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ABSTRACT

We consider a system of n coupled oscillators described by the Kuramoto model with the dynamics given by θ̇ = ω + Kf(θ). In this system, an
equilibrium solution θ∗ is considered stable when ω + Kf(θ∗) = 0, and the Jacobian matrix Df(θ∗) has a simple eigenvalue of zero, indicating
the presence of a direction in which the oscillators can adjust their phases. Additionally, the remaining eigenvalues of Df(θ∗) are negative,
indicating stability in orthogonal directions. A crucial constraint imposed on the equilibrium solution is that |0(θ∗)| ≤ π , where |0(θ∗)|
represents the length of the shortest arc on the unit circle that contains the equilibrium solution θ∗. We provide a proof that there exists a
unique solution satisfying the aforementioned stability criteria. This analysis enhances our understanding of the stability and uniqueness of
these solutions, offering valuable insights into the dynamics of coupled oscillators in this system.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0161977

Synchronization in ensembles of network-coupled heterogeneous
oscillators is crucial in various natural and engineered phenom-
ena, ranging from cell cycles to robust power systems. One of the
most prominent and elegant models for studying synchroniza-
tion is the Kuramoto model,1 which provides a mathematically
tractable description of this phenomenon. Kuramoto recognized
the mean-field approach as the most suitable method for ana-
lytical treatment and introduced an all-to-all purely sinusoidal
coupling scheme, deriving the governing equations for each oscil-
lator in the system. The Kuramoto model is a mathematically
tractable description of synchronization in network-coupled het-
erogeneous oscillators. We investigate the conditions for stable
equilibrium solutions in this model. Our main finding is that a
stable equilibrium solution θ∗ exists when ω + Kf(θ∗) = 0, and
the Jacobian matrix Df(θ∗) has zero as a simple eigenvalue and
negative eigenvalues in orthogonal directions. We also establish
the constraint |0(θ∗)| ≤ π , indicating that the equilibrium lies
within the shortest arc on the unit circle containing it. This analy-
sis contributes to understanding the dynamics and stability of the
Kuramoto model.

I. INTRODUCTION

The Kuramoto model is a widely studied mathematical model
that describes the synchronization behavior in a system of n coupled
oscillators. It was introduced by Kuramoto in his seminal works1,2

and has since become a fundamental framework for understanding
synchronization phenomena in various fields. The model assumes n
connected oscillators, each characterized by a phase variable θi and
a natural frequency ωi. The dynamics of each i-oscillator, coupled
with the rest, is described by the equation

θ̇i = ωi +
K

n

n
∑

j=1

sin(θj − θi), (1)

where θ̇i denotes the time derivative of θi and K represents the
coupling strength among the oscillators.

The Kuramoto model has been extensively studied due to its
ability to capture and explain synchronization phenomena in a
wide range of systems, including biological, physical, and social
systems.3–6 It has been applied to understand phenomena, such
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as neuronal synchronization,7 power grid synchronization,8 and
opinion formation in social networks.9

In this paper, we focus on investigating the stability and prop-
erties of equilibrium solutions in the Kuramoto model for a finite
system of n oscillators. We analyze the conditions under which
stable synchronization emerges and explore the dynamics of the
system as the coupling strength K varies. Our findings contribute
to a deeper understanding of synchronization mechanisms in finite
oscillator networks.

II. PRELIMINARIES AND MAIN RESULT

In this work, we focus on the finite Kuramoto model, which
consists of n oscillators arranged on the unit circle. The phase space
for this model is the n-torus, defined as

T
n = S

1 × . . . × S
1. (2)

We use the usual model in each circle S
1 = R/2πZ, identifying

two angles θ1 and θ2 in R if and only if θ1 − θ2 = 2πk for some
index k ∈ Z. Thus, given any point θ ∈ T

n, we can always express
θ = (θ1, . . . , θn), where θi ∈ (−π , π]. This phase space serves as the
domain for a system of first-order ordinary differential equations,
initially introduced by Kuramoto,1



















θ̇1 = ω1 + Kf1(θ1, . . . , θn),

θ̇2 = ω2 + Kf2(θ1, . . . , θn),
...

...

θ̇n = ωn + Kfn(θ1, . . . , θn),

(3)

where

fi(θ1, . . . , θn) =
n
∑

j=1,j6=i

aij sin (θj − θi) for 1 ≤ i ≤ n. (4)

The network’s topology is represented by an adjacency matrix
A of size n × n. Specifically, aii = 0, and aij = aji = 1 if nodes i
and j are connected, while aij = aji = 0 otherwise. Furthermore, we
require the network to be connected. Systems (3) and (4) described
above are known as the “Kuramoto model” of synchronization
associated with the network defined by the adjacency matrix A.
However, we refer to the specific case where aij = 1 for all i 6= j and
aii = 0 as the “classic Kuramoto model” since it corresponds to the
original formulation.

Using the compact notation ω = (ω1, . . . , ωn), θ = (θ1, . . . , θn),
and f = (f1, . . . , fn). The Kuramoto model can be expressed as

θ̇ = ω + Kf(θ), (5)

where K ≥ 0 is a real parameter. For any fixed initial condition θ 0

on the torus, there exists a unique solution ϕ : [0, ∞) → T
n of (5),

defined for all t ≥ 0, passing through θ 0 at t = 0. An θ∗ is referred
to as an equilibrium point of (5) if ω + Kf(θ∗) = 0. In this case, the
solution ϕ(t) ≡ θ∗, defined for all t ≥ 0, satisfies the ordinary dif-
ferential equation (ODE), and the local behavior of this solution is
determined by the spectrum of Df(θ∗), i.e., the eigenvalues of the
differential matrix. We denote the differential matrix as H := Df.

Thus,

H(θ) =











h1,1(θ) h1,2(θ) . . . h1,n(θ)

h1,2(θ) h2,2(θ) . . . h2,n(θ)

...
...

. . .
...

h1,n(θ) . . . hn−1,n(θ) hn,n(θ)











, (6)

where

hi,i(θ) =
∂fi

∂θi

(θ) = −
n
∑

j=1,j6=i

aij cos (θj − θi),

hi,j(θ) =
∂fi

∂θj

(θ) = aij cos (θj − θi) i 6= j.

(7)

We observe that the matrix H(θ) is symmetric, which implies
that its eigenvalues are real. This property allows us to compute the
derivative of the eigenvalues ofH(θ) and control how they evolve (as
demonstrated in Proposition III.3). Notably, the spectrum of H(θ)

remains unaffected by variations in ω or K.
Before delving into the analysis of the spectrum of H(θ), we

present an alternative approach to this problem. The symmetry of
the matrix H enables us to find a primitive of f. More precisely, we
can consider the scalar map

V : [−π , π]n ⊂ R
n → R

given by

V(θ) = C − ω · θ − K

n
∑

i=1

n
∑

j=i+1

aij cos (θi − θj), (8)

where the expression a · b denotes the inner product of two vectors
a and b in R

n and C is any constant value. It is important to note that
the function V is defined within the hypercube [−π , π]n but not on
the torus T

n, except in the case when ω = 0. This is due to the fact
that the inner product ω · θ is not a 2π-periodic map.

To illustrate this claim, let us consider the case where
ω 6= 0, and without loss of generality, assume that ω1 6= 0. We
observe that the inner product ω · (π , 0, . . . , 0) = πω1, whereas
ω · (−π , 0, . . . , 0) = −πω1. This demonstrates that the inner prod-
uct does not exhibit 2π periodicity, leading to the conclusion that V
is not well-defined on the torus T

n in the presence of non-zero ω.
Using the expression for V given above, it is evident that the

dynamics of the Kuramoto model (5) can be represented as the
potential flow generated by the scalar map V (8). This can be seen
by observing that

θ̇ = ω + Kf(θ) = −∇V(θ). (9)

Therefore, locally, the flow of the Kuramoto model can be inter-
preted as the potential flow induced by the scalar map V.

The Hessian matrix of V, denoted as HV, and the differential
of f, denoted as Df, are related by

HV(θ) = −KDf(θ) = −KH(θ). (10)

It is worth noting that the symmetry of H(θ) is not surprising, as it
is a multiple of the Hessian matrix of V. This relationship establishes
the connection between the symmetry of H(θ) and the potential
flow representation of the Kuramoto model.
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The Kuramoto model exhibits a finite number of equilibrium
points. This can be demonstrated by rewriting the nonlinear system
ω + Kf(θ) = 0 as a quadratic system and applying Bézout’s theorem
(for more details, refer to Ref. 10). In previous discussions, we have
defined an equilibrium solution of the Kuramoto system (5). Now,
we introduce the concept of a stable equilibrium solution, as defined
in Ref. 11.

Definition II.1: We say that θ∗ =
(

θ∗
1 , . . . , θ∗

n

)

is a stable
solution of (5) if and only if

(a) ω + Kf(θ∗) = 0,
(b) H(θ∗) is negative semi-definite, and
(c) dim(Ker(H(θ∗))) = 1.

One important remark about the above definition is that the
requirement for negative definiteness of H(θ∗) is not feasible in the
Kuramoto model. Due to the nature of the equation driving system
(5), stable solutions are not isolated. Specifically, if θ∗ is an equi-
librium point, then for any angle α ∈ S

1, θ∗ + α = (θ∗
1 + α, . . . , θ∗

n

+ α) is also an equilibrium point. We denote all these solutions as
[θ∗] =

{

θ∗ + α, α ∈ S
1
}

. This fact is evident in the eigenvalues of
H(θ), as 1 = (1, . . . , 1) is an eigenvector of H(θ) with eigenvalue
λ = 0 for all θ ∈ T

n. Thus, λ = 0 always appears in the spectrum of
H(θ). The third condition requires that the remaining eigenvalues
of H(θ∗) are strictly negative.

A second important remark concerns the stability of the equi-
librium point θ∗. On one hand, the existence of a strictly positive
eigenvalue of Df(θ∗) implies that the unstable manifold of θ∗ has a
dimension greater than or equal to one. On the other hand, the sta-
bility of θ∗ can also be linked to the local behavior of V near θ∗. Thus,
we impose that V exhibits a local minimum at θ∗. Consequently,
the Hessian map HV(θ∗) is positive semi-definite, and, there-
fore, H(θ∗) is negative semi-definite since HV(θ∗) = −KH(θ∗)

[see Eq. (10)].
The following definition will play a fundamental role in the

classification of stable solutions of the Kuramoto model.
Definition II.2: For any point θ = (θ1, . . . , θn) on T

n, we
denote 0(θ) as a closed shortest arc on S

1 containing all angles. The
length of this arc is denoted by |0(θ)| (see Fig. 1).

The literature on the Kuramoto model is extensive, and it has
served as the foundation for the study of various synchronization
phenomena. Providing a comprehensive list of all contributions
would be impractical. However, we can outline some key findings
in the finite Kuramoto model based on different scenarios involving
the frequency vector ω.

FIG. 1. Three different examples of θ = (θ1, . . . , θ7) ∈ T
7. We show the closed

shortest arc 0(θ) containing all angles and their length |0(θ)|.

The first case corresponds to ω = 0. Taylor12 demonstrated
that the origin θ∗ = (0, . . . , 0) is the only stable solution in the
classic Kuramoto model. Subsequently, several authors12–14 showed
that for sufficiently dense networks, the origin is the unique sta-
ble solution. Network density is measured using a parameter µ,
which indicates that each oscillator has at least µ(n − 1) connec-
tions with other oscillators. The classic Kuramoto model corre-
sponds to µ = 1. Taylor12 proved that the origin is the unique
stable solution for networks with density parameter µ ≥ 0.9395.

Ling et al.13 established the same result for µ ≥ (3 −
√

2)/2
∼ 0.7929 and Kassabov et al.14 for µ ≥ 0.75. Therefore, it is possi-
ble to have multiple stable solutions for small values of µ.15 When
ω = 0, the Kuramoto model can be analyzed using Morse theory
developed by Milnor.16 In this framework, the system of ODEs (5)
represents the downhill flow of the map V : T

n → R (8). How-
ever, the global behavior becomes more complex, as Morse theory
reveals the existence of multiple unstable solutions. The number
of these unstable solutions is related to the Betti numbers of T

n.10

For instance, since V : T
n → R is a continuous map defined on

a compact manifold, it must reach at least one local maximum.
Consequently, there always exist initial conditions that do not con-
verge to the stable solution θ∗ = 0. Additionally, it should be noted
that in the case of ω = 0, the Kuramoto model is independent of
parameter K.

In the case where ω 6= 0, parameter K plays a crucial role in
the dynamics of the Kuramoto model (5). Numerical simulations
reveal the existence of a critical parameter Kc > 0, such that for
0 < K < Kc, the Kuramoto model does not possess any stable solu-
tions. This fact can be easily demonstrated. Let ω = (ω1, . . . , ωn)

6= 0, and assume without loss of generality that ω1 6= 0. Then, there
exists ε0 such that for 0 < K < ε0, we have ω1 + Kf1(θ) 6= 0, since
f1 is a bounded map. Therefore, the Kuramoto model (5) does not
exhibit any stable solutions for 0 < K < ε0. Numerous results have
been obtained regarding the estimation of the critical parameter Kc

(see Refs. 3 and 17, and references therein).
On the other hand, when parameter K is sufficiently large, the

Kuramoto model becomes similar to the case when ω = 0. Thus,
for large enough K, the Kuramoto model possesses a stable equi-
librium θK that converges to 0 as K tends to infinity. However, the
number of stable equilibrium points in the Kuramoto model is still
unknown. The stability of solutions in the Kuramoto model has
been extensively studied by various authors, including Refs. 11, 18,
and 19.

The objective of this work is to investigate the number of stable
solutions in the Kuramoto model. Our main result can be stated as
follows:

Theorem A: Let θ∗ and η∗ be two stable solutions of the
Kuramoto model (5) satisfying |0(θ∗)| ≤ π and |0(η∗)| ≤ π . Then,
[θ∗] = [η∗].

It is important to note that the above result does not impose any
explicit assumptions on the system variables, such as the frequencies
ω, the parameter K, or the adjacency matrix A.

The Kuramoto model is known to exhibit the possibility of
multiple stable solutions (see Ref. 15, and references therein). In
Sec. III, we provide a concrete example where the Kuramoto model
demonstrates two stable solutions. Furthermore, we discuss how this
example relates to the tools utilized in the proof of Theorem A.
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III. PROOF OF THEOREM A AND EXAMPLES

The following lemma is well known and can be proven using
the Gershgorin circle theorem (see Chap. 6 of Ref. 20). We include
it here for completeness.

Lemma III.1: Let M = (mi,j) be an n × n real, symmetric and

diagonal dominant matrix, i.e., |mi,i| ≥
n
∑

j=1, j6=i

|mi,j| for 1 ≤ i ≤ n.

The following conditions hold:

• Assume that all the entries in the diagonal verify mi,i ≥ 0. Then,
all the eigenvalues of M are non-negative, and, therefore, M is
positive semi-definite and xTMx ≥ 0 for all vectors x ∈ R

n.
• Assume that all the entries in the diagonal verify mi,i ≤ 0. Then,

all eigenvalues of M are non-positive, and, therefore, M is negative
semi-definite and xTMx ≤ 0 for all vectors x ∈ R

n.

In our work, the derivative of an eigenvalue with respect to a
real parameter will play a fundamental role. The following result can
be used to compute the derivative of a simple or multiple eigenvalue
with respect to a real parameter. It is a combination of two theorems:
Theorem 5 of Ref. 21 for the derivative of a simple eigenvalue and
Theorem 2.3 of Ref. 22 for the derivative of a multiple eigenvalue
depending on a single real parameter. Additional references related
to this result include Refs. 22 and 23.

Lemma III.2: Let A(t) be a n × n real and symmetric matrix
and such that t 7→ A(t) is a real analytic function of all t ∈ (a, b)
⊂ R. Suppose that λ(t0) is an eigenvalue of A(t0) with multiplicity
r ≥ 1, where t0 ∈ (a, b). Then, there exists ε > 0, and real analytic
functions λ1(t), . . . , λr(t) and v1(t), . . . , vr(t), such that

A(t)vs(t) = λs(t)vs(t), ∀t ∈ (t0 − ε, t0 + ε),

λs(t0) = λ(t0), s = 1, . . . , r,

vs(t)
Tvs(t) = 1,

(11)

and we have that

λ′
s(t0) =

dλs

dt
(t0) = vs(t0)

T A′(t0) vs(t0), s = 1, . . . , r.

Using the above result, we can prove that, under certain con-
ditions, the derivative of the eigenvalues of the matrix H(tθ) is not
negative. In the following lemma, we collect this result.

Proposition III.3: Let θ = (θ1, . . . , θn) be any point in T
n (2).

For any t ≥ 0, we define the n × n matrix A(t) = H(tθ). Let λ(t0) be
an eigenvalue of A(t0). Then, λ′(t0) ≥ 0 for all 0 < t0 ≤ 1/2. More-
over, assuming that θi ∈ [0, π] for all 1 ≤ i ≤ n, then λ′(t0) ≥ 0 for
all 0 < t0 ≤ 1.

Proof. We consider the n × n symmetric matrix given by
A(t) = H(tθ). From the definition of H(θ) [see Eqs. (6) and (7)],
we have that A(t) = (hi,j(tθ)) for 1 ≤ i, j ≤ n, where the functions
hi,j(tθ) are given by

hi,i(tθ) = −
n
∑

j=1,j6=i

aij cos
(

t
(

θj − θi

))

,

hi,j(tθ) = aij cos
(

t
(

θj − θi

))

.

Computing the derivative with respect to the real parameter t, we
obtain

dhi,i(tθ)

dt
=

n
∑

j=1,j6=i

aij(θj − θi) sin (t(θj − θi)),

dhi,j(tθ)

dt
= −aij(θj − θi) sin (t(θj − θi)).

(12)

Thus, we have obtained an explicit expression of the derivative
A′(t) given by

A′(t) =

























dh1,1(tθ)

dt

dh1,2(tθ)

dt
. . .

dh1,n(tθ)

dt
dh2,1(tθ)

dt

dh2,2(tθ)

dt
. . .

dh2,n(tθ)

dt
...

...
. . .

...

dhn,1(tθ)

dt

dhn,2(tθ)

dt
. . .

dhn,n(tθ)

dt

























. (13)

We introduce the auxiliary function gt(x) = x sin(tx) for t > 0.
We left to the reader to check the following properties of the map gt

(see Fig. 2). For any value of t > 0, the function gt is an even map, i.e.,
gt(x) = gt(−x) for all x ∈ R and gt(x) ≥ 0 for all x ∈ [−π/t, π/t].
Moreover, if we pick any value of t ∈ (0, 1/2], then gt(x) ≥ 0 for all
x ∈ [−2π , 2π].

For any t > 0, the matrix A′(t) is given by

A′(t) =















∑n
j=1,j6=1 a1jgt(θj − θ1) −a12gt(θ2 − θ1) . . . −a1ngt(θn − θ1)

−a21gt(θ1 − θ2)
∑n

j=1,j6=2 a2jgt(θj − θ2) . . . −a2ngt(θn − θ2)

...
...

. . .
...

−an1gt(θ1 − θn) −an2gt(θ2 − θn) . . .
∑n

j=1,j6=n anjgt(θj − θn)















. (14)

We claim that A′(t) is a symmetric, diagonally dominant, and positive semi-definite matrix for all t ∈ (0, 1/2]. The symmetry of A′(t)
follows from the evenness of the function gt(x) and the symmetry of the adjacency matrix A = (aij).

By hypothesis, θ = (θ1, . . . , θn) is a point in the n-torus T
n, where −π < θi ≤ π for all 1 ≤ i ≤ n. Consequently, −2π ≤ θi

− θj ≤ 2π for all 1 ≤ i, j ≤ n. Therefore, for any t ∈ (0, 1/2], we have gt(θi − θj) ≥ 0 for all 1 ≤ i, j ≤ n. It follows that for any
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FIG. 2. Graph of gt(x) = x sin(tx) for t = 1/2 (blue) and t = 1 (red).

1 ≤ k ≤ n,

∣

∣

∣

∣

∣

∣

n
∑

j=1,j6=k

akjgt(θj − θk)

∣

∣

∣

∣

∣

∣

=
n
∑

j=1,j6=k

akjgt(θj − θk)

=
n
∑

j=1,j6=k

∣

∣−akjgt(θj − θk)
∣

∣ .

This proves that matrix A′(t) is diagonally dominant for any
t ∈ (0, 1/2]. Finally, matrix A′(t) is positive semi-definite for any
t ∈ (0, 1/2] since it is diagonally dominant and all entries in its
diagonal are non-negative (Lemma III.1).

We select 0 < t0 ≤ 1/2 and consider λ(t0) as a real eigenvalue
of matrix A(t0). Since A(t0) is a symmetric matrix, all its eigenvalues
are real. Applying Lemma III.2, we can compute its derivative as

λ′(t0) = v(t0)
T A′(t0) v(t0),

where v(t0) is a normalized eigenvector of A(t0) corresponding to
the eigenvalue λ(t0). By our previous argument that A′(t) is positive
semi-definite for all t ∈ (0, 1/2], we conclude that ztA′(t)z ≥ 0 for
all z ∈ R

n.
Now, let us consider the case where θ = (θ1, . . . , θn) satisfies

0 ≤ θi ≤ π for all 1 ≤ i ≤ n. From this assumption, we can eas-
ily conclude that −π ≤ θi − θj ≤ π for all 1 ≤ i, j ≤ n. As a result,
gt(θi − θj) ≥ 0 for all t ∈ (0, 1] where gt(x) = x sin(tx) is the auxil-
iary function defined earlier (see Fig. 2). Consequently, matrix A′(t)
is symmetric, diagonally dominant, and positive semi-definite for all
t ∈ (0, 1].

Finally, let λ(t0) be any eigenvalue of A(t0). By applying
Lemma III.2, we have λ′(t0) = v(t0)

T, A′(t0), v(t0) ≥ 0, since A′(t0)

is a positive semi-definite matrix for any t0 ∈ (0, 1]. �

The previous proposition can be interpreted geometrically in
the following sense. At t = 0, and independently on θ , the n × n
matrix A(0) = H(0) is given by

A(0) =















−
∑n

j=1,j6=1 a1j a12 . . . a1n

a21 −
∑n

j=1,j6=2 a2j . . . a2n

...
...

. . .
...

an1 . . . an2 −
∑n

j=1,j6=n anj















.

(15)

It is easy to see that A(0) is a symmetric, diagonally domi-
nant, and semi-definite negative matrix. So, all its eigenvalues are
nonpositive (see Lemma III.1). As we travel through the ray tθ for
t ∈ (0, 1/2], the spectrum of A(tθ) moves to the right with respect to
the spectrum of A(0).

Remark 1: The Laplacian matrix is a matrix representation of
a network. In particular, the rank of the Laplacian matrix is related to
the number of connected components of the network (see Chap. 13 of
Ref. 24 for details). Let L be the Laplacian matrix associated to the net-
work of oscillators. From the expression of A(0) (15), we just observe
that L = −A(0). Moreover, it is well known that λ = 0 is an eigen-
value of L whose multiplicity coincides with the number of connected
components of the graph (Lemma 13.1.1 of Ref. 24). In our case, we
have assumed that our network of oscillators form a connected graph.
So, we conclude that λ = 0 is a simple eigenvalue of A(0) and the rest
of its eigenvalues are strictly negative real numbers.

Proof of Theorem A
We define set C, related with the set of points where function V

is convex,

C = {θ ∈ [−π , π]n | H(θ) is semi-definite negative

and dim(Ker(H(θ))) = 1}. (16)

We start showing that C is an open and nonempty set. We
first prove that 0 = (0, . . . , 0) belongs to C. Taking t = 0 the matrix
H(0) = A(0) (15) is a symmetric, diagonally dominant, and semi-
definite negative matrix. Moreover, λ = 0 is a simple eigenvalue of
H(0) since the network formed by all the oscillators is connected
(see Remark 1). We claim that S is an open set. Let θ 0 be a point
in C. We denote by pθ0(x) the characteristic polynomial of H(θ 0).
By hypothesis pθ0(x) = x · qθ0(x) with qθ0(0) 6= 0. Moreover, all the
roots of qθ0(x) are real and strictly negative numbers. Hence, in a
sufficiently small neighborhood of θ 0, the roots of qθ (x) are still
strictly negative, showing that C is an open set.

We denote by ∂C and C the boundary and the closure of C,
respectively. Set ∂C contains all the θ ’s such that H(θ) is negative
semi-definite and λ = 0 is a multiple eigenvalue. Furthermore, the

set C coincides with the set of points where the map V is a convex
map. Finally, the open set [−π , π]n \ C contains all the θ ’s such that
H(θ) has at least one strictly positive eigenvalue.

As we mention before C 6= ∅ is an open set. Hence, we can
decompose C into its disjoint connected components, and there are
at most a countably many connected components of C. So,

C =
∞
⋃

i=1

Ci with Ci ∩ Cj = ∅ for i 6= j.

Without loss of generality, we can assume that C1 is the con-
nected component of C containing the origin 0. A priori we do
not know how many of those Ci for i > 1 are different from the
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empty set. We assume that θ∗ = (θ1, . . . , θn) and η∗ = (η1, . . . , ηn)

are two stable solutions of the Kuramoto model (5) with |0(θ∗)|
≤ π and |0(η∗)| ≤ π . As we mention before θ∗ + (α, . . . , α) and
η∗ + (β , . . . , β) are also stable solutions for all α ∈ (−π , π] and
β ∈ (−π , π]. We select α0 and β0 such that 0 ≤ θi + α0 ≤ π

and 0 ≤ ηi + β0 ≤ π for all 1 ≤ i ≤ n. So, we just choose a sta-
ble solution in the upper half part of the n-torus. Thus, renaming
θ∗ = (θ1, . . . , θn) and η∗ = (η1, . . . , ηn), if necessary, we can assume
without loss of generality that θi, ηi ∈ [0, π] for all 1 ≤ i ≤ n.

We first assume that θ∗ and η∗ belong to two different con-
nected components. Thus, one of them, for example, η∗ belongs
to Ci∗ with i∗ > 1. We consider the ray tη∗ for t ∈ [0, 1]. This ray
crosses (at least) two different connected components C1 and Ci∗ .
The first one since the origin 0 is contained in C1 and the sec-
ond one since η∗ belongs to Ci∗ . Thus, we can assume that tη∗ ∈ C1

for t ∈ [0, t0) and tη∗ ∈ Ci∗ for t ∈ (t1, 1]. Moreover, t0η
∗ ∈ ∂C1 and

t1η
∗ ∈ ∂Ci∗ . We have proved that the derivative of any eigenvalue

λ(t) of H(tη∗) verifies λ′(t) ≥ 0 (see Proposition III.3).
Now, suppose that the ray tη∗ exits the set C and enters

[−π , π]n \ C for some t ∈ (t0, t1). This is a contradiction with the
fact that λ′(t) ≥ 0 for t ∈ (0, 1], since at least one eigenvalue needs

to be non-negative in C1, then positive in the complement of C and
then again non-negative in Ci∗ . On the other hand, suppose that

the ray tη∗ does not exist C. This could be the case, for example, if
t0 = t1. We observe that in this case when t → t−0 all the eigenvalues
of H(tη∗) increase and (at least) one of them collides to λ = 0 since
for t = t0 and for t → t−1 , this eigenvalue needs to come back, so the
derivative at this eigenvalue needs to be strictly negative.

We further assume that θ∗ and η∗ belong to the same connected
component. In this scenario, both minima correspond to the same
point, as it is implausible to have two distinct local minima in a
region where the map is convex, unless [θ∗] = [η∗].

We conclude this section with two particular examples involv-
ing n = 5 oscillators as related to Theorem A. The first example
illustrates a Kuramoto model with a unique stable solution θ 1 such
that |0(θ 1)| < π . The second example demonstrates a Kuramoto
model with two stable solutions, θ 1 and θ 2, satisfying |0(θ 1)| < π

and |0(θ 2)| > π , respectively.
We first consider a Kuramoto model with five oscillators, where

only the central oscillator is connected to the rest of the elements in
the network (see Fig. 3 on the left). The corresponding adjacency
matrix is given by

A =











0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0











. (17)

For any 0 < ε ≤ 1, we consider the Kuramoto model with
adjacent matrix A and the following choice of parameters:

ωε =
(

0,

√
3

2
, sin

(π

2
(1 − ε)

)

, −
√

3

2
, − sin

(π

2
(1 − ε)

)

)

and K = 1.

FIG. 3. Two stable configurations in the Kuramoto model. On the left hand side
with adjacent matrix A (17) and on the right hand side with adjacent matrix A (18).
We also show the length of the shortest arc containing the five oscillators.

We claim that the point

θ∗
ε =

(

0,
π

3
,
π

2
(1 − ε), −

π

3
, −

π

2
(1 − ε)

)

is the unique stable equilibrium point of the Kuramoto model for all
0 < ε ≤ 1. To verify this claim, we must ensure that ωε + f(θ∗

ε) = 0
and that the matrix H(θ∗

ε) has four negative eigenvalues for all
0 < ε ≤ 1. In this specific case, we can explicitly compute the
five eigenvalues of H(θ∗

ε), denoted by λi(ε) for i = 1, . . . , 5. Simple
computations reveal that

λ1(ε) = 0, λ2(ε) = −
1

2
, λ3(ε) = −τ(ε),

λ4(ε) =
1

4

(

−3 − 6τ(ε) −
√

9 − 4τ(ε) + 36τ(ε)2

)

,

λ5(ε) =
1

4

(

−3 − 6τ(ε) +
√

9 − 4τ(ε) + 36τ(ε)2

)

,

where τ(ε) = cos
(

π

2
(1 − ε)

)

. Thus, there are always four negative
eigenvalues for any 0 < ε ≤ 1. Moreover, |0(θ∗

ε)| = π(1 − ε) < π ,
which tends to π as ε → 0.

We next consider a specific example where the Kuramoto
model exhibits more than one stable solution, as demonstrated in
Ref. 15 and other references. We study a Kuramoto model with five
oscillators in which each oscillator is connected to its two nearest
neighbors (see Fig. 3 on the right). The corresponding adjacency
matrix is presented as follows:

A =











0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0











. (18)

In this example, we assume that the vector of frequencies ω is
zero and K = 1. The Kuramoto model has two equilibrium points
located at 0 = (0, 0, 0, 0, 0) and θ∗ =

(

0, 2π
5

, 4π
5

, 6π
5

, 8π
5

)

. These equi-
librium points are stable since the matrices H(0) and H(θ∗) have 4
strictly negative eigenvalues, as shown in Ref. 15.

Although this case is not covered by Theorem A since
|0(θ∗)| = 8π

5
> π (see Fig. 3 right), we can apply Proposition III.3

to this case since it is applicable in a general context. We consider
the matrix A(t) = H(tθ∗) given by
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A(t) =





































− cos

(

8π t

5

)

− cos

(

2π t

5

)

cos

(

2π t

5

)

0 0 cos

(

8π t

5

)

cos

(

2π t

5

)

−2 cos

(

2π t

5

)

cos

(

2π t

5

)

0 0

0 cos

(

2π t

5

)

−2 cos

(

2π t

5

)

cos

(

2π t

5

)

0

0 0 cos

(

2π t

5

)

−2 cos

(

2π t

5

)

cos

(

2π t

5

)

cos

(

8π t

5

)

0 0 cos

(

2π t

5

)

− cos

(

2π t

5

)

− cos

(

8π t

5

)





































. (19)

In this particular example, it is possible to obtain the explicit expression of the eigenvalues λk(t) for k = 1, . . . , 5 of A(t). More precisely,
we have that

λ1(t) = 0,

λ2(t) = −
1

2

(√
5 + 5

)

cos

(

2π t

5

)

,

λ3(t) =
1

2

(√
5 − 5

)

cos

(

2π t

5

)

,

λ4(t) = −
3

2
cos

(

2π t

5

)

− cos

(

8π t

5

)

+
√

2

4

√

9 + 5 cos

(

4π t

5

)

− 4 cos

(

6π t

5

)

− 4 cos(2π t) + 4 cos

(

16π t

5

)

,

λ5(t) = −
3

2
cos

(

2π t

5

)

− cos

(

8π t

5

)

−
√

2

4

√

9 + 5 cos

(

4π t

5

)

− 4 cos

(

6π t

5

)

− 4 cos(2π t) + 4 cos

(

16π t

5

)

.

In Fig. 4, we have to plot the graph of the five eigenval-
ues of A(t) = H(tθ∗) for 0 ≤ t ≤ 1. Thus, for t = 0, the eigenval-

ues of H(0) are given by λ1(0) = 0, λ2(0) = λ5(0) = − 1
2

(√
5 + 5

)

∼ −3.618 034, and λ3(0) = λ4(0) = 1
2

(√
5 − 5

)

∼ −1.381 966,
proving, thus, that 0 is a stable equilibrium point. Similarly, for
t = 1, the eigenvalues of H(θ∗) are given by λ1(1) = 0, λ2(1)

= λ5(1) = − 1
2

(√
5 + 5

)

cos
(

2π
5

)

∼ −1.118 034 and λ3(1) = λ4(1)

FIG. 4. Graph of the eigenvalues λ1(t) (red), λ2(t) (dark lilac), λ3(t) (green),
λ4(t) (black), and λ5(t) (dark blue) of A(t) (19) for 0 ≤ t ≤ 1. It is also shown
the vertical line t = 1/2.

= 1
2

(√
5 − 5

)

cos
(

2π
5

)

∼ −0.427 051 showing that θ∗ is also a stable
equilibrium solution of the Kuramoto model.

In Proposition III.3, we have proved that all the eigenvalues
verify λ′

k(t) ≥ 0 for 0 < t ≤ 1/2. In Fig. 4, we also have to plot the
vertical line t = 1/2 and we can see that the functions λk(t) are
increasing for all k = 1, . . . , 5 as it is proved in Proposition III.3.
Moreover, it is possible to prove that λ′

4(t) < 0 and λ′
5(t) < 0 for

some value of 1/2 < t ≤ 1.
Although Theorem A does not apply to this particular exam-

ple (since |0(θ∗)| > π), the ideas used in the proof of Theorem A
can used to understand the existence of these two stable equilib-
rium solutions. Thus, these two stable equilibrium solutions 0 and
θ∗ belong to two different connected components of set C [see (16)].
We recall that C is the set of points θ where four of the eigenval-
ues of H(θ) are strictly negative. We denote by C1 the connected
component of C containing 0 and C2 the connected component
of C containing θ∗. In Fig. 4, it is shown the evolution of all the
eigenvalues from t = 0 to t = 1. We observe that λ4 is the only
eigenvalue that changes their sign. More precisely, λ4(t) ≥ 0 for
t ∈ [t0, t1] and λ4(t) ≤ 0 for t ∈ [0, t0] ∪ [t1, 1] (see Fig. 4). Hence, at
t = t0, point t0θ

∗ belongs to the boundary of C1, and for t ∈ (t0, t1),

point tθ∗ is the complement of C and at t = t1, point t1θ
∗ belongs

to the boundary of C2 and for t1 < t ≤ 1, point tθ∗ belongs to C2.
Thus, eigenvalue λ4(t) needs to increase to exit C1 and decrease
to enter into C2 or in other words their derivative change their
sign.
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IV. DISCUSSION

In this paper, we have demonstrated that the Kuramoto model
yields a unique stable solution [θ∗] satisfying |0(θ∗)| ≤ π . This
implies that half of the unit circle can be selected to include all the
oscillators. Such solutions can be perceived as a type of “entrained”
solution, characterizing what is commonly seen as a cluster of
entrained oscillators around a mutual phase. This is distinct from
other solution types, such as the splay state solution depicted in
Fig. 3. The stability of any equilibrium solution of (5) is captured
within the symmetric matrix H(θ∗) as detailed in Eq. (6). Our
proof of this principal finding hinges on controlling the derivative
of the eigenvalues of the function t 7→ λ(t), where λ(t) denotes an
eigenvalue of the matrix A(t) = H(tθ).
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