the segregation of a
particular population category. Bear in mind that our final goal is
by no means to assess real-world migration processes but to
construct a multi-scalar measure of segregation that does not
explicitly include the distance and the use of more complex and
realistic approaches that would complicate the interpretation of
the results. Diffusion constitutes one of the most basic
approximations to how information, or any other
characteristic, is transmitted through a system. Although far
from the real behavior, it provides one of the simplest
scenarios where the flow of population follows a gradient.

In fact, we focus on one of the best-case scenarios where the
values of xk

i converge towards equilibrium following a gradient,
which could be interpreted as the change of residence of citizens
of category k to regions where they are less abundant.

We focus on the economic segregation in the metropolitan
areas of the United States with more than 1 million inhabitants
and analyze a dataset containing the number of households
within an income interval k residing in each census tract (see
Table 1).

TABLE 1 | Income range (in US dollars) corresponding to each category (or class).

Class Income ($)

1 Less than 10,000
2 10,000–14,999
3 15,000–19,999
4 20,000–24,999
5 25,000–29,999
6 30,000–34,999
7 35,000–39,999
8 40,000–44,999
9 45,000–49,999
10 50,000–59,999
11 60,000–74,999
12 75,000–99,999
13 100,000–124,999
14 125,000–149,999
15 150,000–199,999
16 200,000 or more
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Once we have the set of initial node states xk
i , their evolution

through time is determined by the diffusion dynamics

dxk
i

dt
� 1
si
∑N
j�1

aij xk
j − xk

i( ), (3)

where

si � ∑N
j�1

aij (4)

is the degree of node i. For simplification purposes, we have opted
to use a normalized diffusion dynamic, with diffusion strength
equal to 1. Note that we have independent diffusion processes for
each category k.

The diffusion dynamic lasts until the stationary state,
xk
i � xk, ∀i is reached, and we denote the spanned time as

τdiff(k). Since the time to reach the stationary state can be
infinitely large, we have considered that it is reached when
the variance of xk

i , in time, becomes lower than 0.0001. We
hypothesize that lower values of τdiff(k) are related to a more
homogeneous distribution of the population within a category k,
and the other way around when it is higher. In the extreme case
in which all units have the same initial value of xk

i , the diffusion
time τdiff(k) would attain its minimum value. As we aim to
compare cities with different characteristics, we control for
confounding factors such as the particular distribution of xk

or the topology of the graph by running the same diffusion
dynamics on the same graph but where the values of xk have
been reshuffled, thus defining the average null-model diffusion
time τnulldiff (k) calculated over 500 reshuffling realizations. The
relative diffusion time we will use throughout this manuscript
can then be written as

~τdiff k( ) � τdiff k( )
τnulldiff k( ). (5)

A relative diffusion time equal to one means that it is compatible
with the null model, i.e., there are no remarkable spatial
dependencies, while a greater value suggests that spatial
heterogeneities delay the arrival to the stationary state.

We analyze the normalized diffusion times ~τdiff(k) by running
simulations for all US cities above 1 million of inhabitants and
each of the 16 income categories k as a proxy for how
heterogeneously distributed is the population; we have
excluded New York City, whose adjacency network does not
provide an accurate picture of residential segregation due to the
particular geography of Manhattan. In Figure 1A we display
~τdiff(k) in Boston, Cleveland, Detroit and Denver observing a
common qualitative behavior: smaller values for middle-income
categories, and higher ones for the categories in the extremes of
the income distribution. Our results suggest that the wealthier
and most deprived citizens suffer from stronger segregation and
display a more clustered spatial distribution. More interestingly,
category 9 seems to be the more homogeneously distributed
across space, in agreement with the results observed in [20]
and with the mean and standard deviation of xk as well as the
Moran’s I (see Supplementary Material Section 1 and
Supplementary Figure S1). Still, there are strong quantitative
differences, with Cleveland and Detroit displaying higher values
for most of the categories, in contrast to Boston and Denver.

Since ~τdiff(k) takes a set of 16 values for each city, we calculate
their median and variance values over all categories to ease the
comparison between the set of cities studied. While the median
value provides information on the segregation across all
economic categories, its variance reports the variability among
them. Figure 1B shows this median value of ~τdiff(k),
med(~τdiff(k)) as a function of its variance, var(~τdiff(k)). The
prior cities appear ordered as Detroit, Cleveland, Boston and
Denver, although the variance is very similar for Cleveland and
Boston, likely due to the high values observed for low-income
categories in Boston. Finally, we provide in Figure 1C the ranking

FIGURE 1 | Diffusion dynamics as a measure for income segregation. (A) Synchronization time for each of the 16 income categories in Boston, Cleveland, Denver
and Detroit. (B)Median value of ~τdiff(k) across income categories as a function of its variance. (C) Ranking for the median value of ~τdiff(k) for the studied set of US cities.
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of the selected US cities according to med(~τdiff(k)), as a measure
of the overall segregation in cities. On top of it, we find cities such
as Milwaukee or Detroit, which have been reported to suffer from
economic and ethnic segregation [49–51].

By applying diffusion dynamics we implicitly assume that xk

evolves homogeneously towards consensus, which more than a
realistic scenario, it is a means to calculate the time needed to
reach consensus and obtain a measure of segregation. To further
inspect the actual change of xk

i between 2011 and 2019 in each of
the spatial units i, we first construct the normalized time-series
for each spatial unit across those years as

P xk
i , t( ) � xk

i t( )∑
t′
xk
i t′( ), (6)

and then cluster, for each category k, the temporal profiles of all
the nodes. For the clustering, we have made use of the k-means
algorithm [52, 53], grouping together those units with a similar
temporal evolution, and setting the number of clusters to 3. The
resulting time-series of the corresponding centroids for the
highest and lowest income categories are depicted in Figure 2,
where a non-monotonic behavior is observed in most of the cases,
with oscillatory behaviors through time of varying amplitude.

2.2 Synchronization Dynamics and Income
Segregation
According to the oscillations in the temporal evolution of xk

i
(Figure 2), diffusion dynamics appear to be a rather simplistic
approach to assess the time needed to converge. Even thought we
do not aim to mimic the real evolution of xk

i , we seek for a
dynamic that at least can resemble its real behaviour in a
qualitative way. Thus, despite still constituting a stylized
approximation, a dynamical process with an oscillatory
behavior, like a system of coupled Kuramoto oscillators,
appears to be a better way to assess the spatial heterogeneity
of socioeconomic indicators across cities. To analyze segregation
in terms of synchronization dynamics, we treat each of the spatial
units i as an individual Kuramoto oscillator, with an initial phase

θki (0) that is set by distributing the fraction of population in node
i that belongs to a category k within the range [0, π] as

θki 0( ) � xk
i π. (7)

The interaction between spatial units is given by the Kuramoto
model

_θ
k

i t( ) � ωk
i +

1
si
∑N
j�1

aij sin
θkj t( ) − θki t( )

2
⎛⎝ ⎞⎠, (8)

where we have modified the traditional interaction term between
oscillators by dividing the angle difference by two, allowing for
the interaction between regions displaying extreme values of xk

i .
Additionally, to facilitate the global synchronization of the
system, we set all the individual natural frequencies of the
oscillators to the same value, i.e., ωi = 1, ∀i. In order to
account separately the segregation of each category k, our
approach assumes that there is no interaction between
categories and, thus, xk

i synchronize independently of k.
We use the standard order parameter |zk| to assess the global

level of synchronization for a category k in a city, where

zk � 1
N

∑N
j�1

eiθ
k
j , (9)

and N is the total number of spatial units or Kuramoto oscillators
[35]. We consider that a city has reached the synchronized state
when |zk| > 0.999. As in the case of diffusion, we assess how the
distribution of initial phases determines the synchronization of
the system, a city in our case, by measuring the time τsync(k)
required to reach the synchronized state. The more
heterogeneously distributed the initial phases are, the higher
the time the system requires to synchronize. To distinguish
between the effect produced by the spatial distribution xk

i
from its overall distribution as well as the topology of the
graph, we also measure the average time the system needs to
synchronize when the same phases are redistributed at random,
τnullsync(k). The normalized synchronization time of the system is
then given by the ratio

~τsync k( ) � τsync k( )
τnullsync k( ). (10)

Like for diffusion, a synchronization time close to one means that
the spatial distribution of phases is compatible with the null
model, and a larger value indicates that spatial heterogeneities
delay the appearance of a synchronized state.

In Figure 3A we inspect the normalized synchronization time
in Boston, Cleveland, Detroit and Denver when spatial units
interact through Kuramoto-like dynamics. All four of them share
similar features, with central classes displaying smaller
synchronization times compared to the most disadvantaged
and wealthier ones. An expected result since those individuals
in the extremes of the income distribution tend to be more
isolated and clustered together compared to middle-income
citizens. Despite sharing qualitative features, the cities shown
display sharp quantitative differences. Almost all categories

FIGURE 2 | Average temporal evolution of the abundance of households
within the lowest and highest income. Temporal evolution of centroids after
performing a k-means clustering on the normalized abundance of households
with category k, P(xki , t), as a function of time t for the lower (A) and
higher (B) income categories.
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appear to be significantly more isolated in Detroit and Cleveland
compared to Denver and Boston, where ~τsync(k) looks much flat.
Overall, the synchronization results are compatible with the
diffusion ones, likely because both dynamical processes share
common features. We have further checked that the mean xk does
not determine directly the normalized synchronization times in
Supplementary Figure S1.

Likewise with diffusion, we calculate the median and variance
of ~τsync(k) over all categories to be able to compare between
analyzed cities (see Supplementary Figure S2 for the individual
rankings of ~τsync(k) for the categories k = 1 and k = 16). The
ranking is shown in Figure 3B and has cities such as Detroit,
Cleveland, Milwaukee or Memphis close to the top, which are
well-known for being among the most economically segregated
cities in the United States. The location in the ranking of the cities
in Figure 3A is consistent with our observations, with Boston and
Denver on the bottom of the ranking and Detroit and Cleveland
on the top of it.

Our index is given by the median value of the normalized
synchronization times, yet depending on the dimension of
segregation we aim to capture, we can also construct an index
based on a population-weighted average. Whereas the median
gives equal weight to each economic category focusing on the
segregation suffered by residents of category k, the weighted
average provides an overall picture of segregation taking the
population of each category into account. We show the ranking
obtained for the weighted average index and its relation with
med(~τsync(k)) in Supplementary Figures S6, S7. Additionally,
we show in Supplementary Figures S3, S4 how ~τsync(k)
significantly correlates with the traditional Moran’s I [54] as
well as a multi-scale quantity based on class mean first passage
times developed in [20, 21], reinforcing the idea that
synchronization (and diffusion) dynamics indeed capture the

patterns of residential segregation. Despite the dynamics we have
used are stylized versions of the real behavior of the quantity xk

i
and do not capture the full complexity of its temporal evolution, it
is able to capture segregation with values comparable to other
segregation indicators.

Although ~τsync(k) is larger for extreme categories in most of
the cities, some of them like Denver display smaller variations
than others such as Detroit and, therefore, it might be of interest
to group cities according to the change in synchronization times.
By running a k-means algorithm on the normalized value of
P(~τsync(k)) so that ∑kP(~τsync(k)) � 1, we can split the cities of
study between those with higher and smaller differences in
~τsync(k), see Figure 3C. In Figure 3D, we display the cluster
assigned to each metropolitan area, where no strong spatial
pattern is observed. Still, the cities in the Midwest, which are
known for being economically segregated, fall into the red cluster,
together with other cities such as Baltimore or Los Angeles. If,
instead, we focus on the blue cluster, we have cities such as
Sacramento or Washington D.C. Among the cities discussed in
Figure 3A, Denver falls into the group with more homogeneous
segregation (in blue) and the rest into the one with more unequal
segregation patterns (in red).

Beyond the global quantification of segregation, we can also
evaluate the local level of segregation of a concrete census tract i at
a given time step t by computing

ρki t( ) � cos θki t( ) −Φk t( )( ), (11)
where θki (t) is the phase of unit i at time t andΦk(t) is the average
phase of all the oscillators in a city in a given time t [32]. When
ρki (t)> 0.999 we consider that oscillator i has synchronized, from
which we can obtain τloci (k). However, given that ρi(τloci (k)) can
oscillate through time, we only consider that a unit i has reached

FIGURE 3 | Synchronization time as ameasure for income segregation. (A) Synchronization time for each of the 16 income categories in Boston, Cleveland, Denver
and Detroit. (B) Ranking for the median value of ~τsync(k) for the studied set of US cities. (C) Average value of P(~τsync(k)) as a function of each income category i for the
two main clusters detected. (D) Location and cluster assignment for each of the analyzed cities.
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the global synchronized state at a time τloci (k) when
ρi(t> τloci (k)) does not go below 0.999 anymore, otherwise our
methodology could fail to capture long-range correlations. In
order to provide a metric for each spatial unit, simulations last
until each of the spatial units have fullfiled the synchronization
criteria. Normalizing τloci (k) by its null model counterpart, it
yields ~τloci (k), a measure of the local synchronization time.

Figure 4 displays the normalized synchronization times for
each of the census tracts in Denver and Detroit, focusing on three
very distinct income categories: low income, Figures 4A,E;
middle income, Figures 4B,F; and high income, Figures 4C,G.
To ease the comparison between income categories, the range of
values is common for all the maps, evincing the strong differences
between Detroit and Denver, especially for the low and high-
income categories. Figures 4D,H also report the income per
census tract. The shape of the segregation in Detroit can be
outlined by the lower-income downtown and the richer suburbs,
being the most segregated parts, and a less-segregated region in-
between. In the case of Denver, we only slightly see high values for
the low-income category in the North of the city and the high-
income category in the South.

As we detail in Supplementary Figure S5, the spatial patterns
of segregation product of the synchronization dynamics are
significantly different to those obtained from first-neighbor
quantities such as the Moran’s I. Instead of focusing on those
regions whose proportion of citizens is high (or low) compared to
its neighbors, our methodology highlights those with a ratio of
population within a category k distinct than the average, either
because it is high or low, and spatially isolated from those regions
with average values. In other words, a region with a high

proportion of residents of category k might not show a large
local spatial correlation if their neighbors have similar values but
could, instead, produce high values of ~τloci (k) if it is isolated from
those regions displaying a proportion of citizens closer to the city
average. As the majority of spatial measures, our approach can
also suffer the so-called modifiable areal unit problem [55] in a
similar fashion. However, given that our methodology captures
mid and long-range correlations instead of local differences, it
might be less affected by such small local changes.

Finally, we inspect if the synchronization time of a region displays
any type of connection with its actual income. To do so, we plot in
Figure 5 the normalized local synchronization time as a function of
the median income averaged over all the census tracts within bins of
$5,000 in four US cities. Again we see that segregation is much
stronger in Detroit followed by Cleveland and Boston. High-income
regions are more segregated in Boston compared to Cleveland. In
general terms, the census tracts with a median income between
$50,000 and $80,000 seem to be the less segregated ones as they
synchronize faster for both low and high-income categories. These
results are in agreement with the cluster assignment of the previous
cities, with Detroit, Cleveland and Boston in the red cluster where
low and high-income categories needmore time to synchronize, and
Denver in the blue cluster where only the high-income categories
need more time to synchronize.

3 DISCUSSION

Traditional spatial segregation indicators that focus on local
scale of segregation fail in most cases to capture the presence of

FIGURE 4 | Local synchronization time as a measure for income segregation. Normalized synchronization time for each census tract in Denver (A–C) and Detroit
(E–G) for three different income categories: (A,E) class 1 (low income); (B,F) class 8 (middle income); (C,G) class 16 (high income). We provide as a reference themedian
income of each census tract in (D) Denver and (H) Detroit.
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long-range correlations, thus highlighting the need of multi-
scale indices [15–21]. Our framework does not consider any
specific scale, but uses a dynamical approach that captures the
patterns of segregation across the multiple scales. We have
revealed how categories in the extreme of the income
distribution are more heterogeneously distributed in space
compared to middle classes, displaying larger diffusion and
synchronization times. This approach has also allowed us to
group together those cities that display common features of
segregation. In this context, it is important to note that our
work does not attempt to model the evolution of income
segregation nor can be used as a forecasting tool, but takes
modeling assumptions to assess the level of segregation that a
distribution of population exhibits.

Despite the main manuscript focuses on the economic
segregation, our methodology can be used to assess the
heterogeneity in the spatial distribution of any characteristic.
Moreover, it can go beyond the spatial component of segregation
by including in the analysis other types of graphs, e.g., the daily
mobility network of citizens. In this way, we could assess how
citizens of diverse socioeconomic environments interact through
mobility [56–59].

Summarizing, we show how diffusion and
synchronization dynamics can be used in some systems to
assess the heterogeneity in the distribution of node features.
While the present work focuses on the initial phases of
oscillators and their synchronization time, node metadata
could also be understood as an internal frequency and
provide further insights on feature correlation across
topological scales.
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1 SUPPLEMENTARY RESULTS FOR DIFFUSION AND SYNCHRONIZATION
DYNAMICS AND ECONOMIC SEGREGATION

We provide here supplementary results related to the study of income segregation in US cities. Figure S1
reports (A) the mean and (B) standard deviation of xki in Boston, Cleveland, Detroit and Denver. Both of
them reach minimum values between 8-10.
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Figure S1. (A) Mean of xk for each income category in Boston, Cleveland, Detroit and Denver.
(B) Standard deviation σ(xk) for each income category in Boston, Cleveland, Detroit and Denver.
(C) Moran’s I for each income category in Boston, Cleveland, Detroit and Denver. (D) Scatter plot
of the mean of xk as a function of τ̃sync(k).

1



Diffusion and synchronization dynamics reveal the multi-scale patterns of spatial segregation

The fact that classes 8-10 appear to be the less segregated is also supported by the Moran’s I as Fig. S1(C)
shows. To further assess that the mean < xk > does not strongly determine the values of τ̃sync(k), we plot
both quantities in Fig. S1(D), where no strong pattern is observed. Categories with low < xk > display
high variability in τ̃sync(k) and vice-versa.

In Fig. S2 we provide the ranking of the selected US cities according to the value of τ̃sync(k) for the
lowest and highest income categories 1 and 16, respectively. As can be seen, there are significant variations
in the ranking depending on which economic category is shown; for example, Cleveland is close to the top
for category 1 but far apart for 16, and the other way around for Seattle.
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Figure S2. Ranking of the selected US cities according to the value of τ̃sync(k), for income class 1 (A)
and income class 16 (B).
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2 COMPARISON WITH OTHER SEGREGATION MEASURES
In this section we assess how the normalized synchronization time τ̃ksync relates to other segregation
measures. In particular we focus on the widely used Moran’s I [1], which focuses on local correlations, and
one obtained from class mean first passage times (CMFPT) developed in [2, 3], which captures long-range
spatial correlations.

For each city and category k the Moran’s I can be written as

Ik =

1

W

n∑
i=1

n∑
j=1

wij(x
k
i − x̄k)(xkj − x̄k)

1

n

n∑
i=1

(xki − x̄k)2

, (S1)

where xki is the fraction of population in i that belongs to category k, x̄k is its mean across all spatial units,
the weights wij correspond in our case to the spatial adjacency matrix aij , and W =

∑n
i=1

∑n
j=1wij is

the total weight.
As an index to assess the long-range correlations in the spatial distribution of the income categories, we

will use the class mean first passage times between classes. In this methodology [2, 3], random walkers
start from each of the spatial units in a system and move through the spatial adjacency graph until they have
visited the 16 classes at least once. For this, each location is assigned to a class with probability proportional
to its corresponding fraction of population. By averaging the number of steps that a walker needs to reach
class j across all the units that belong to category i and for multiple realizations, we can obtain the class
mean first passage times τij , which encapsulate the average number of steps needed to reach a unit of
category j when a walker departs from a unit of category i. After normalizing by a null-model in which
colors are uniformly reshuffled at random to compensate for uneven class abundances, we finally obtain
the normalized class mean first passage times τ̃ij . The quantity τ̃ij provides thus information on how much
time you need to reach category j when a walker departs from a unit of category i as compared to the
null-model, values below 1 mean that two categories are closer than in the null-model and vice-versa for
values above 1. To summarize the segregation of category k in a city we will use the CMFPT index, i.e.,
the med(τ̃)k given by the median value of τjk ∀j.

For each city included in our analysis, we measure the Pearson correlation coefficient rp between each
of the additional segregation quantities and τ̃ksync for all the 16 categories k. More specifically, for each
city rp is calculated over a set of 16 points. The distribution of rp across cities is shown in Fig. S3 for the
Moran’s I (A) and med(τ̃)k (B), where a skewness towards high values is clearly observed. Most of the
cities display correlations above 0.8 with the Moran’s I and 0.7 with the CMFPT index. Additionally, we
also show in Fig. S4 the significance of the correlations observed in each of the cities, which are also below
0.001 in most of the cases.
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In the main text we discuss the potential of our methodology to assess the multiscale patterns of
segregation in front of traditional first-neighbor approaches. In Fig. S5 we further investigate this fact by
plotting for Boston, Cleveland, Denver and Detroit the local normalized synchronization times, the local
Moran’s I loc

i (k), and the raw ratio of population of category k in each of the census tracts.

Although the segregation hotspots detected by our methodology and the local Moran’s I seem similar,
the patterns detected are significantly different. Whereas I loc

i (k) captures strong differences between
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Figure S3. Correlation between τ̃ksync and the additional segregation indicators. For each city in our
study, we calculate the Pearson correlation coefficient rp between τ̃ksync and the additional segregation
metrics over the 16 income categories. The correlation coefficient for a city is thus obtained from a set of 16
points, one per category. (A) Distribution of rp between Moran’s I and τ̃ksync across cities. (B) Distribution
of rp between the segregation calculated through normalized CMFPT med(τ̃)k and τ̃ksync across cities.
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Figure S4. Significance of the Pearson correlation coefficients between τ̃ksync and the other segregation
indicators. For each of the additional indices, we display the significance of the correlations across cities.
(A) Significance of correlations between Moran’s I and τ̃ksync. (B) Significance of correlations between
the segregation calculated through normalized class mean first passage times med(τ̃)i and τ̃ksync . The
correlation coefficient and significance for each city is obtained by comparing the segregation values for the
16 income categories. The significance values are depicted as * for p-value < 0.05, ** for p-value < 0.01,
and *** for p-value < 0.001.
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neighboors, τ̃ loc
i (k) highlights isolated regions even if the differences with their first-neighboors is low;

most likely, this is because they are far apart from regions displaying ratios of population closer to the
city average and require more time to reach the global synchronized state. In fact, the areas highlighted
by synchronization dynamics have a larger scale and allow us to identify common mesoscale patterns of
segregation across cities: a downtown that displays high values, a ring around it with low values, and finally
the suburbs with high values again. By focusing on Detroit, we can see that not only the poorer downtown
appears highlighted but also the suburbs due to their very low ratio of population of category 1. Similar
patterns can also be observed in Cleveland and Denver.

The segregation index developed in the main text is calculated as the median of τ̃ksync which confers an
equal weight to each of the income categories, disregarding the amount of population in each category.
However, we can also construct a weighted index ¯̃τ sync that can be built as

¯̃τ sync =

∑
k

Pkτ̃sync(k)∑
k

Pk

, (S2)

where Pk is the total number of citizens that belong to category k in a given city. The ranking of cities
according to the value of ¯̃τ sync (Fig. S6) displays only slight changes with, for example, Philadelphia and
Los Angeles closer to the top of the ranking. We test the relation between both indices in Fig. S7, where a
clear relationship between both quantities is revealed.
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Figure S5. Comparison of local segregation indicators in Boston, Cleveland, Denver and Detroit. (A)
Normalized synchronization time, (B) Local Moran correlation, and (C) proportion of citizens for each
census tract and income class 1 (most deprived).
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Figure S6. Segregation in US cities according to an index calculated through a weighted average.
Ranking of cities according to the weighted index of segregation ¯̃τ sync.
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Figure S7. Comparison between segregation indicators obtained through synchronization dynamics.
Comparison between the weighted index of segregation ¯̃τ sync and the index med(τ̃diff(k)) used in the main
text.
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3 BEYOND ECONOMIC SEGREGATION: PARIS AROUND THE CLOCK
Besides only economic segregation, our methodology can be used to assess the spatial heterogeneity of
any other quantity, and to exemplify it, we assess in this section the segregation of the population in Paris
according to a wide set of socioeconomic indicators. The data compiles the fraction of population per
district within a certain category at each hour of the day in French cities; in this work, we focus on Paris
[4, 5, 6]. The list of indicators and categories analyzed can be found in Table S1.

Indicator Categories
Activity type At home At work Studying Shopping Leisure
Age 16-24 25-34 35-64 65 and more
Educational level Low Middle-low Middle-high High
Socioprofessional status Inactive Low Middle-low Middle-high High
Last travel mode Pub. trans. Private motor Soft mobility
Occupational status Active Student Unemployed Retired Inactive
Sex Male Female

Table S1. Socio-economic indicators and activity types analyzed for Paris.

For each indicator or category, we have a certain distribution of population per spatial unit and hour of the
day, thus we can compute how the quantity τ̃sync(k) varies during the day, as we show in Fig. S8(A,B) for
the five activity types, and the five socio-professional status; the patterns of synchronization through time
turn out to be very distinct. For example, the level of synchronization remains basically constant throughout
the day for low, middle and high socio-professional status, while it increases (decreases) between 8am
and 8pm for inactive (high) socio-professional status. If we focus instead on the ranking of τ̃sync(k) at
10am and 10pm, see Fig. S8(C), the lower occupational and socio-professional status seem to be the most
segregated indicators as they are on top of the ranking at both times of the day. Other categories that should
be uniformly distributed across the city, such as sex, are very close to 1, thus indicating no segregation.

The hourly patterns of each metric allow for the grouping of indicators behaving similarly as we did for
US cities. As before, we focus more on the time-series profile rather than the specific values taken by bon
τ̃hsync(k), thus analyzing the normalized P (τ̃hsync(k)) for each hour of the day h. The k-means clustering
reveals four distinct clusters (see Fig. S9) which correspond to: those increasing during workings, those
decreasing, those remaining almost constant, and those with a more characteristic behavior with a peak
during midday and at the end of the day, roughly around the lunch and dinner times.

Finally, we assess the local segregation of districts by measuring their local normalized synchronization
time. In particular, we show an example in Fig. S10 for the population performing leisure activities and
those with inactive socio-professional status. In agreement with the temporal pattern shown in Fig. S8, the
segregation is much higher at 10pm compared to 10am, especially concentrated in the centre of the city; a
not so surprising result given that most of the leisure activities are concentrated in that part of the city. In
the case of the population with inactive socio-professional status, the hotspots seem to be concentrated in
the northern part of the city, a region known for suffering a thriving inequality.
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Figure S8. Synchronization around the clock in Paris. (A) Normalized synchronization time for the
distribution of population performing each of the five types of activities. (B) Synchronization time for the
distribution of population of each socio-professional status. (C) Change of synchronization times for all of
the indicators at 10am (green) and 10pm (red).
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Figure S9. Clustering analysis of segregation around the clock in Paris. (A) Pattern of synchronization
times P for each of the four main groups detected with the K-Means algorithm. (B) Cluster assignment for
each of the indicators analyzed.
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Figure S10. Local synchronization around the clock in Paris. (A, B) Normalized synchronization time
for each Paris district for the population performing leisure activities at 10am and 10pm. (C, D) Normalized
synchronization time for each Paris district for the population with inactive socio-professional status at
10am and 10pm. For visualization purposes the color range is common to all four maps.
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