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Abstract. The modular structure is pervasive in many complex networks of
interactions observed in natural, social and technological sciences. Its study
sheds light on the relation between the structure and the function of complex
systems. Generally speaking, modules are islands of highly connected nodes
separated by a relatively small number of links. Every module can have the
contributions of links from any node in the network. The challenge is to
disentangle these contributions to understand how the modular structure is built.
The main problem is that the analysis of a certain partition into modules involves,
in principle, as much data as the number of modules times the number of
nodes. To confront this challenge, here we first define the contribution matrix,
the mathematical object containing all the information about the partition of
interest, and then we use truncated singular value decomposition to extract the
best representation of this matrix in a plane. The analysis of this projection allows
us to scrutinize the skeleton of the modular structure, revealing the structure of
individual modules and their interrelations.

4 Author to whom any correspondence should be addressed.

New Journal of Physics 12 (2010) 053009
1367-2630/10/053009+18$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:alexandre.arenas@urv.cat
mailto:javier.borge@urv.cat
mailto:sergio.gomez@urv.cat
mailto:gorka_agnld@yahoo.es
http://www.njp.org/


2

Contents

1. Introduction 2
2. Projection of the modular structure 3

2.1. Singular value decomposition (SVD) of the modular structure . . . . . . . . . 3
2.2. An optimal 2D map of the modular structure of networks . . . . . . . . . . . . 4
2.3. Structure of individual modules . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4. Interrelations between modules . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. Application to synthetic networks 6
4. Application to real networks 9
5. Conclusions 13
Acknowledgments 15
Appendix A. Properties of TSVD 15
Appendix B. Projection using TSVD of rank 2 15
Appendix C. Geometrical properties of the projection of C 16
Appendix D. Effect of noise on C 16
References 17

1. Introduction

The concept of the modular structure in real complex networks [1] is revolutionizing the
understanding of the evolution of complex systems [2]. A lot of efforts have been devoted to its
automatic detection [3]–[5]; however, very little is known as yet about the actual skeleton of the
detected modules that build the network. This skeleton is likely to be relevant to understanding
why physical processes in complex networks, such as synchronization [6], present emergent
phenomena that are affected by the existence of topological barriers between modules. We
still lack fundamental tools to anticipate these phenomena from a topological perspective.
The current work is intended to provide network scientists with novel tools to screen the
modular structure. The comprehension of modular structure in networks necessarily demands
the analysis of the contribution of each one of its constituents (nodes) to the modules. Recently,
Guimerà et al [7, 8] advanced on this issue, proposing two descriptors to characterize the
modular structure: the z-score (a measure of the number of standard deviations a data point
is from the mean of a data set) of the internal degree of each node in its module and the
participation coefficient (P), defined as how the node is positioned in its own module and with
respect to other modules. Given a certain partition, the plot of nodes in the z–P plane admits
a heuristic tagging of the nodes’ role. The success of this representation relies on a consistent
interpretation of topological roles of nodes according to the specific data analyzed.

Here, we introduce a formalism to reveal the characteristics of networks at the topological
mesoscale, where the representation of the network is viewed as a set of interconnected modules.
We propose a method, based on linear projection theory, to study the modular structure in
networks that enables a systematic analysis and elucidation of its skeleton. Firstly, we construct
a matrix containing all the information about the modular structure, and secondly, we find an
optimal dimensional reduction of the information contained in it. In particular, we present the
optimal mapping of the information about the modular structure (in the sense of least squares)
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in a two-dimensional (2D) space. The method has been applied to synthetic and real networks.
The statistical analysis of the geometrical projections allows us to characterize the structure of
individual modules and their interrelations in a unified framework.

The paper is structured as follows. In section 2, we present the motivation of the method
and the main findings to interpret the outcome. In section 3, the method is illustrated using
synthetic networks whose structure is controlled. Finally, in section 4, the method is tested in
real networks and an explanation of the results is offered.

2. Projection of the modular structure

A complex network (weighted or unweighted, directed or undirected) can be represented by its
graph matrix W , whose elements Wi j are the weights of the connections from any node i to any
node j . Assuming that a certain partition of the network into modules is available, we plan to
analyze this coarse grained structure. Note that the partition can be obtained by various methods
and that the method we propose based on modularity [3] is one possibility. The main object of
our analysis is the contribution matrix C, of N nodes to M modules. The rows of C correspond
to nodes, and the columns to modules. The analysis of this matrix is the focus of our research.
The elements Ciα are the number of links that node i dedicates to module α, and can be easily
obtained as the matrix multiplication between Wi j and the partition matrix S:

Ciα =

N∑
j=1

Wi j S jα, (1)

where if the node j belongs to module α, S jα = 1, otherwise S jα = 0. The goal is to reveal the
structure of individual modules, and their interrelations, from the matrix C. To this end, we
propose to deal with the high dimensionality of the original data by constructing a 2D map of
the contribution matrix, minimizing the loss of information in the dimensional reduction and
making it more amenable to further investigation.

2.1. Singular value decomposition (SVD) of the modular structure

The approach developed here consists of the analysis of C using SVD [9]. It stands for the
factorization of a rectangular N -by-M real (or complex) matrix as follows:

C = U6V †, (2)

where U is a unitary N -by-N matrix, 6 is a diagonal N -by-M matrix and V † denotes the
conjugate transpose of V , an M-by-M unitary matrix. This decomposition corresponds to
a rotation or reflection around the origin, a non-uniform scale represented by the singular
values (diagonal elements of 6) and (possibly) change in the number of dimensions, and
finally again a rotation or reflection around the origin. This approach and its variants have
been extraordinarily successful in many applications [9], in particular for the analysis of
relationships between a set of documents and the words they contain. In this case, the
decomposition yields information about word–word, word–document and document–document
semantic associations; the technique is known as latent semantic indexing [10] or latent semantic
analysis [11]. Our scenario is quite similar to this, where nodes resemble words and modules
resemble documents. We suggest that a similar approach will help to unravel the relations
between nodes’ contributions and modules of a certain partition.
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2.2. An optimal 2D map of the modular structure of networks

A practical use of SVD is dimensional reduction approximation, also known as truncated
singular value decomposition (TSVD). It consists in keeping only some of the largest
singular values to produce a least squares optimal, lower rank order approximation (see the
appendix). In the following, we will consider the best approximation of C by a matrix of rank
r = 2.

The main idea is to compute the projection of the contribution of nodes to a certain partition
(rows of C , namely ni for the i th node) into the space spanned by the first two left singular
vectors, the projection space U2 (see the appendix). We denote the projected contribution of the
i th node as ñi . Given that the transformation is information preserving [12], the map obtained
gives an accurate representation of the main characteristics of the original data, visualizable and,
in principle, easier to scrutinize. Note that the approach we propose has essential differences
with classical pattern recognition techniques based on TSVD such as principal components
analysis (PCA) or, equivalently, Karhunen–Loeve expansions. Our data (columns of C) cannot
be independently shifted to mean zero without losing its original meaning; this restriction
prevents the straightforward application of the mentioned techniques and also differentiates our
work from the modern techniques for the analysis of gene expression patterns [13, 14].

The main problem in using SVD lies always in the interpretation of its outcome. The
combination of data in the process makes difficult a direct comparison between input and output.
To overcome this problem, we point out the following geometrical properties of the projection
of the rows of C we have defined (see the appendix for a mathematical description):

(i) Every module α has an intrinsic direction ẽα in the projection space U2 corresponding to
the line of the projection of its internal nodes (those that have links exclusively inside the
module). We call these directions intramodular projections. This property is essential to
discern among modules that are cohesive, in the sense that the majority of nodes project in
this direction, from those modules that are not cohesive.

(ii) Every module α has a distinguished direction m̃α in the projection space U2 corresponding
to the vector sum of the contributions of all its nodes. We call these directions modular
projections. The modular projection is relevant when compared to the intramodular
projection because their deviations inform about the tendency to connect with other
modules. Note that eα and mα are equal only if the module is disconnected from the rest of
the network.

(iii) Any node contribution projection ñi is a linear combination of intramodular projections,
the coefficient of each one being proportional to the original contribution Ciα of links of
the node i to each module α. This property comes from the linearity of the projection, and
expresses the contribution of nodes to the modules to which they are connected.

Consequently, from (i) and (iii), we can classify nodes. Nodes with only internal links have a
distance to the origin proportional to its degree (or strength). Nodes with internal and external
links separate from the intramodular projection proportionally to their contributions to other
modules. From (ii) we can classify modules. Modules that have close modular projections are
more interrelated. These geometrical facts are the key to relate the outcome of TSVD and the
original data in our problem, see figure 1.
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Figure 1. Geometrical scheme of the TSVD. The intramodular projection of
module α, ẽα is the direction where all internal nodes lie (in the plot, node i). The
node contribution projections ñ are represented by vectors in different colors.
Finally, the modular projection m̃α is computed as the vector sum of all the node
contribution projections belonging to it. Note that the intramodular projection
and the modular projection do not coincide; the differences between both inform
about the cohesiveness of the module.

2.3. Structure of individual modules

To study the structure of individual modules, we concentrate on the analysis of the projection
of nodes’ contributions in the plane U2. Keeping in mind the geometrical properties (i) and
(iii) exposed above, we propose to extract structural information relative to each module by
comparing the map of nodes’ contributions to the intramodular projection directions. To this
end, it is convenient to change to polar coordinates, where for each node i the radius Ri

measures the length of its contribution projection vector ñi , and θi the angle between ñi and
the horizontal axis. We also define φi as the absolute distance in angle between ñi and the
intramodular projection ẽα corresponding to its module α, i.e. φi = |θi − θẽα

|.
Using these coordinates R–φ, we find a way to interpret correctly the map of the

contribution matrix in U2: (i) Rint = R cos φ informs about the internal contribution of nodes
to its corresponding module, as well as the contribution to its own module by connecting to
others. To clarify the latter assertion, let us assume that a node i belonging to a module β has
connections with the rest of the modules in the network. Given that this connectivity pattern is
a linear combination of intramodular directions ẽα, the vector sum implies that connecting with
modules α having |θẽβ

− θẽα
| > π/2 decreases the module R and vice versa. (ii) Rext = R sin φ

informs about the deviation (as the orthogonal distance) of each node to the contribution to
its own module, see figure 2. It is also possible to study the spreading of φ by using other
descriptors proposed in the context of synchronization [15].

We explore the internal structure of modules using the values of Rint, and we explore
the boundary structure of modules using Rext. Using descriptive statistics one can reveal and
compare the structure of individual modules. Provided that the distribution of contributions
is not necessarily Gaussian, an exploration in terms of z-scores is not convenient. Instead we
use box-and-whisker charts for the variables, depicting the principal quartiles and the outliers
(defined as having a value more than 1.5 IQR lower than the first quartile or 1.5 IQR higher than
the third quartile, where IQR is the inter-quartile range).
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Figure 2. Schematic plot of the coordinates proposed to study the structure of
individual modules. The relative distance of a node from its module is captured
by the angle φ. The respective components Rint and Rext are depicted.

The boxplots for the data of each module in the variable Rint allow for a visualization
of the heterogeneity in the contribution of nodes building their corresponding modules, and
an objective determination of distinguished nodes on its structure (outliers). Consequently, the
boxplots in Rext inform about the heterogeneity in the boundary connectivity. Nodes with links
in only one module are not considered in these statistics because they do not provide relevant
information about the boundaries (they have φ = 0); only nodes that act as bridges between
modules are taken into account. Considering internal nodes in these statistics would eventually
produce a collapse of the quartiles to zero. Assuming that every module devotes some external
links (otherwise they would be disconnected), the width of the boxes in this plot is proportional
to the heterogeneity of such efforts. If only one node makes external connections, then the
boxplot has zero width. Moreover, given two boxes equally wide, their position (median)
determines which module contributes more to keeping the whole network connected.

2.4. Interrelations between modules

The analysis of the interrelations between modules is performed at the coarse grained level
of its modular projections. The modular projections m̃α are aggregated measures of the
nodes’ contribution to their particular module. The normalized scalar product of modular
projections provides a measure of the interrelations (overlapping) between different modules.
A representation of these data in the form of a matrix ordered by the values of θm̃α

reveals the
actual skeleton of the network at the topological mesoscale, see figure 3.

3. Application to synthetic networks

We start applying the methodology of analysis to synthetic networks, having control of the
whole network structure. First, we analyze a network built from cliques of different sizes, and
we consider a line of cliques from size 3 to 10, joined only by a unique link between them. We
will consider two different partitions to test the method. The first partition consists of a module
containing the larger clique and another containing the rest of the cliques, see figure 4(a). In the
second partition, each clique forms a module, see figure 4(b). The plots in figures 4(c) and (d)
(left) show the projections of the nodes’ contributions in the plane spanned by the two first right
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Figure 3. Schematic plot of the interrelation between the modular projections of
four modules. The matrix represents the overlap computed as the scalar product
between directions.

singular vectors U2, as well as the intramodular projections of each module in this plane. The
data in U2 are transformed to polar coordinates for better visualization and simpler analysis, see
figures 4(c) and (d) (right). The structure of these plots will be repeated in the next examples.

Projecting the contribution matrix corresponding to the partition in two modules
figure 4(c), we observe clearly the relation between connectivity between nodes and the
structure of both modules. The two distinguished nodes that connect both modules lie outside
of the intramodular projections, while the rest of the nodes lie exactly in this direction. The
different positions within the intramodular projections correspond to the degree of each node;
nodes with identical contributions project to the same position. For the second partition,
figure 4(d), the modules of size 3–9 are concentrated around a similar direction, while the
clique of size 10 is separated from the rest. In the plot, we have zoomed in on the regions
in the R–θ around the directions where nodes project. For every module the projection reflects
two positions: one exactly in the intramodular direction corresponding to the internal nodes of
the clique, and another corresponding to the node that acts as a connector with the following
clique. The connectors towards the preceding clique (of lower size) are indistinguishable at the
resolution of the plot, but also lie in a different direction.

Following the test, we now apply the method to a model of a network with a well-defined
community structure that has been used as a benchmark for different community detection
algorithms [5], proposed by Newman and Girvan [3]. In that model, the authors construct a
network of 128 nodes as a set of four communities, each one formed by 32 nodes. Fixing
the mean number of links per node at a value of 16, the parameter describing the sharpness
of the community distribution is zin, the average number of links within the community. A
generalization of this model was proposed in [16] to include several hierarchical levels of
communities. The hierarchy is defined as follows: we take a set of N nodes and divide it into
n1 groups of equal size; each of these groups is then divided into n2 groups and so on, up to
a number of steps k, which defines the number of hierarchical levels of the network. Then we
add links to the networks in such a way that at each node we assign at random a number of z1

neighbors within its group at the first level, z2 neighbors within the group at the second level
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(b) Cliques line partition 8 modules
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(c) 2-modules
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Figure 4. Optimal map of the modular structure for the optimal partition of
the cliques network partitioned in two modules (a) and the cliques network
partitioned in eight modules (b); each color corresponds to a different module
of the given partition. In (c) and (d), we plot the projected space spanned by the
two left singular vectors of the TSVD, U2 (left), and its transformation to polar
coordinates R–θ (right), for each network. Dashed lines mark the directions of
intramodular projections of each module. In (d) (right), we present a zoom in θ

for better visual inspection.
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Figure 5. Analysis of a random homogeneous hierarchical network with
community structure, see the text for details. (a) Network structure. (b)
Projection as explained in figure 4.

and so on. There remains the number of links that each node has to the rest of the network;
this we will call zout. We construct a network with N = 128 nodes, two hierarchical levels with
n1 = 2, n2 = 2, z1 = 5, z2 = 10 and zout = 1. Again the method resolves the modular structure
and individual contributions in the correct way, see figure 5. In appendix D, we also test the
sensitivity and robustness of the method to slight changes in the predefined partition.

4. Application to real networks

The first network analyzed is the Zachary’s karate club network [17], accounting for the study
over two years of the friendship between 34 members of a karate club at a US university in
1970. The network in question was divided, at the end of the study period, into two groups after
a dispute between the club’s administrator (node 1) and the club’s instructor (node 34), which
ultimately resulted in the instructor leaving and starting a new club, taking about half of the
original club’s members with him. The partition we have used in our study corresponds to four
modules resulting from optimizing modularity [3] using extremal optimization [18] and refined
with Tabu search [19], providing a value of modularity Q = 0.420. After the projection, see
figure 6, we observe nodes 1 and 3 in the green module and nodes 33 and 34 in the blue module,
clearly distinguished by its value of R, denoting their important role in supporting the structure
of both modules; however, they are not the nodes that connect with other modules. It is also
remarkable that node 10 lies half-way between the modular directions of the larger modules
assessing its unclassifiable nature (this node has been persistently misclassified by most of the
community detection algorithms).
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Figure 6. Analysis of the Zachary network for the four modules found by
maximizing modularity. (a) The network with each module represented in a
different color. (b) The projection as explained in figure 4.

The proposed mapping is also applied to two other real networks: the worldwide air
transportation network and the AS–P2P Internet network. The airports network data set is
composed of passenger flights operating in the time period 1 November 2000 to 31 October
2001, compiled by OAG Worldwide (Downers Grove, IL) and analyzed previously by Professor
Amaral’s group [8]. It consists of 3618 nodes (airports) and 14 142 links; we used the
weighted network in our analysis. Airports corresponding to a metropolitan area have been
collapsed into one node in the original database. The AS–P2P Internet data set considered is
composed of autonomous systems (AS) [20] in the peer-to-peer (P2P) category, where two
ASs freely exchange traffic between themselves and their customers, but do not exchange
traffic from or to their providers or other peers [21]. We complemented this data set with
the geographic localization of the ASs, resulting in 1217 nodes and 4058 links. We have
optimized modularity [3] to find good partitions of the networks in modules. We have used
the partition corresponding to 26 modules and modularity Q = 0.649 for the airports network,
and 12 modules and Q = 0.387 for the AS–P2P network. Note that any partition, not necessarily
the one corresponding to optimal modularity, can be analyzed as described.

The interesting aspect of applying the analysis to these two data sets is twofold:
firstly, since both are geo-referenced, it is possible to assign a tag to each module corresponding
to geographic areas, and secondly, the modular structure of both networks is substantially
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Figure 7. Optimal map of the modular structure for the optimal partition of the
airports network (a) and the AS–P2P network (b); each color corresponds to
a different module of the given partition. In (c) and (d), we plot the projected
space spanned by the two left singular vectors of the TSVD, U2 (left), and its
transformation to polar coordinates R–θ (right), for each network. Dashed lines
mark the directions of intramodular projections of each module. Nodes whose
contribution is totally internal to a module project exactly on their corresponding
dashed lines. In the R–θ plot, we have labeled certain distinguished nodes that
also correspond to very important airports and ASs in the world. For the airports
network, we have magnified the area over 10−1 to identify the more important
nodes in R. The loss of information associated with the 2D projection is 18.2%
for the airports network and 15.8% for the AS–P2P network.
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Figure 8. Box-and-whisker plots of Rint and Rext, respectively, for the two
networks depicted in figure 7. Modules are sorted according to medians in
increasing order. We label the horizontal axis using names for the modules
assigned according to the geographical location of at least the 75% of their nodes.
We highlight whiskers and outliers in both networks. Only those modules whose
structure is significant (more than 10 nodes) are represented in the plot.

different: while the airports network evolution has been mainly shaped by two well-defined
continental blocks (USA and W Europe)5, the AS–P2P network has been built in a more
homogeneous way. It is very interesting to observe how the AS–P2P network, following a sort
of ‘wiring optimization’, presents a community structure evenly distributed in areas covering a
worldwide belt.

In figures 7(a) and (b), we plot the structure of the networks partitioned in modules;
these conform to the original data that compose our contribution matrices. The geographical
location has been added to the plot for visualization purposes but it has not been used in the
analysis. The plots in figures 7(c) and (d) (left) show the projections of the nodes’ contributions
following the same structure of the precedent plots. The differences between both modular
structures have clearly emerged in this projection: the airports network is basically polarized
in two geographical areas, whereas in the AS–P2P network, this polarization does not exist. We
also see how different airports and ASs excel in their values of R largely over the rest. This
effect can be further developed by studying the structure of modules and their interrelations in
each case.

The structure of modules is scrutinized in figure 8, where we depict the box-and-whisker
plots of the internal contributions Rint and the external contributions Rext. The results show
the heterogeneity of each module of the partition. Remarkably, the method reveals outliers
distinguished by their capability to support the internal structure of modules and also to

5 We denote by N–S–E–W the four cardinal points North, South, East and West, respectively.
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cross-connect them. In figure 8(a) (top), we observe that the USA and W Europe modules have
medians greater than the percentiles-75 of the rest of the modules. This fact points out the ex-
treme internal cohesion of both sites. We also observe that the lowest value in Rint median corre-
sponds to Alaska; however, Anchorage leads the internal cohesion orders of magnitude beyond
the core. In figure 8(a) (bottom), Canada, W Europe and C America provide the highest profile of
boundary connectivity. Nevertheless, the role played by USA is still very significant because of
its high percentiles and outliers. On the other side, Africa, Russia and China are less connected
to the world than the rest of the modules. For the AS–P2P, the box-and-whisker plots of Rint in
figure 8(b) (top) provide information about a slight dominance of the three modules E Europe,
W Europe and the module containing USA and Japan. Here E Europe does not correspond to
the political area but to a tag we use to represent a geographical area that is more oriental than
the western, denoted as W Europe. In the case of Rext in figure 8(b) (bottom), the similarity
in range and medians reveals the homogeneity of the mesoscale of this network. Significantly,
some highlighted ASs in the plot do not belong geographically to the assigned tag, although the
major proportion of nodes in that module do (see E Europe, W Europe and Russia).

Finally, we plot the interrelations between modules in figure 9 by computing the scalar
product of their respective modular projections. The labels of the matrix are chosen in
decreasing order of the modular projection’s angle θm̃α

. For the airports network (figure 9(a)),
we observe a clearly polarized structure in two main blocks, with a more diffuse central part
overlapping both (corresponding to the communities mainly composed of nodes in Canada,
Central America, Japan and South America). Japan is especially interesting for it maintains no
preference in overlapping with any specific module in the network. In the AS–P2P network
(figure 9(b)), we observe four groups, where neighbors in the analysis are in accordance with
geographical neighbors. We remark that geographical information is not included in any part of
the analysis; it simply emerges from the projection of the contribution matrix. The geographical
correlation in the AS–P2P network could be surprising given that communities of use in P2P
networks are related to contents or topics; however, many ASs have to pay other ASs to provide
the connection between peers and then geopolitical constraints are revealed.

5. Conclusions

To summarize, firstly, we have reformulated the analysis of the modular structure, defining
the object that contains all this information, and secondly, we apply SVD on this object.
Dimensional reduction follows in a natural way from the properties of the truncation of SVD;
in particular, we concentrate on the truncation of rank 2, with the idea of having a map of the
modular structure amenable for analysis to any scientist. The approach is very simple and can
be understood using basic algebra notions. The computational implementation is also affordable
given the multiple software packages that include an automatic SVD (R and Matlab among
others). The result is a formalism to study the skeleton of networks at the modular level. The
most important problem we have faced in the current research was the interpretation of the
outcome in terms of the original data. We have made a breakthrough in this interpretation
by focusing our attention on the particular resulting geometry of the projected contribution of
nodes. We also present a statistical analysis of the resulting map using the box-and-whisker plots
based on percentiles, which are more appropriate than the use of z-scores that must assume a
Gaussian distribution of values. Finally, we obtain the map of interrelations of the modular
skeleton.
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Figure 9. Overlap matrices between the modules composing the topological
mesoscale of the networks plotted in figure 7. Each matrix corresponds to the
normalized scalar product of the individual modular projections (see the text
for details). Modules are sorted by decreasing order of the modular projection’s
angle in the plane U2.
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The method proposed here might be very useful for scholars in different disciplines who
seek access to an easy and tractable map of the complex empirical network data according to
biological, functional or topological partitions. We suggest that the analysis of this map will
be very helpful to anticipate the scope of dynamic emergent phenomena that depend on the
structure and relations between modules. Spreading of viruses or synchronization processes
are natural candidates to be analyzed by considering the organization of the map. Moreover,
we suggest that the method can be used to graph bipartitioning by adaptively changing nodes
between two modules while maximizing the angle in the R–θ plane between them. Further
studies of the similarities between nodes’ contribution projections can also help us to classify
networks according to the role profiles of nodes [22] and/or modules.
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Appendix A. Properties of TSVD

Let us assume that we preserve only the r largest singular values and neglect the remaining,
substituting their value by zero; then the reduced matrix C r = U6rV † has several mathematical
properties worth mentioning: firstly, it minimizes the Frobenius norm (‖A‖F =

√
trace(AA†))

of the difference ‖C − Cr‖F , which means that among all possible matrices of rank r , Cr is
the best approximation in a least squares sense; secondly, Cr is also the best approximation in
the sense of statistics, as it maintains the most significant information portion of the original
matrix [12]. The left and right singular vectors (from matrices U and V , respectively) capture
invariant distributions of values of the contribution of nodes to the different modules. In
particular, the larger the singular value, the more the amount of information represented by their
corresponding left and right singular vectors. We have used the LAPACK-based implementation
of SVD in MATLAB. We warn that some numerical implementations of SVD suffer from a sign
indeterminacy; in particular the one provided by MATLAB is such that the first singular vectors
from an all-positive matrix always have all-negative elements, whose sign obviously should be
switched to positive [23].

Appendix B. Projection using TSVD of rank 2

In the case of a rank r = 2 approximation, the unicity of the two-ranked decomposition
is ensured [9] if the ordered singular values σi of the matrix 6 satisfy σ1 > σ2 > σ3. This
dimensional reduction is particularly interesting to depict results in a 2D plot for visualization
purposes. In the new space, there are two different sets of singular vectors: the left singular
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vectors (columns of matrix U) and the right singular vectors (rows of matrix V †). Given that we
truncate at r = 2, we fix our analysis on the first two columns of U ; we call this the projection
space U2. The coordinates ñi of the projection of the contributions ni of node i are computed as
follows:

ñi = 6−1
2 V †ni , (B.1)

Here 6−1
2 denotes the pseudo-inverse of the diagonal rectangular matrix 62 (singular values

matrix truncated in two rows), simply obtained by inverting the values of the diagonal elements.
It is possible to assess the loss of information of this projection compared to the initial data by
computing the relative difference between the Frobenius norms:

Er =
||C||F − ||Cr||F

||C||F
=

∑M

α=1
σ 2

α −

∑r

α=1
σ 2

α∑M

α=1
σ 2

α

. (B.2)

Appendix C. Geometrical properties of the projection of C

The intramodular projection ẽα corresponding to module α is defined as the projection of the
Cartesian unit vector eα = (0, . . . , 0, 1, 0, . . . , 0) (the αth component is 1, the rest are zero), i.e.

ẽα = 6−1
2 V †eα. (C.1)

Any node in the original contribution matrix can be represented as

ni =

M∑
α=1

Ciαeα. (C.2)

Its projection gives the node contribution projection

ñi =

M∑
α=1

Ciα(6
−1
2 V †eα) =

M∑
α=1

Ciα ẽα, (C.3)

a linear combination of intramodular projections. In particular, a node i whose contribution is
totally internal to a module α is projected as ñi = ki ẽα, where ki is the node degree. The modular
projections m̃α are computed as the vector sum of all the projections of node contributions, for
those nodes belonging to module α, i.e.

m̃α =

N∑
i=1

Siα ñi . (C.4)

Appendix D. Effect of noise on C

The method presented is pretty robust to perturbations in the partition or, equivalently, in the
contribution matrix C. To support the claim, we make the following experiment: using the
benchmark network proposed by Girvan and Newman [1], see section 3, with 128 nodes,
zin = 15 and zout = 1, we perform slight changes in the predefined partition, by moving nodes
from module 1 to module 2. First we move only one node, then two nodes and finally eight
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Figure D.1. Robustness of the method to noise in the partition. We show the
separation from the intramodular directions of modules 1–4 (top to down) of all
nodes; in particular, we track the deviation of the nodes when some of them have
been assigned to the incorrect module. The nodes that have been moved are those
that deviate more from the intramodular projection of module 2.

nodes. This changes matrix C , which must in turn affect TSVD output. Figure D.1 contains
the nodes’ projection as the mentioned movements take place (squares, triangles and diamonds,
respectively). Consistently, module 1’s node projections progressively decrease in R. Module 2
balances this fact: it retains the weight leaving from module 1. Sensitivity to intermodular
connections is also evidenced: when a single new node appears in module 2 (figure D.1,
squares), φi has an outstanding value as compared to the rest; this is also evident when two
nodes enter group 2 (figure D.1, triangles). When moving eight nodes, the effect is less drastic
for the deviations in θ and more drastic in R. Unsurprisingly, modules 3 and 4 remain mostly
unchanged; the interplay between modules 1 and 2 (nodes leaving from one group towards the
other) does not drastically affect their internal characteristics, nor their importance in the whole
structure.
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