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Congestion emerges when high demand peaks put
transportation systems under stress. Understanding the
interplay between the spatial organization of demand, the
route choices of citizens and the underlying infrastructures is
thus crucial to locate congestion hotspots and mitigate the
delay. Here we develop a model where links are responsible
for the processing of vehicles, which can be solved
analytically before and after the onset of congestion, and
provide insights into the global and local congestion. We
apply our method to synthetic and real transportation
networks, observing a strong agreement between the
analytical solutions and the Monte Carlo simulations, and a
reasonable agreement with the travel times observed in 12
cities under congested phase. Our framework can incorporate
any type of routing extracted from real trajectory data to
provide a more detailed description of congestion
phenomena, and could be used to dynamically adapt the
capacity of road segments according to the flow of vehicles,
or reduce congestion through hotspot pricing.
1. Introduction
Almost 25% of greenhouse gas (GHG) emissions in the USA and
Europe are a consequence of road transportation, which are only
worsened by the congestion produced by the stress of the
infrastructures [1,2]. Pollution is, however, only one of the many
adverse outcomes of congestion as it also affects the safety of
pedestrians and drivers [3] and strongly impacts local and
global economies [4,5]. All together, it makes the mitigation of
congestion an imperative.

The interest in understanding the emergence of congestion and
improving urban mobility led to the development of a wide variety
of models [6–11]: going from the more microscopic car-following
approaches aiming to reproduce the interaction between vehicles
to the more aggregated based on the distribution of flows.
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In between, we find models based on critical phenomena that have been useful to assess the role of
topology in the emergence of congestion and its optimization [12–19].

Although a majority of traffic models are link-oriented [8–11,20], most of the approaches based on
critical phenomena and complex networks were done at the node level, as they were originally
intended to understand the movement of packets in communication networks; later, they were
extended to transportation systems [21–27]. Nodes, or junctions, are responsible for processing the
vehicles and are the basic units that can become congested. However, in the case of road
transportation, it only provides a partial picture, since not all the segments that arrive at a junction
might get necessarily congested at the same time. In fact, most of the sophisticated models aiming to
fit on-road congestion are done at the link level [8,20,28–31] and empirical evidence of a jamming
transition at the level of link has been recently found [32]. Moreover, the congestion data provided by
common-day applications such as Google Maps [33] or Uber data [34] usually appears at the link
level. Besides traffic dynamics, a link approach has allowed the implementation of more efficient
policies of epidemic containment [35].

In this work, we develop an extension of the microscopic congestion model (MCM) developed in [25]
where the links are now responsible for processing the vehicles and are the main entities that suffer
congestion. Together with the model, we derive a set of transport balance equations that provide
analytical predictions for the local and global levels of congestion. We first validate our analytical
approach in spatial synthetic graphs built through two models that resemble inter- and intra-city
transportation infrastructures, showing how the link model gives rise to some unique features
compared with the node one. In the second part, we investigate how our model can provide us with
useful insights into the dynamics of urban congestion.
2. Results
2.1. Link microscopic congestion model
We develop here a model to mimic the on-road urban mobility based on [25] and the critical phenomena
on complex networks, but where the links are now responsible for delivering the vehicles instead of
the nodes. The framework allows for a more realistic depiction of urban mobility since congestion
usually occurs in the road segments—or links—rather than in the intersections. The node model
assumes that all the road segments that arrive at an intersection get congested at the same time once
the flow of vehicles is higher than its capacity, a property that might not necessarily be observed in
real-world scenarios.

In our model, vehicles are generated in a node or junction i at a rate of ρi per time step, with a
destination that can be drawn from any type of probability distribution, and they move using the
road segments or links following a routing algorithm. In this section, we assume that origins and
destinations are homogeneously distributed among the nodes, with an equal injection rate ρ
(ri ¼ r, 8i), and routes follow the shortest path to facilitate the calculations, yet it could be extended to
any other type of routing and origin–destination matrices. Each of the links in the system connecting
a node i with a node j has a fixed capacity τij—the number of vehicles they can process per time
step—and their congestion level at time t is determined by the balance equation

DqijðtÞ ¼ gijðtÞ þ sijðtÞ � dijðtÞ, ð2:1Þ
where gij(t) is the number of vehicles generated at i entering the road segment ij, σij(t) is the number of
vehicles entering link ij from the adjacent links, and dij corresponds to the vehicles processed by the road
segment. Given that the maximum value dij can attain is bounded by the road capacity τij, as long as
Δqij(t) is equal to zero (gij(t) + σij(t) < τij) the road segment is not congested, while congestion will
grow if gij(t) + σij(t) > τij.

In detail, gij(t) is calculated by multiplying the injection rate at node i, ρi(t), and the probability that a
vehicle generated in i goes through the segment from i to j, poriginij ,

gijðtÞ ¼ riðtÞporiginij , ð2:2Þ

where poriginij is given by the total number of paths that start at i and go through ij divided by the total
number of paths starting at node i. The quantity σij(t) can be obtained by solving the set of coupled
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link flow equations

sijðtÞ ¼
XN
k¼1

PkijðtÞpkiðtÞdkiðtÞ, ð2:3Þ

where N is the number of nodes, Pkij is the probability that a vehicle traversing the link from k to i
traverses then the link from i to j, pki is the probability of traversing the link from k to i but not
finishing in i, and dki accounts for the total number of vehicles traversing the link going from k to i.
The quantities Pkij and pki are general and can be adapted to any type of routing algorithm yet we
focus here on the shortest path that minimizes the sum of weights. Although the shortest path
approach might seem rather simplistic, the betweenness centrality has been repeatedly related to the
patterns of road usage and congestion [28,36–40]. Further details on how to solve the coupled system
of equations can be found in the Methods section.
R.Soc.Open
Sci.9:220894
2.2. The link model in synthetic networks
To determine the global level of congestion we use the long-established order parameter [21,25,41]

hðrÞ ¼ lim
t!1

hDQi
Nr

, ð2:4Þ

where

hDQit ¼
XN
i,j¼1

aijDqij ð2:5Þ

is the temporal average of the increment of vehicles trapped in the system, aij are the elements of the
adjacency matrix of the network (1 if road segment ij exists, 0 otherwise), and ρ is the global injection
rate. When no vehicles are trapped in the system, hDQi � 0, there is no congestion and thus η(ρ) = 0.
In the extreme case, when most of the vehicles entering the system get trapped, hDQi � Nr and, thus,
η(ρ)∼ 1. For the sake of simplicity, and without loss of generality, we have assumed a homogeneous
generation of vehicles at each node (ρi = ρ) and distribution of destinations.

We start by validating our framework in synthetic spatial graphs obtained from a cost-driven growth
model designed to generate road networks depending on the trade-off between cost and efficiency [42].
The model aims to reproduce the interurban transportation infrastructures and has a parameter β that
tunes the relevance of the cost: when β is low, the cost term is negligible and the links connect
peripheral nodes to the most influential hubs. Conversely, as β increases the cost term becomes
important producing shorter links and patterns compatible with random geometric graphs [43].

To properly compare the node model developed in [25] with our link model, either link or node
capacities need to be rescaled; otherwise, by setting τij = τj for all links, each node would have a
capacity equivalent to its in-degree. Although multiple capacity normalizations could be implemented,
we focus here on either a global rescaling of the node model equivalent to the link model with τij = τ,
or a local rescaling of the link capacity equivalent to the node model with τi = τ.

To achieve a node model equivalent to the link model with τij = τ, we set the capacity of each node
equal to τi = τE/N where E is the total number of edges and N the total number of nodes in the graph.

To rescale the link model so that the capacity is equivalent to the node model with τi = τ, we have
implemented both a degree and a betweenness centrality normalization. In the degree normalization,
each road segment ij has a capacity 1=kinj , where kinj is the in-degree of node j, while in the
betweenness centrality one, the capacity of each junction is distributed through the incoming
segments proportionally to their betweenness centrality while preserving

P
i tij ¼ t j (see Methods).

The degree rescaling can be understood as the implementation of a traffic light that allows an
intermittent flow of vehicles between the incoming links. In the case of the betweenness centrality, the
behaviour would be more similar to that of a roundabout in which the capacity across the links is
adjusted to the number of vehicles passing through them.

In figure 1, we compare the standard node and link models—τi = 1 and τij = 1—together with the node
model with global rescaling and the two versions of the link model with adjusted capacities, in extreme
network topologies with β = 0.01 and β = 50 (see inset). We observe an overall good agreement between
the analytical solution and the Monte Carlo simulations. Comparing first the link model with τij = 1 (red)
and the node model with global rescaling (blue), the first features lower congestion despite being
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Figure 1. Congestion transition in synthetic graphs for the link and node models. Evolution of the order parameter η as a function
of the injection rate ρ for the node model with τi = 1 (green) and global adjusted capacity (blue), the link model with τij = 1 (red),
the link model with k-adjusted capacity etkij (yellow) and the link model with cB-adjusted capacity etcBij (orange) in two networks with
(a) β = 0.01 and (b) β = 50. As an inset we depict the corresponding graphs. Markers correspond to the simulations and lines
indicate the analytical solution of the balance equations. With the exception of the link model without normalization, the rest
of them are equivalent in terms of total capacity.
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comparable in terms of total capacity, probably a consequence of their different capacities at the local
level. Whereas all junctions have the same capacity in the node model with global rescaling, in the
link model the effective capacity of junctions—obtained by summing the capacity of incoming links—
is equal to their in-degree. Such difference, combined with the fact that the betweenness centrality of
nodes with high degree tends to be higher, makes the link model more efficient in managing traffic.
The differences are particularly high for β = 0.01, where the networks resemble a star graph and the
node of highest degree accumulates most of the paths. Our results evince that when capacities are
equivalent at the system level but not at the local one, the link model features a more efficient
processing of vehicles.

If, instead, we consider the normalized versions (orange and yellow) of the link model that have an
equivalent total capacity to the node model with τij = τ = 1 (green), we get a more nuanced message. The
k-adjusted model suffers from higher congestion than the node model for low ρ, but as the injection rate
increases, a crossover appears and the node model appears more congested. In the k-adjusted model, the
homogeneous distribution of capacities across the links finishing in a junction leads to an early
appearance of congestion, compared with the node model where the full junction capacity can be
allocated to the segment with the highest vehicle flow. Conversely, large values of ρ induce the
congestion of most of the junctions in the node model affecting almost all road segments, while in the
link model those links with lower flows can still operate regardless of the congestion of other segments.
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The capacity adjustment by betweenness centrality compensates for the initial disadvantage of the
k-adjusted model for low injection rates, producing similar values of η to the node model at low
injection rates but outperforming it as ρ increases. The transition to the congested phase happens at
the same value of the injection rate ρc for the node and betweenness centrality adjusted models. By
comparing the transitions for both networks, we observe little to no difference between the link model
with degree normalization and the node model for β = 50 but a more significant difference for β = 0.01.

We can gain further insights by comparing the critical generation rates for the node model [25]

rnmc ¼ min
i

tðN � 1Þ
Bi þ 2ðN � 1Þ , ð2:6Þ

with the one for the link model

rlmc ¼ min
i,j

tijðN � 1Þ
Bij

, ð2:7Þ

which in the degree normalization becomes

rlm�k
c ¼ min

i,j

tðN � 1Þ
kinj Bij

: ð2:8Þ

We compare both critical generation rates in figure 2, where rnmc progressively increases with β and
rlm�k
c features a U-shape. It decreases with β until it reaches a minimum around 1, and increases
thereafter. To explain such behaviour, the inset displays the algorithmic betweenness centrality of the
first link that gets congested as a function of the inverse of its degree. For low values of β, the first
link to become congested has a low capacity but also a low betweenness centrality. As β increases, the
spatial graphs display a combination of long- and short-range links producing a steeper increase of
the betweenness centrality compared with 1=kin

c

j . As long-range links disappear and the networks
resemble random geometric graphs, the degree of nodes decreases, inducing an increase of rlm�k

c .
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Figure 3. Evolution of the order parameter η as a function of the injection rate ρ for each of the models and several values of β.
Evolution of η(ρ) for (a) the node model, (b) the link model without capacity normalization (τij = τi), (c) the link model with k-
adjusted normalization (etkij), and (d ) the link model with cB-adjusted normalization (etcBij ). The parameter β determines the
underlying structure of the spatial graph, low values produce a highly hierarchical layout in front of high values that produce a
layout closer to random geometric graphs (RGG) (see inset of figure 1). Results are averaged over 50 network realizations.
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For completeness, we provide the critical generation rate in the link model with betweenness centrality
normalization, which as expected, is equal to that of the node model with τi = τ = 1.

To investigate in detail the interplay between the network topology and each of the models, we
display in figure 3 their whole congestion transition η(ρ) as a function of β. The link model without
normalized capacities shows a qualitatively and quantitatively different behaviour, performing better
for networks with low β, as opposed to the rest of the models that display less congestion for high β.
In hierarchical graphs, most of the flows traverse the high degree junctions, whose capacity is heavily
affected by the renormalization. In fact, in the non-normalized link model, the total junction capacity
is equivalent to its incoming degree, improving the performance of networks where most of the flows
traverse high-degree nodes. The comparison between the link models with adjusted capacity and the
node model for other values of β are similar to the results for β = 50 (figure 1), with the k-adjusted
model displaying a transition before the node model but with a crossover for higher values of ρ. In a
similar line, we have analysed in electronic supplementary material, Supplementary Note 1 the DT+
MST model developed in [39,40] that mimics the intra-urban road structure, observing a similar
global behaviour.

Our analytical approach provides us with a prediction for the number of vehicles traversing each
of the road segments. In figure 4, we display the comparison between dij in the simulations and
the analytical solution for each of the link models (b–d ) with varying capacities as well as the
results for the node model (a). Two injection rates have been tested, one in the free-flow regime
(ρ = 0.001) and another in the congested phase (ρ = 0.01). As the Pearson correlation coefficient
indicates, the agreement between them is high for several values of the injection rate. It is worth
noting that the maximum value dij can attain in the adjusted versions is not one due to the
renormalization of capacities.

We further inspect the differences between the node model and the three flavours of the link model
proposed in figure 5, where we show the level of congestion in a β = 50 network for ρ = 0.007. To ease the
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comparison between them, we show the normalized flow of vehicles edij (edi) given by the ratio dij/τij (di/
τi). In (a) and (b), we show the standard versions where the capacity of nodes and links is equal, τij = τi = 1.
Given the higher total capacity of the latter, for ρ = 0.007 we only observe two links close to the congested
state, in contrast to the node model where several congested junctions appear. Instead, the link model
with degree-adjusted capacity (c) has a similar congestion on account of their equivalent capacity, with
congested links in many cases connected to the corresponding most congested junctions. Still, there
are many low-congested links connected to nodes that appear heavily congested in the node model.
The fact that the congestion of a node affects all the incoming links allows the link model with degree
normalization to outperform it for high congestion levels. Finally, in the model normalized by
betweenness (d ), we observe that the congestion level of the links sharing destination junction is much
more similar than in the other approaches since capacity has been adjusted to the flow of vehicles.
However, that only happens before the congestion onset since the block of links affects the effective
flow of vehicles.
2.3. Robustness of synthetic networks
Accidents, storms and other types of rare events can affect the normal functioning of transportation
infrastructures, reducing the effective capacity of road segments or junctions, depending on the case.
We test next if our analytical approach can predict the aftermath of such failures by using the node
model and the link model where capacities are adjusted by the degree. In figure 6a, we evaluate the
increase of congestion that appears as a consequence of a 90% capacity reduction of up to 25% of the
nodes with the highest betweenness centrality. Therein we confirm the validity of our analytical
framework despite the more complex behaviour and provide further proof that the dynamics of both
models are significantly different. As before, the link model adjusted by degree exhibits more
congestion for low injection rates but outperforms the node model as ρ increases. From an
infrastructure planning perspective, authorities should be aware that a reduction in only 5% of links
significantly increases the congestion of the system.
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Unlike to the node model, our framework now allows us to assess not only the failure of junctions but
also that of links which are also common in real-world systems. In figure 6b, we report how the failure of
the links with higher betweenness centrality impacts the congestion, with a strong increase even for a
failure of a scarce 5% of the links. Interestingly, as the reduction of capacity is equivalent in both
cases, there are no significant differences between the failure of a given link or a junction.

2.4. Application to real-world scenarios
We assess next if our framework can effectively provide insights into the congestion level of 12 cities,
namely Amsterdam, Brussels, Madrid, Miami, Mumbai, Paris, Pittsburgh, Sao Paulo, Seattle, Taipei,
Toronto and Washington. To better mimic the real congestion dynamics, we have distributed the
destinations according to the points of interest (POI) extracted from the location-based social network
Gowalla [44], and set an injection rate ρdata that induces a congestion equivalent to the percentage of
delay provided by the TomTom index by 2019 [45]. In other words, if the congestion level in Madrid
was of 23% by 2019, we set the ρdata that satisfies η(ρdata) = 0.23. To do so, we increase progressively ρ
until we match the corresponding value of η. Since our model does not include any parameter besides
the choice of the routing algorithm, this is the only calibration in place. Our approach allows for more
realistic OD patterns compared with the random case, although more sophisticated methods exist
using mobile phone data or location-based social networks [46–50]. Further details on the modelling
of congestion in cities can be found in the Methods section. In figure 7, we show the average value of
vehicles traversing each segment dij obtained from our model in Seattle, Miami, Paris and Madrid,
together with the observed traffic counts ddataij . Depending on the analysed city, traffic counts are given
either on an average yearly volume or an hourly based. As can be observed, the flows obtained from
our model are compatible with the real traffic counts in all four cities, with most of the vehicles going
through the main arterial roads. From a policy-oriented perspective, either the congestion hotspots
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Figure 6. Robustness of synthetic graphs under failures. Effect of reducing the capacity of (a) junctions and (b) segments. In (a), we
display the updated congestion level η after the capacity of the junctions with top 10% and top 25% is reduced to one-tenth of the
original value. Dashed lines and triangles correspond to the node model and regular lines and squares to the link model with k-
adjusted capacity. To simulate the failure of a junction in the link model, all the links arriving to a junction see their capacity
reduced to one tenth. In (b), we display the updated congestion level η after the capacity of the junctions with top 10% and
top 25% is reduced to one-tenth of the original value.
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highlighted by our model would need capacity reinforcement or the spatial distribution of destinations
could be modified. In Madrid and Paris, the flow of vehicles through the main ring roads is significantly
lower than in the real data since a vast majority of that traffic comes from trips originating outside the
city. We provide in the electronic supplementary material, table S1 the Pearson correlation between
the real and the observed traffic counts in Madrid for each type of venues.

Beyond the correct evaluation of the spatial patterns of congestion, we also probe if the link model
provides useful insights into the delay it produces. More concretely, we aim to match the travel times
and delays observed in our model with those provided by the Uber movement data [34]. The two
main quantities we analyse are thus the travel time Tij between cells i and j in a city, and the delay λij
measured as the ratio between the travel times under the congested phase and free-flow conditions.
Each of the quantities has been computed in the Uber data during the morning peak (Tdata

ij and ldataij )
and in our model (Tmodel

ij and lmodel
ij ) as detailed in the Methods section.

In figure 8a, we display in blue, for the set of 12 cities, the Pearson correlation coefficient rP between
the travel times in the link model under the congested phase, and those observed in the data during the
morning peak when destinations are distributed according to the community POIs. For comparison, we
display in red the correlation with the shortest paths without congestion. Comparing both, the correlation
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Figure 7. Analysis of congestion hotspots in real cities. Comparison between the congestion obtained for our model and real traffic
counts in (a,b) Seattle (USA) with ρ = 0.31, (c,d ) Paris (France) with ρ = 0.39, (e,f ) Miami (USA) with ρ = 0.31 and (g,h) Madrid
(Spain) with ρ = 0.23. In (a,c,e,g), we display the total number of vehicles traversing link dij and in (b,d,f,h) the observed traffic
counts ddataij (ddatai ) either at the level of link as in Seattle, Paris and Miami or at a concrete counter as in the case of Madrid. See
Methods section for details on how the traffic counts were computed and electronic supplementary material, figures S2–S13 for the
maps in the rest of the cities.
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increases when we take into account the information provided by the congestion as compared with the
travel times in free-flow. When including the congestion, the correlation is greater than 0.6 for all cities
and, in most of cases, greater than 0.8. If instead of the travel times we focus on the delay λij, there is also
a significant positive correlation in all the cities studied except for Taipei, figure 8b. The Pearson
correlation coefficient is especially high for Sao Paulo, Seattle, Toronto and Washington. We show
further results for the link model in the case of entertainment, food and shopping venues in electronic
supplementary material, figures S15, S17 and S19. As shown in electronic supplementary material,
figures S14, S16, S18 and S20, a similar analysis conducted with the node model provides a lower
increase in the correlations with the travel times, and suffers from a decrease in the correlations
regarding the delay itself. We have conducted additional analysis of the residuals for the regression
analysis in electronic supplementary material, figures S21–S32. It is important to note that, unlike
other models, our framework does not have any parameters and focuses only on the shortest paths.
By having more detailed information on the real routes that vehicles follow or the road capacities we
might be able to provide a better fit with the real delays [51]. The amount of detailed information
regarding the maximum speeds and the number of lanes is still scarce, limiting the predictive power
of our framework.
3. Discussion
While there is a majority of works that model the congestion phenomena in complex networks as pure
node dynamics, it appears to be a rough approximation as it assumes that the links arriving at a junction
get congested at the same time. In certain contexts such as transportation networks, a road segment can
still operate regardless of the congestion status of the links sharing destination junction. Thus, to provide
a more nuanced picture of congestion phenomena, we have extended the MCM developed in [25] at the
level of links. Our framework, that can be solved analytically, naturally brings together the two-folded
dynamics with links being responsible for processing the vehicles but a capacity limited by the
junctions, allowing non-congested road segments to operate regardless of the congestion status of the
other links sharing a terminal. The different distribution of junction capacities across the incoming
links gives rise to new and interesting rich behaviours in graphs, with certain topologies displaying
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roads do not have precise information on maximum speeds.
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better management of congestion than others. By incorporating a limited buffer to the links [24], our
model could provide further insights on the spreading of congestion [52], allowing an analytical
derivation of the most sensible links leading to the global congestion of cities. Moreover, it could
provide a better approximation to simulate the delay of vehicles, as the time needed to traverse each
link could be adjusted by the density of vehicles traversing each link, dij/τij.

In real scenarios, our methodology yields spatial patterns compatible with the real flow of vehicles
and it provides a better assessment of the delay product of congestion. From the perspective of
potential applications, and in contrast to the node approach, the link model allows for the
incorporation of harmful events of different kinds that reduce the capacity not only of junctions but
also of road segments. Our model allows for a better management of transportation infrastructures,
either by optimizing the available capacity, allowing a preferential pass of vehicles when needed, or
by modifying the patterns of origins and destinations so that the strength of congestion hotspots is
mitigated [53–55]; notwithstanding more sophisticated approaches such as the implementation of
efficient pricing schemes or the incorporation of bus lanes that facilitate public transportation [56,57].
4. Methods
4.1. Analytical derivation of congestion
The set of balance equations presented in this work can be solved analytically in an iterative form. We
let node i denote a junction, aij the adjacency matrix component for the connection between nodes i
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and j, wij the corresponding travel time, L the total number of links in a network, N the total number of
nodes, Nin

ji the number of edges arriving at junction i and Nout
ji the ones departing from it. Term by term,

we can decompose the flux of vehicles arriving to the segment ij

sij ¼
X
k

Pkijpkidki: ð4:1Þ

We can decompose the probability that a vehicle traversing link ki goes through link ij as

Pkij ¼ prgenki Ploc
kij þ ð1� prgenki ÞPext

kij , ð4:2Þ

where the first term corresponds to the vehicles generated in k that go through the links kij, and the
second term corresponds to the vehicles not generated in k that go through the links kij. In detail, the
fraction prgenki is given by the ratio between the vehicles generated in k that go through link ki and the
total number of vehicles going through ki

prgenki ¼ gki
gki þ skipextki

: ð4:3Þ

gki is again given by rip
origin
ij , and pextki is the fraction of vehicles going through ki that do not finish in i

divided by the total number of vehicles that traverse the link

pextki ¼
eBkieBki þeeki , ð4:4Þ

where eBki and eeki are, respectively, the expected number of vehicles traversing link ki but not finishing in i
and the expected number of vehicles traversing ki and finishing in i.

In the second term of equation (4.2), the probability Pext
kij is obtained by normalizing the total number

of paths not starting in k that go through the combination of junctions kij eEext
kij by the total number of

vehicles that traverse junction ki

Pext
kij ¼

eEext
kijP
j
eEext
kij

: ð4:5Þ

The second element in the multiplication of equation (4.1) pki corresponds to the vehicles traversing
edge aki not finishing in i and can be broke down as

pki ¼ pgenki plocki þ ð1� pgenki Þpextki , ð4:6Þ

where the first term accounts for the vehicles generated in k whose destination is not i, and the second
term accounts for the vehicles not generated in junction kwhose destination is not i. More in detail, pgenki is
the fraction of vehicles generated in k traversing link ki, plocki is the probability that a vehicle generated in k
does not end in i and pextki is the probability that a vehicle not generated in k traverses ki but does not finish
in i (equation (4.4)). The probability pgenki is just the fraction of vehicles generated in k that go through i
divided by the total number of vehicles entering link ki and can be written as

pgenki ¼ gki
gki þ ski

, ð4:7Þ

where poriginki is again the probability that a vehicle generated in k goes through link ki. The probability plocki
depends on the concrete distribution of origins and destinations and is equal to (N− 1)/N when vehicle
destinations are homogeneously distributed.

Similarly to Pext
kij , the probability Ploc

kij is obtained by normalizing the total number of paths starting in k
that go through the combination of junctions kij eEloc

kij by the total number of vehicles that traverse
junction ki

Ploc
kij ¼

eEloc
kijP
j
eEloc
kij

: ð4:8Þ

To properly describe the system after the congested phase, if a link ki gets congested, the contributions to
the quantities eEloc, eEext, eB and ee of the paths from a source/destination pair (s, t) traversing that link need
to be rescaled by the quantity τki/(gki + σki).
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4.2. Capacity renormalization
To allow for a fair comparison between the node and link models, the networks should have the same
total capacity. In addition, we also require that the capacity is equivalent at the junction level by
satisfying the condition X

i

aijtij ¼ t j, ð4:9Þ

where τij is the capacity of the road segment connecting junctions i and j in the link model and τj is the
capacity of junction j in the node model. The need for a renormalization is in agreement with the limited
capacity of junctions that is distributed across links with, for example, the use of traffic lights.

We propose here two different capacity renormalizations based either on the degree of a junction or
on the betweenness centrality of road segments. In the former, the capacity of a road segment aij is
normalized by the degree of j so that

etkij ¼ tij
1
kinj

, ð4:10Þ

which now yields
P

i etij ¼ t j when τij = τj and implies that the capacity of a link arriving at a junction j is
lower if there are more links arriving at it and capacity is homogeneously distributed across them.
However, the capacities could be further optimized using the number of paths that traverse the
segment from i to j or the edge betweenness centrality cBij, allowing for a normalization

etcBij ¼ tj
cBðijÞP
j0 cBðij0Þ

, ð4:11Þ

which again satisfies the relation
P

i aijetij ¼ tj when τij = τj but now distributes the capacity in agreement
with the flows traversing each link in the non-congested phase. This frame would resemble the situation
in which the road segments with a higher flow of vehicles are favoured by an increased capacity through
traffic lights.

4.3. Construction of real transportation networks
We have extracted the information on the junctions and road segments from OpenStreetMap [58] using
the Python package OSMnx [59]. The data include the geographical location of junctions and the edges
connecting them, together with some metadata such as the maximum speed. Given the limited
availability of data regarding the capacity of each road segment τij, we have set it according to its
maximum speed in metres per second. For those segments that do not include information on the
maximum speed, we have set it equal to 40 km h−1.

To simulate real scenarios, we have focused only on the node model and the link model with degree
adjusted capacity. In the former, the capacity of a junction is given by

t j ¼ 1
kinj

X
i

aijtij, ð4:12Þ

while in the latest it is given by

etkij ¼ tij
1
kinj

: ð4:13Þ

The average capacity per road junction ht ji observed in the cities studied is close to 15 as used in [25].
The details on the networks analysed and the congestion level η [45] used in each of the cities are
reported in table 1.

4.4. Distribution of destinations according to Gowalla POIs
To simulate real scenarios, we have implemented a distribution of destinations that is not homogeneous
but obeys the spatial distribution of points of interest (POIs) in the location-based social network Gowalla
[44,60]. Each of the venues can be classified into six main categories which are travel, food, nightlife,
outdoors, shopping, entertainment and community, yet in our case we have focused just on
community and shopping venues. To obtain the distribution of destinations as a function of the



Table 1. Main statistics of the real transportation network analysed, including the number of nodes, the number of links, the
injection rate observed in the TomTom data and the average junction capacity.

city nodes links ηdata 〈τi〉

Amsterdam 13 415 30 802 0.26 10.7

Brussels 15 465 33 729 0.38 9.0

Madrid 7954 14 929 0.23 11.6

Miami 17 961 48 734 0.31 10.2

Mumbai 17 082 41 790 0.65 11.0

Paris 9630 18 744 0.39 8.4

Pittsburgh 11 717 30 208 0.21 10.4

Sao Paulo 11 346 23 440 0.45 11.3

Seattle 6935 18 630 0.31 6.6

Taipei 6336 14 676 0.35 11.1

Toronto 14 270 37 332 0.33 11.2

Washington 9818 26 547 0.29 10.7
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spatial distribution of venues, we first divide each city using a grid of 500 × 500 m2 and assign each of the
venues and road junctions to its corresponding grid cell. The probability of a vehicle to have a given road
junction as a destination is calculated then as the normalized number of venues within that grid cell—the
number of venues in a cell divided by the total number of venues in a city—divided by the total number
of junctions within that cell. Such operation yields a probability distribution normalized to 1 when all the
junctions are considered.

4.5. Traffic counts
For Seattle and Miami, the traffic counts correspond to the annual average daily traffic (AADT) for the
years 2018 and 2020, respectively, which stands for the total volume of traffic on a highway segment
for 1 year, divided by the number of days in the year. For Paris and Madrid, we provide the average
hourly flow of vehicles during 2019 at the morning peak going from 07.00 to 10.00, at the link-level in
Paris and the counter-level in Madrid.

4.6. Measuring the delay in Uber movement data
The project Uber movement data [34] provides the average travel times between regions of heterogenous
shape in a city at each hour of the day. First of all, and to fairly compare the cities, we divide each city
using a grid of cells of 2 × 2 km2 and calculate the hourly travel times between them according to their
spatial overlap with the original shapes. Thus the time needed Th

ij to reach cell j when departing from cell
i at hour h is an average over the travel times between the regions intersecting i and j weighted by the
corresponding area of overlap. Since we want to focus on the congestion produced in the morning
peak, the travel times Tdata

ij will be given by the average for h∈ [07.00, 08.00, 09.00]. Besides the
quantification of the hourly travel times to evaluate the delay, we start by defining the travel time
between each pair of cells i and j under free-flow conditions as an average of the four lowest travel
times throughout a day T ff

ij . From that quantity, the delay during the morning peak will be given by
ldataij ¼ Tdata

ij =T ff
ij .

4.7. Measuring the delay in the MCM
In the MCM, we calculate the travel times between a pair of junctions i and j under the congested
phase as

WijðrÞ ¼
X
k,l[S

1þ DqklðrÞ
tkl

� �
wkl, ð4:14Þ
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where k and l are the set of nodes that belong to the shortest path S going from i to j in the non-congested
weighted graph, Δqkl is the increase of the queue in the link kl, wkl is its travel time and τkl its capacity. For
each city ρ = ρdata in order to meet the congestion observed in the TomTom data [45]. To obtain the travel
times Tmodel

ij between the same 2 × 2 km2 cells constructed for the Uber data, we average Wij over all the
road segments that belong to each of the cells. To measure the delay of trajectories starting and ending
within the same cells we follow the same procedure averaging over junctions i and j that belong to the
same cell, ensuring that i≠ j.

Data accessibility. The data on traffic counts is open and accessible in [61] for Miami, in [62] for Seattle, in [63] for Paris and
in [64] for Madrid. The coordinates and types of Gowalla POIs are open and accessible at [44]. The Uber movement
data were downloaded from [34] and the road networks were extracted using the python package OSMnx [59]. The
code used to perform the simulations of the model and extract the road networks using Python3 is available at
https://doi.org/10.5281/zenodo.6837557 [65]. The data is available online at: https://doi.org/10.5061/dryad.
x3ffbg7nv [66]. Supplementary material is available online [67].
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