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1 Congestion phenomena in the DT+MST model

In this section we assess the congestion in the DT+MST model developed in [IJ, 2] that mimics the
structure of real cities with a more densely connected center and a sparse periphery. A set of points is
homogeneously distributed in a 2D space of size Lz L and are connected according to the the Delaunay
triangulation (DT) [3]. Within a distance smaller than Rpr from the center of the domain the network is
fully preserved while for the region with radius greater than RpT most of the links are removed in order
to keep the maximum spanning tree (MST) that maximizes the betweenness centrality. The value of
Rpr determines the underlying structure of the spatial graph, low values leading to network dominated
by the MST and vice-versa for high values.

In Fig. we report 7 as a function of p for different values of Rpr in networks of 500 nodes
distributed in a space of 80 x 80. To better compare the networks we plot them as a function of EDT
which is calculted as Iz—f/’g The overall trend seems to indicate that congestion decreases the DT region
increases, likely because that there are wider paths alternatives as compared to the MST. In the context
of the results for the cost-driven networks shown in Fig. 4 of the main text, congestion seems to increase
in a more progressive way, likely as a consequence of the multiple regimes of betweenness centrality
already found in [11 [2].
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Figure S1: Evolution of the order parameter n in DT+MST graphs as a function of the
injection rate p for each of the models and several values of Rpr. Evolution of n(p) for a the

node model, b the link model without capacity normalization (7;; = 7;), ¢ the link model with k-adjusted

k

normalization (7;7) and d the link model with cp-adjusted normalization (7;;”). The parameter Rpr is

normalized by /2 where [ is the side size of the squared domain [ x [ .

A Link model approach to identify congestion hotspots



A. Bassolas et al. 4

2 Spatial distribution of congestion hotspots

We report here the congestion hotspots for the rest of cities analyzed in the case of the node model and
the link model with a capacity adjusted for node degree. More concretely we have respectively in Figs.
S52-S13 the results for Amsterdam, Brussels, Madrid, Miami, Mumbai, Paris, Pittsburgh, Sao Paulo,
Seattle, Taipei, Toronto and Washington.
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Figure S2: Amnalysis of congestion hotspots in Amsterdam. Congestion hotspots observed in
Amsterdam for a the node model and b the link model with destinations distributed according to
community venues. Both maps where generated with 7n4aa = 0.26.
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Figure S3: Analysis of congestion hotspots in Brussels. Congestion hotspots observed in Brussels
for a the node model and b the link model with destinations distributed according to community venues.
Both maps where generated with 7ga:, = 0.38.
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Figure S4: Analysis of congestion hotspots in Madrid. Congestion hotspots observed in Madrid
for a the node model and b the link model with destinations distributed according to community venues.

Both maps where generated with 7gata = 0.23.
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Figure S5: Analysis of congestion hotspots in Miami. Congestion hotspots observed in Miami for
a the node model and b the link model with destinations distributed according to community venues.

Both maps where generated with 7ga:, = 0.31.
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Figure S6: Analysis of congestion hotspots in Mumbai. Congestion hotspots observed in Mumbai
for a the node model and b the link model with destinations distributed according to community venues.
Both maps where generated with 7gata = 0.65.

Figure S7: Analysis of congestion hotspots in Paris. Congestion hotspots observed in Paris for
a the node model and b the link model with destinations distributed according to community venues.
Both maps where generated with 74,4, = 0.39.
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Figure S8: Analysis of congestion hotspots in Pittsburgh. Congestion hotspots observed in Pitts-
burgh for a the node model and b the link model with destinations distributed according to community
venues. Both maps where generated with ngqata = 0.21.
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Figure S9: Analysis of congestion hotspots in Sao Paulo. Congestion hotspots observed in Sao
Paulo for a the node model and b the link model with destinations distributed according to community
venues. Both maps where generated with nqat, = 0.45.
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Figure S10: Analysis of congestion hotspots in Seattle. Congestion hotspots observed in Seattle
for a the node model and b the link model with destinations distributed according to community venues.
Both maps where generated with 7gata = 0.31.
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Figure S11: Analysis of congestion hotspots in Taipei. Congestion hotspots observed in Taipei for
a the node model and b the link model with destinations distributed according to community venues.
Both maps where generated with 7gaa = 0.35.
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Figure S12: Analysis of congestion hotspots in Toronto. Congestion hotspots observed in Toronto

for a the node model and b the link model with destinations distributed according to community venues.
Both maps where generated with 7gata = 0.33.
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Figure S13: Amnalysis of congestion hotspots in Washington. Congestion hotspots observed in

Washington for a the node model and b the link model with destinations distributed according to
community venues. Both maps where generated with 74,1, = 0.29.
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Table S1: Pearson correlation between the traffic counts in Madrid and the flow of vehicles according to
our model. The analysis has been performed including the 10% of links with highest flow.

Venue rp
Community 0.49***
Outdoors 0.30***
Nightlife 0.39***
Shopping 0.41%**
Food 0.40***
Travel 0.44 ***

Entertainment 0.43 ***

3 Correlation with traffic counts and observed delays

We analyze here the correlations obtained for the expected delay with a different distribution of des-
tinations and other models. In Fig. we provide the results for the link model when destinations
are distributed according to the shopping venues where we observe that there is also an increase on the
prediction power from its non-delayed counterpart. By focusing only the delay, there is also a significant
correlation similar to the results in Fig. 7 of the main paper. For comparison we display in Figs.
and the same analysis for the node model. As it is shown there, although the correlations are still
present, they are lower than for the link model, specially if we focus only on the delay. We have also
analyzed the case of food venues (Figs. and and entertainment venues (Figs. and [S20).
Additional results regarding the normalized mean squared error is shown in Figs. and
[S24] We also provide in Figs. [S30} [529] [S26][S25] the analysis of residuals for the travel times and delay
regression in the case of community venues for the link model and in Figs. for the
node model.

a Community venues (node dynamics)
L0 mm p=pgaa

Figure S14: Correlation between the real and modelled delays in the node dynamics when
destinations are distributed according to the community POIs. (a) Comparison between the
Pearson correlation coefficient obtained between the travel times from Uber Data [4] during the mornning
peak (8 — 10am) in a set of cities and the travel times obtained for p = 0 (red) and p = pgata (blue).
(b) Pearson correlation coefficient between the delay observed in the data and in the model. Asterisks
indicate the level of significance (x p-value< 0.05, #* p-value< 0.01, * * x p-value< 0.001. The injection
rate for each city pgata is set to match n with the percentage of delay observed in the Tom Tom traffic
index data [5].
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a Shopping venues (link dynamics)
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Figure S15: Correlation between the real and modelled delays in the link dynamics when
destinations are distributed according to the shopping POIs. (a) Comparison between the
Pearson correlation coefficient obtained between the travel times from Uber Data [4] during the mornning
peak (8 — 10am) in a set of cities and the travel times obtained for p = 0 (red) and p = pgata (blue).
(b) Pearson correlation coefficient between the delay observed in the data and in the model. Asterisks
indicate the level of significance (x p-value< 0.05, ** p-value< 0.01, * * * p-value< 0.001). The injection
rate for each city pgata 1S set to match n with the percentage of delay observed in the Tom Tom traffic
index data [3].
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Figure S16: Correlation between the real and modelled delays in the node dynamics when
destinations are distributed according to the shopping POIs. (a) Comparison between the
Pearson correlation coefficient obtained between the travel times from Uber Data [4] during the mornning
peak (8 — 10am) in a set of cities and the travel times obtained for p = 0 (red) and p = pqata (blue).
(b) Pearson correlation coefficient between the delay observed in the data and in the model. Asterisks
indicate the level of significance (x p-value< 0.05, #* p-value< 0.01, * * % p-value< 0.001. The injection
rate for each city pgata iS set to match n with the percentage of delay observed in the Tom Tom traffic
index data [5].

A Link model approach to identify congestion hotspots
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a Food venues (link dynamics)
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Figure S17: Correlation between the real and modelled delays in the link dynamics when
destinations are distributed according to the food POIs. (a) Comparison between the Pearson
correlation coefficient obtained between the travel times from Uber Data [4] during the mornning peak
(8—10am) in a set of cities and the travel times obtained for p = 0 (red) and p = pgata (blue). (b) Pearson
correlation coefficient between the delay observed in the data and in the model. Asterisks indicate the
level of significance (* p-value< 0.05, *x p-value< 0.01, x* x p-value< 0.001). The injection rate for each
City pdata iS set to match 7 with the percentage of delay observed in the Tom Tom traffic index data [3].
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Figure S18: Correlation between the real and modelled delays in the node dynamics when
destinations are distributed according to the food POIs. (a) Comparison between the Pearson
correlation coefficient obtained between the travel times from Uber Data [4] during the mornning peak
(8 —10am) in a set of cities and the travel times obtained for p = 0 (red) and p = pqata (blue) as detailed
in Eq. XX. (b) Pearson correlation coefficient between the delay observed in the data and in the model.
Asterisks indicate the level of significance (x p-value< 0.05, *x p-value< 0.01, * * % p-value< 0.001. The
injection rate for each city pgata is set to match n with the percentage of delay observed in the Tom Tom
traffic index data [5].
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a Entertainment venues (link dynamics)
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Figure S19: Correlation between the real and modelled delays in the link dynamics when
destinations are distributed according to the entertainment POIs. (a) Comparison between
the Pearson correlation coefficient obtained between the travel times from Uber Data [4] during the
mornning peak (8 — 10am) in a set of cities and the travel times obtained for p = 0 (red) and p = pdata
(blue). (b) Pearson correlation coefficient between the delay observed in the data and in the model.
Asterisks indicate the level of significance (x p-value< 0.05, xx p-value< 0.01, x* x p-value< 0.001). The
injection rate for each city pgata is set to match n with the percentage of delay observed in the Tom Tom
traffic index data [3].
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Figure S20: Correlation between the real and modelled delays in the node dynamics when
destinations are distributed according to the entertainment POIs. (a) Comparison between
the Pearson correlation coefficient obtained between the travel times from Uber Data [4] during the
mornning peak (8 — 10am) in a set of cities and the travel times obtained for p = 0 (red) and p = pgata
(blue). (b) Pearson correlation coefficient between the delay observed in the data and in the model.
Asterisks indicate the level of significance (x p-value< 0.05, *x p-value< 0.01, * * x p-value< 0.001. The
injection rate for each city pgata is set to match 1 with the percentage of delay observed in the Tom Tom
traffic index data [5].
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a,, Community venues (link dynamics)

Figure S21: Correlation between the real and modelled delays in the node dynamics when
destinations are distributed according to the community POIs. (a) Normalized root mean
squared error (NRMSE) obtained by dividing the standard deviation of the residuals by the sample mean
for the regression between the travel times from Uber Data [4] during the mornning peak (8 — 10am) in
a set of cities and the travel times obtained for p = 0 (red) and p = pgata (blue). (b) Normalized root
mean squared error (NRMSE) obtained by dividing the standard deviation of the residuals by the sample
mean for the regression between the delay observed in the data and in the model. Asterisks indicate the
level of significance (* p-value< 0.05, #* p-value< 0.01, * * * p-value< 0.001. The injection rate for each
City pdata 1S set to match 7 with the percentage of delay observed in the Tom Tom traffic index data [5].
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Figure S22: Correlation between the real and modelled delays in the node dynamics when
destinations are distributed according to the community POIs. (a) Normalized root mean
squared error (NRMSE) obtained by dividing the standard deviation of the residuals by the sample mean
for the regression between the travel times from Uber Data [4] during the mornning peak (8 — 10am) in
a set of cities and the travel times obtained for p = 0 (red) and p = pqata (blue). (b) Normalized root
mean squared error (NRMSE) obtained by dividing the standard deviation of the residuals by the sample
mean for the regression between the delay observed in the data and in the model. Asterisks indicate the
level of significance (x p-value< 0.05, #* p-value< 0.01, * * * p-value< 0.001. The injection rate for each
City pdata 1S set to match 7 with the percentage of delay observed in the Tom Tom traffic index data [5].
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a,,  Community venues (node dynamics)
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Figure S23: Correlation between the real and modelled delays in the link dynamics when
destinations are distributed according to the shopping POIs. (a) Normalized root mean squared
error (NRMSE) obtained by dividing the standard deviation of the residuals by the sample mean for
the regression between the travel times from Uber Data [4] during the mornning peak (8 — 10am) in a
set of cities and the travel times obtained for p = 0 (red) and p = pqata (blue) as detailed in Eq. X X.
(b) Normalized root mean squared error (NRMSE) obtained by dividing the standard deviation of the
residuals by the sample mean for the regression between the delay observed in the data and in the model.
Asterisks indicate the level of significance (x p-value< 0.05, *x p-value< 0.01, * * % p-value< 0.001. The
injection rate for each city pgata is set to match n with the percentage of delay observed in the Tom Tom
traffic index data [5].
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Figure S24: Correlation between the real and modelled delays in the node dynamics when
destinations are distributed according to the shopping POIs. (a) Normalized root mean squared
error (NRMSE) obtained by dividing the standard deviation of the residuals by the sample mean for the
regression between the travel times from Uber Data [4] during the mornning peak (8 — 10am) in a set
of cities and the travel times obtained for p = 0 (red) and p = pgata (blue). (b) Normalized root mean
squared error (NRMSE) obtained by dividing the standard deviation of the residuals by the sample mean
for the regression between the delay observed in the data and in the model. Asterisks indicate the level
of significance (x p-value< 0.05, *x p-value< 0.01, * x x p-value< 0.001. The injection rate for each city
Pdata 18 set to match n with the percentage of delay observed in the Tom Tom traffic index data [3].
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Community venues (link dynamics)
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Figure S25: Residual analysis for the regression between the travel times in the link dynamics
when destinations are distributed according to the community POIs. (a) Residual analisis for
the regression between the travel times from Uber Data [4] during the morning peak (8 — 10am) in a set
of cities and the travel times obtained for p = pqata-
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Figure S26: Residual analysis for the regression between the delays in the link dynamics
when destinations are distributed according to the community POIs. (a) Residual analysis for
the regression between the travel times from Uber Data [4] during the morning peak (8 — 10am) in a set
of cities and the travel times obtained for p = pqata-
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Figure S27: Residual analysis for the regression between the travel times in the node dynam-
ics when destinations are distributed according to the community POIs. (a) Residual analysis
for the regression between the travel times from Uber Data [4] during the morning peak (8 — 10am) in
a set of cities and the travel times obtained for p = pgata-
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Figure S28: Residual analysis for the regression between the delays in the node dynamics
when destinations are distributed according to the community POIs. (a) Residual analysis
for the regression between the delay observed in the Uber Data [4] during the morning peak (8 — 10am)
and in the model for p = pgata-
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Figure S29: Distribution of residuals for the regression between the travel times in the
link dynamics when destinations are distributed according to the community POIs. (a)
Distribution of residuals for the regression between the travel times from Uber Data [4] during the
morning peak (8 — 10am) in a set of cities and the travel times obtained for p = pgata-
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Figure S30: Distribution of residuals for the regression between the delays in the link dynam-
ics when destinations are distributed according to the community POIs. ((a) Distribution of
residuals for the regression between the delay observed in the Uber Data [4] during the morning peak
(8 — 10am) and in the model for p = pgata-
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Figure S31: Distribution of residuals for the regression between the travel times in the
node dynamics when destinations are distributed according to the community POIs. (a)
Distribution of residuals for the regression between the travel times from Uber Data [4] during the
morning peak (8 — 10am) in a set of cities and the travel times obtained for p = pgata-
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Figure S32: Distribution of residuals for the regression between the delays in the node dy-
namics when destinations are distributed according to the community POIs. (a) Distribution
of residuals for the regression between the delay observed in the Uber Data [4] during the morning peak
(8 — 10am) and in the model for p = pgata-
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