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On 31 December, 2019, an outbreak of a novel coronavirus, SARS-CoV-2, that causes the COVID-19
disease, was first reported in Hubei, mainland China. This epidemics’ health threat is probably one of the
biggest challenges faced by our interconnected modern societies. According to the epidemiological reports,
the large basic reproduction number R\ ~ 3.0, together with a huge fraction of asymptomatic infections,
paved the way for a major crisis of the national health capacity systems. Here, we develop an age-stratified
mobility-based metapopulation model that encapsulates the main particularities of the spreading of
COVID-19 regarding (i) its transmission among individuals, (ii) the specificities of certain demographic
groups with respect to the impact of COVID-19, and (iii) the human mobility patterns inside and among
regions. The full dynamics of the epidemic is formalized in terms of a microscopic Markov chain approach
that incorporates the former elements and the possibility of implementing containment measures based on
social distancing and confinement. With this model, we study the evolution of the effective reproduction
number R(t), the key epidemiological parameter to track the evolution of the transmissibility and the
effects of containment measures, as it quantifies the number of secondary infections generated by an
infected individual. The suppression of the epidemic is directly related to this value and is attained when
R < 1. We find an analytical expression connecting R with nonpharmacological interventions, and its
phase diagram is presented. We apply this model at the municipality level in Spain, successfully forecasting
the observed incidence and the number of fatalities in the country at each of its regions. The expression for
‘R should assist policymakers to evaluate the epidemics’ response to actions, such as enforcing or relaxing
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confinement and social distancing.
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I. INTRODUCTION

As of August 2020, the novel coronavirus, SARS-CoV-2,
has infected more than 20 000 000 persons worldwide with
COVID-19, causing more than 700 000 deaths. From its
onset, the scientific community has embarked on an unprec-
edented search for efficient ways to stop the advance of the
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epidemic wave. This extraordinary effort has involved
different disciplines: epidemiological studies to characterize
the transmission patterns of the new coronavirus, large-scale
clinical trials to test treatments that improve the course of the
most severe cases, and the design of vaccines that safely
provide immunity to the world’s population.

Once the epidemiological parameters were found [1-10],
the mathematics and physics community made use of the
most advanced epidemic models [11-18] to track and
anticipate the spread of the epidemics (see Ref. [19] for
an exhaustive review on these efforts). Nevertheless, the
particularities of both SARS-CoV-2 transmission and
the heterogeneous clinical evolution of patients with
COVID-19 call for a rethinking of conventional models
toward adapted models that explicitly take into account

Published by the American Physical Society


https://orcid.org/0000-0003-0937-0334
https://orcid.org/0000-0002-8582-1531
https://orcid.org/0000-0001-5204-1937
https://orcid.org/0000-0003-1820-0062
https://orcid.org/0000-0003-3156-0417
https://orcid.org/0000-0002-7563-9269
https://orcid.org/0000-0002-6388-4056
https://orcid.org/0000-0002-0723-1536
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.10.041055&domain=pdf&date_stamp=2020-12-18
https://doi.org/10.1103/PhysRevX.10.041055
https://doi.org/10.1103/PhysRevX.10.041055
https://doi.org/10.1103/PhysRevX.10.041055
https://doi.org/10.1103/PhysRevX.10.041055
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ALEX ARENAS et al.

PHYS. REV. X 10, 041055 (2020)

these details and the characteristics of the populations
affected by the pandemic. Among these characteristics,
capturing the specific demographic distribution, the com-
plex patterns of social contacts, and the geographic
mobility networks among populations is essential to under-
stand and forecast the impact that nonpharmacological
containment measures, such as social distancing or confine-
ment, have on the spread of the pathogen.

Here, we propose a mathematical (mechanistic) model
particularly tailored to capture the main features of the
propagation of SARS-CoV-2. This model relies on pre-
vious metapopulation models by the authors [20-24] to
incorporate the specific characteristics of SARS-CoV-2
transmission and the clinical features of COVID-19
patients. Concerning transmission, we consider the impor-
tant effect that the large fraction of asymptomatic infections
(around 40% [25]) have on the covert spread of the disease
in the early stages, causing a delayed response of contain-
ment measures based on the observed incidence of symp-
tomatic patients. For the clinical aspect, we consider the
long hospitalization times required by critical cases admit-
ted to the intensive care unit (ICU), since the saturation of
these units constitutes one of the main political and health
threats of COVID-19 epidemics.

To incorporate the former knowledge into a single frame-
work, we build an epidemiological model with ten compart-
ments characterizing the epidemiological and clinical status
of individuals in each patch that make up the metapopulation.
In addition, we split the former partition into three age strata
(young, adults, and older adults), thus allowing us to capture
in a stylized way the main epidemiological, clinical, and
behavioral differences between these groups. On the one
hand, SARS-CoV-2 importation and exportation events
between patches are mostly due to the mobility of the active
population. On the other hand, the medical evolution of
COVID-19 displays significant differences across age strata
[13,26,27]. In this regard, infections in the young group lead
to null or mild symptoms [28], whereas, for older individuals,
the infection evolves toward more severe symptoms and often
requires hospitalization.

The detailed structure of the metapopulation framework
offers the possibility of designing and evaluating the
impact of contention policies to stop the propagation of
SARS-CoV-2. In particular, we focus on those policies
relying on global or targeted quarantine measures due to
the extreme relevance of these interventions for the course
of the pandemic. This way, our formalism allows us to
incorporate the temporal evolution of the fraction of the
confined population and to assess the performance of
lockdown policies to mitigate the pandemic. Taking
advantage of this possibility, we explore several epidemic
scenarios characterized by different contention measures
and evaluate their impact on the decrease of the epidemic
prevalence and the saturation of the Spanish health system
during March, April, and May 2020. As a very relevant

application, our model enables us to derive the selection of
the minimum degree of confinement needed to avoid the
health system crisis while not disrupting the economic
fabric of the country.

In a nutshell, the proposed model takes into account, in a
stylized way, three main peculiarities of the SARS-CoV-2
transmission: (i) the silent transmission of the pathogen
through the young portion of the population, (ii) the large
potential for the spatial dissemination of the pathogen
provided by the mobility patterns of adults, and (iii) the
severe pathology caused by COVID-19 in the elderly that
yields to a dramatic increase of medical and hospital
demands. Thus, the model can be viewed as three coevolving
spreading processes with different spatiotemporal scales.

The analysis of the model and the main results are
presented as follows. First, we show the main features of
the dynamical model in Sec. II, describing first how
epidemiological, clinical, and social data are incorporated
into the metapopulation framework and, finally, showing
its validation comparing with data corresponding to the
COVID-19 outbreak in Spain. Once the model is defined
and validated, we tackle in Sec. III the analytical derivation
of the effective reproduction number. In Sec. 1V, this
expression is analyzed in detail to unravel the nonlinear
dependency between the mobility restrictions and the
epidemic incidence. Finally, in Sec. V, we round off the
article by summarizing the main findings of the work and
discussing the implications in public health policies aimed
at facing COVID-19.

II. METAPOPULATION MODEL

We present below the details of the metapopulation
framework tailored for capturing the spread of SARS-
CoV-2 and the evolution of COVID-19 patients. This
presentation is divided into four parts: the explanation of
the compartmental dynamics for each age stratum in a single
patch, the description of contagion processes governed
by social contacts and the mobility among patches, the
incorporation of contention measures aimed at reducing
human mobility and increasing social distance, and, finally,
the validation of the model with data corresponding to the
epidemic wave in Spain.

A. Compartmental dynamics

The epidemic model is built upon previous work on the
method known as the microscopic Markov chain approach
(MMCA) [29,30]. It is designed for the modelization of
epidemic spreading dynamics but is also applied to other
types of processes, e.g., information spreading and traffic
congestion [31-36].

In the original MMCA formalism, which analyzes a
susceptible-infected-susceptible dynamics in a single pop-
ulation (i.e., each node representing an individual), the
description of the dynamics is made using as variables the
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probabilities p;(#) of each node i being infected at time 7.
The MMCA equations express how these probabilities
evolve in time [29]: A node is infected at a time step if it
was previously infected and did not recover or was
susceptible and became infected by one of its neighbors:
pili+1) = pi()(1 =) + [1 = p ()T (1). These equa-
tions just rely on probabilities, i.e., sums of probabilities
of disjoints events, and products of probabilities of
(approximately) independent events. Moreover, they are
deterministic; thus, they can be iterated from any desired
initial condition to know the evolution of the p;(¢) of
each node.

The capacity of describing the epidemics at the level of
nodes explains the qualification of MMCA as a microscopic
methodology. This characteristic distinguishes MMCA from
the more common mean-field approaches, which are based
on differential equations that express the rate of change of
the fraction of infected individuals: The variables, the
equations, and even time are analyzed differently.

The adaptation of MMCA to the study of epidemics
in structured metapopulations, with heterogeneous agents,
and subject to recurrent mobility patterns, is performed
by some of the authors in previous works [20-24]. The
main difference with respect to standard MMCA is that
variable p!(t) represents the probability that individuals,
with residence at node i, are in state m. An alternative
interpretation for them is as the fraction of individuals
living at the node that are in the given state. However, the
equations of the dynamics are better understood with the
probabilistic semantics.

The evolution of these probabilities {p”(7)} determines
the dynamical state of a single patch i and is dictated by the
underlying compartmental model. Here, this compartmen-
tal model is composed of the following epidemiological
and clinical compartments: susceptible (S), exposed (E),
asymptomatic infectious (A), symptomatic infectious (/), to
be admitted in ICU (prehospitalized in ICU, Py), fatal
prognosis (predeceased, Pp), admitted in ICU that will
recover (Hy) or decease (H p), recovered (R), and deceased
(D). Compartments Py and Pj, are introduced to account
for the delays observed for individuals before they are
admitted in ICU or before they die outside ICU, respec-
tively. Similarly, the compartments Hi and Hp, represent
the individuals in ICU but separated according to their final
state (recovered or deceased, respectively), which is
reached at different rates.

As anticipated above, the population of a patch is further
divided into N age strata. Although we present the model in
a general form, its application to COVID-19 makes use of
only the three age strata mentioned above (N; = 3): young
people (Y), with age up to 25; adults (M), with age between
26 and 65; and elderly people (O), with age larger than 65.
This differentiation is very relevant in light of the observation
of a large fraction of infected asymptomatic individuals at
ages (<25), in contrast with the abundance of severe and
critical cases reported for people at older ages (> 65).

Let us suppose we have a population of N individuals
distributed in Np regions, with n; individuals residing in
region (patch) i. We also consider that individuals belong
to one of N different age strata, in such a way that n/
individuals of age strata g live in region i. Thus,

Ne Np

N= ) —Zn _an (n

where nY is the total population of age strata g. Our system
is completely characterized by variables p!"’(z), which
account for the probabilities that individuals of age stratum
g assigned to patch i are in state m at time ¢, where m €
{S,E.AI,Py.Pp,Hg,Hp,R,D} and g€ {Y.M,O}.
The temporal evolution of these quantities is given by

P =TI(1)], (2)
PO (1) + (1=n9)p (), (3)
P+ 1) = w0 + (L= a”)p (), (4)
W)+ (L=p)p (0, (5)
(1=¢9)p™(). (6)

P+ 1) =0 (1=00)p o9 (0) + (1=2)p " (1), (7)

P+ 1) =

it +1) =

pid(t+1) = a%p}

P91 +1) = wonp!(r) +

Pt 4 1) = p(1 = 09)(1 = y9)p;“ (1)
+ 2P0 (8) + p (1), (8)
P91+ 1) = Wap!™9(t) + (1 —w?)pi > (1), )

P14+ 1) =20(1=a)pi " (1) + (1=x)p (1), (10)

PP+ 1) =

These MMCA equations correspond to a discrete-time
dynamics, in which each time step represents a day.
Note that the sum over all p!"?(z) for a given patch i
and age group g equals 1 for each time step f.

The rationale of the former compartmental dynamics
is the following. Susceptible individuals get infected by
contacts with asymptomatic and symptomatic infected
agents, with a probability ITY(7) (described in Sec. II B)
becoming exposed. Exposed individuals turn into asymp-
tomatic at a certain rate 79, which, in turn, become
infectious at a rate a?. Once infected, three paths emerge,
which are reached at an infectious rate u9. The first one is
death without being hospitalized in ICU, with probability
09, after a latency period governed by rate (9. Otherwise,
with probability y¥ the individuals are hospitalized in ICU,
which are reached at rate 19, while with probability 1 — y9

EIpEP () + yipl I (1) + pPO(r).  (11)
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Compartments of the epidemic model. The acronyms correspond to susceptible (SY), exposed (EY), asymptomatic infectious

(A9), symptomatic infectious (19), prehospitalized in ICU (P%,), predeceased (P), in ICU before recovery (H%), in ICU before death
(HY,), deceased (DY), and recovered (RY), where g denotes the age stratum of all compartments. The arrows indicate the transition

probabilities.

they recover. Individuals in ICU have a fatality probability
Y, which is reached at a rate y9, whereas the recovery is
reached at a rate y9. See Fig. 1 for a sketch of the
compartmental model with all the transitions and
Tables I-III for the list of the parameters and their values
to simulate the spreading of COVID-19 in Spain, which are
discussed in Appendix A.

B. Social contacts and mobility among patches

To understand the geographical diffusion of the disease,
as a result of human-human interactions in small geo-
graphical patches, one has to combine the contagion
process with the long-range disease propagation due to
human mobility across different spatial scales. For the case
of epidemic modeling, the usual metapopulation scenario
assumes that the individuals within each patch are well
mixed; i.e., pathogens can be transmitted from an infected
host to any of the healthy agents placed in the same patch
with the same probability. The second aspect of the
metapopulation approach concerns the mobility of agents.
Each host is allowed to change its current location and
occupy another patch, thus fostering the spread of patho-
gens at the system level. Mobility of agents between
different patches is usually represented in terms of a
network where nodes are locations while a link between
two patches represents the possibility of moving between
them. Here, we include a set of modifications to the
standard metapopulation frameworks, using the average
contact network within each age strata and among them and
taking into account also differences in mobility patterns
between working-age individuals and the rest. Now we
detail how contagions of susceptible individuals of a patch i

and age stratum ¢ are captured in the Markovian equations
through the probability IT/(7). The value of I1Y(¢) encodes
the probability that a susceptible agent belonging to age
stratum g and patch i contracts the disease. Under the model
assumptions, this probability is given by

I (1) = (1= p?)Pi(1) +PQZRf,P7 (12)

where pY denotes the degree of mobility of individuals
within age stratum g, Rg is the mobility matrix (fraction of
individuals of group age ¢ that choose destination j while
living in region i), and PY(¢) denotes the probability that
those agents get infected by the pathogen inside patch i.
This way, the first term in the rhs of Eq. (12) denotes the
probability of contracting the disease inside the residence
patch, whereas the second term contains those contagions
taking place in any of the neighboring areas. Furthermore,
we assume that the number of contacts increases with the
density of each area according to a monotonically increas-
ing function f. Finally, we introduce an age-specific
contact matrix C, whose elements C?" define the fraction
of contacts that individuals of age stratum g perform with
individuals belonging to age stratum /. With the above
definitions, PY reads

Ng N
—1—ﬁﬁ [T (1=, 0 s
m M
=1 j=1 me{A.I}

(13)
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Parameters 8, and ff; correspond to the infection prob-
abilities for contacts of a susceptible individual with
asymptomatic and symptomatic infected individuals,
respectively. The exponents represent the number of
contacts made by an agent of age stratum g in patch i
with infectious individuals—compartments A and I,
respectively—of age stratum A residing at patch j.
Accordingly, the double product expresses the probability
for an individual belonging to age stratum g not being
infected while staying in patch i.

The term z9(k9) f (1;/ s;) represents the overall number of
contacts (infectious or noninfectious) that an agent from
age group g makes inside patch i. These contacts, as
mentioned above, increase monotonically with the density
of patch i following function f(7i;/s;), where s; is the area
of patch i measured in square kilometers and 7; represents
the effective population inside patch i. Likewise, the term
z9 is a normalization factor introduced to ensure that the
average degree of population belonging to age group g is
(k9). Therefore (see details in Appendix B),

g9
g (14

S fEd

where the effective population at patch i, i.e., the number of
people present at patch i when commuting takes place, is
given by

= i, (15)

7 =S M. (16)

For convenience,
matrices MY%;:

we define the effective mobility

M?i = (1=p9)6;; + PQR%, (17)

that take into account both the degree of mobility of the
population and the transition probabilities to the neighbor-
ing patches.

From now on, we use the tilde notation to indicate
variables measured while the commuting is active, to
distinguish them from variables when all the population
is in its residence patch.

The function f(x) governing the influence of population
density is selected, following Ref. [41], as

fx) =1+ (1—e*). (18)

The last term of the exponents in Eq. (13) contains the
probability that these contacts are contagious, which is

proportional to n;-";hi, the expected number of individuals of

age stratum £ in the given infectious state m (either A or /)
which transit from region j to region i:

(1) = ol ()M, (19)

The discrete-time nature of this model allows for an easy
computation of the time evolution of all the relevant
variables, providing information at the regional level.

C. Modeling confinement measures

Finally, this formalism allows for quantifying the per-
formance of different containment measures aimed at
reducing the impact of COVID-19. In this section, we
put our focus on the effect of extended lockdown policies
promoted across the entire system, but other interventions
such as modifying the morphology of the mobility network
or isolating specific age groups can also be assessed with
our framework.

To incorporate confinement policies in our formalism,
we consider that a fraction of a given age stratum () is
under lockdown at time ¢. In this sense, let us remark that
the time series x{(¢) allows us to tune the strength of those
confinement measures proposed to contain COVID-19. In
this sense, {, = 1 corresponds to a total lockdown scenario
in which all activity is paralyzed, whereas &, = 0 reflects a
less strict policy not affecting the population. Moreover, we
introduce the effects of social distancing measures taken by
the population as a reduction 6 of the number of contacts
made by the nonconfined population. We assume the social
distancing ¢ to be constant in time, while the confinement
level x{() is time dependent.

Let us denote as ¢, the initial time from which lockdown
interventions are deployed. The incorporation of lockdown
policies in the formalism demands some modifications
of the equations. First, population confinement implies a
reduction of the mobility within the population. Therefore,
the degree of mobility pY becomes time dependent and now
reads

p() = [1 = xkp(1)O(t = 1.)] p?. (20)

where ©(x) is the Heaviside function, that is 1 if x >0
and 0 otherwise. As a by-product, 7/ and z7 also become
dependent on time; see Egs. (14)—(16). Second, the con-
fined population reduces their interactions to the members
of their households. Equally, independently of whether they
are confined or not, the contacts of individuals belonging to
age strata O are reduced to their household contacts, since
they do not form part of the working population. Therefore,
in the lockdown scenario, the average degree of elderly
population is (k?) = k2, with k¢ being the contacts taking
place inside their households [42]. In contrast, given the
nature of the interventions deployed by the authorities, the
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contacts outside the household of the nonconfined pop-
ulation belonging to age strata Y and M are restricted to the
workplace and shaped by social distancing. To incorporate
both aspects, in the lockdown scenario, we define the
average degree of individuals belonging to age group
g€ {Y,M} at time 1, kZ(1), as

(k&) (1) = ko(Dkj, + [1 =g (D](1 = 8)kj,,,.  (21)
where kj and kj_ . which encode the contacts made by

confined (at home) and nonconfined (at home and at work)
|

NG Np
=1-1111 11 -+
=1 =1 me{A.D}

Finally, a perfect confinement would entail the complete
shielding of fully susceptible households against the
disease. Therefore, the confinement of the population
modifies the pool of susceptible individuals reachable
by their infectious counterparts [43]. Unfortunately, in
practical terms, complete isolation of households is
impossible, since their members are required to go out
for essential activities such as buying groceries, drugs, etc.
Therefore, we introduce a household permeability ¢
accounting for the social mixing among members from
different households in these situations. We fix the house-
hold permeability ¢ as constant in time. While the
interactions among members of different confined house-
holds clearly shape household isolation, we assume that
they do not substantially modify the average number of
contacts of the population.

In this scenario, a relevant indicator to quantify the
efficiency of the policy is the probability of one individual
living in a household, inside a given municipality i, without
any potentially infectious individual. Assuming that con-
finement is implemented at time ¢,., this quantity, denoted in
the following as CH,(t.), is given by

CHi(1) = (33 11=pE(0) = o(0) = (0t )

ig=1
(24)

This confinement strategy is introduced in the dynamical
Egs. (2)-(11) by modifying Eqgs. (2) and (3) for the time
after ¢,

P+ 1) = [p7 (1) + pi " (D)L~ T (1)

X [1=0(r—1.)(1 = §)cg(1)CH,(1)].  (25)

population, respectively, are obtained from Ref. [42]. This
way, the average number of daily contacts (k9) of agents
belonging to each group g € {Y, M, O} should be updated
to account for this dependence:

[1=O(t = 1)](k7) + O(t — 1) (k).

(k7)(1) = (22)

The time dependence of the number of interactions affects
the probability that an individual from age group ¢ and
patch i becomes infected, PY(¢), which is now given by

OB (0) /5 o)/ o) (23)
[
P (e 1) = [p7 (1) + pf " (D] (1)
x [1=0(r—1.)(1 = ¢)x5(1)CH(1)]
+ (1=n")p; (1), (26)
pi e 1) = [p70) + o (1)
< (1= )g()CH(O(t = 1), (27)

where we add a new compartment CH to hold the
individuals under household isolation after applying confine-
ment and returning them to the susceptible pool as confine-
ment is relaxed. Confinement also affects the average
number of contacts; thus, we must also update Eq. (13).
In summary, we introduce a confinement strategy driven
by social distancing and the isolation of a certain fraction of
the population, which, in turn, reduces the average number
of contacts, the mobility, and, as a result, the probability of
becoming infected, thus reducing the overall prevalence of
the disease. Therefore, confinement policies are captured in
the formalism by the time series describing confinement
«§(1), the social distancing factor 5, and household per-
meability ¢. See Table IV for the list of the confinement
parameters and their values to simulate the spreading of
COVID-19 in Spain, which are discussed in Appendix A.

D. Validation of the model

The metapopulation model is calibrated with real data of
fatalities caused by COVID-19 in Spain until April 8, using
approximate Bayesian computation [45]. Because of the
absence of more specific data, we take the reduction in the
work mobility as a proxy for the temporal evolution of
the confined population in Spain. Furthermore, since
displacements not related to work activities were banned
as the lockdown was enforced, the evolution of the work
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mobility reflects well the variations in the population under
confinement. The confinement measures are introduced
into the model from March 14 onward (before this date, no
intervention was made). We obtain the time series x§(7)
from official reports [44] by estimating the work mobility
reduction with respect to a baseline day, November 19,
2019. We assume that these time series are equal for all age
groups and refer in the following to () as k(7).
Further details on the data used and model calibration are
shown in Appendixes A and C.

Once calibrated, we validate our model using two data-
sets: the evolution of daily fatalities in Spain [Fig. 2(a)] and
the evolution of the daily number of newly detected
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symptomatic individuals [Fig. 2(b)]. The results in these
figures show a qualitative and quantitative agreement in
all the phases corresponding to the different containment
interventions implemented by the government of Spain.
Note that the time series of new symptomatic individuals is
rescaled to account for case underreporting. For the sake of
visualization, Figs. 2(a) and 2(b) incorporate the lockdown
stages depicted as horizontal bars that correspond to the
different interventions enforced in Spain. In LM, Spain was
under lockdown but laboral mobility was allowed. In a
stricter scenario (EM), only essential mobility (that corre-
sponding to the commuting of essential workers) was
allowed. In ECS, in addition to permitting laboral mobility,

(b) Lockdown stages
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FIG. 2. Model validation and spatiotemporal propagation of COVID-19 across Spain. Top: Solid lines show model predictions for the
daily fatalities (a) and the daily number of new symptomatic individuals (b), whereas dots correspond to real data. The shadowed areas
represent the 95% prediction interval. Bottom: Correlation between the accumulated number of deaths (r = 0.98) (c) and accumulated
number of reported cases (r = 0.90) (d) per 100 000 inhabitants observed by May 15 and those predicted by the model. The plot shows
this correlation at the level of Comunidades Auténomas of Spain. Error bars cover the 95% prediction interval.
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children and elderly people were allowed to go out during
certain times of the day and adults could practice sports
outdoors. In R1, the first phase of the reopening after the
lockdown, some commercial activity was allowed. The
shaded area covers 95% prediction intervals for the model
trajectories.

Finally, taking advantage of the spatial resolution of the
metapopulation framework, we show in Figs. 2(c) and 2(d)
the accumulated number of fatalities and reported cases at
the level of Comunidades Auténomas with those predicted
by the model. In both cases, the plots show a remarkable
agreement (correlations of r = 0.98 and r = 0.90, respec-
tively), capturing the large heterogeneity of the impact of
COVID-19 across the country.

In Supplemental Material [46], we show the use of the
model to evaluate different containment scenarios, exploit-
ing factors such as the age compartmentalization and the
spatial nature of the framework. However, although being
illustrative of its use to inform policy makers, we move on,
analyzing the model to delve into the consequences of
nonpharmacological interventions.

III. EFFECTIVE REPRODUCTION NUMBER

The stage of an ongoing outbreak is typically quantified
by studying the effective reproduction number R(¢), which
captures the number of secondary cases that an individual
infected at time ¢ will produce through the duration of its
infectious period. To compute the evolution of R(¢) using
our model and understand its dependencies, we present an
incremental rationale from the most rough approximation
to the most accurate formula.

Let us consider, first, a scenario (known as mean-field in
physics) in which an infected subject i makes (k) contacts
each time step. Assuming an infection probability S per
contact, the expected number of individuals infected by i
at each time step is f{k)pg, where pg is the fraction of
susceptible individuals on the population. We can estimate
how many individuals are infected by subject i over an
infectious period of duration 7 as

R = tf(k)ps. (28)

This very simple mean-field approach is already very
informative, as it reveals the main dependencies of R on
the variables of the epidemic propagation, indicating the
actionable variables we can resort on to reduce R. Acting
on the infection probability  can be attained with the use of
face masks and physical distance or through pharmaco-
logical interventions via prophylactic treatments. Another
actionable variable is (k), which can be modified by human
behavioral changes such as confinement. Also, the infec-
tious period 7 can be modified by implementing a fast
testing policy to confirm and isolate suspected cases.
Finally, the value of pg, that can be directly estimated

from the model, is highly dependent on the extent of
lockdown policies, on the level of immunity reached in the
population, or on the degree of vaccinated individuals when
this pharmacological intervention is available.

The previous approach, however, neglects many impor-
tant social, demographic, and mobility details key to
shaping the way in which secondary infections spread
through a geographically distributed heterogeneous pop-
ulation. Likewise, it obviates the temporal evolution of the
group of individuals susceptible to contracting the disease.
This naive approach can be largely improved by leveraging
the information of the proposed age-structured mobility-
driven metapopulation epidemic model.

A. Determination of the effective reproduction
number from the dynamics

Let us define R? , the effective reproduction number of
geographical patch i and age stratum g, as the number of
secondary cases produced by an infected individual belong-
ing to patch i and age stratum g [47]. Mathematically, RY is
expressed as

r Ng

R =199y

ji=1 h=1

k3. (29)

J

~

In the above expression, the following quantities interplay:
the duration of the infectious period of each age stratum g,
79; the average infectivity during the infectious period, (f9),
per age stratum g; the average number of daily contacts an
individual belonging to patch i and age stratum g makes

with individuals in patch j belonging to age stratum A, k;; ;

and the fraction of susceptible individuals present in patch j
belonging to age stratum #, ﬁf ' In summary, the structure

of RY resembles the mean-field expression presented in
Eq. (28), but it takes explicitly into account the mixing of

individuals according to their age strata and mobility

patterns (kI‘J;’ and f)js’h). Nevertheless, this expression is

still a static snapshot at time ¢.

We can extend this approach to include both the temporal
dependence and the heterogeneity of contacts induced
by the daily commuting patterns, making use of all the
probabilities provided by our model equations. Moreover,
here, we aim at studying the temporal evolution of the
effective reproduction number beyond the early stage of the
disease. In this sense, we define the reproduction number of
patch i and age stratum ¢ as the number of infections
observed if we seed an infected individual in the afore-
mentioned patch and age stratum [47]. This definition
involves considering that this infected individual, with
residence in patch i, may commute to patch j, where it
will be able to contact and infect susceptible individuals
coming from any other patch k.

041055-8



MODELING THE SPATIOTEMPORAL EPIDEMIC SPREADING OF ...

PHYS. REV. X 10, 041055 (2020)

First, we calculate the expected number of susceptible
individuals of age stratum 4 which move from region & to
region j as

S.h S.h
et (1) = nipy (M (1), (30)
The fraction of susceptible individuals of each age stratum
g present at time ¢ in patch j is expressed by

Np
70 = i Do 0 31)
J k=1

Next, we compute the number of susceptible contacts made
by an individual of age stratum g and patch i, which can be
expressed as

p

Ng
S

j=1 h=

07 (P10 etz o

(32)

Using this expression and assuming that we have an
individual from patch i and age stratum g that has become
infectious, we can compute the effective reproduction
number for each patch and age stratum as

R0 = (2 -+ 1) ot (33)

In Eq. (33), we assume that the fraction of susceptible
individuals as well as the average number of contacts is
constant during the infectious period. However, the fraction
of susceptible individuals obviously changes during that
time. More importantly, as containment measures come
into play, the number of contacts varies as well. To account
for the temporal variability of these quantities, we calculate
the contributions to RY(r) of the infections produced since
the individual became exposed at time 7. The contributions
can be determined through the probabilities to be exposed,
¢E9, asymptomatic, {49, or symptomatic, {9, t time steps
after an infection. The evolution of these probabilities is
given by

CRI(t+1) = (1 =n?)¢B9(1), (34)

FA9(t 4 1) = gP(n) + (1 =)o), (35)

¢+ 1) = g0+ (1= )" o(0). (36)
Since the seed is initially placed as exposed, the initial
conditions are given by (¢£9(0)=1 and ¢49(0) =
¢19(0) =0. Accordingly, solving explicitly the recursive
Eqgs. (34)-(36), we find

¢Eo(e) = (1 = ), (37)
chale) = =) = (1=a)]. (39
nial

gha(r) =

(@ = n?)(u9 —n?)(u — a’)
X [(u? = a?) (1 =n?)" + (9 = p9)(1 — &)’
+ (a7 —59) (1 = u9)"]. (39)

Incorporating these probabilities into Eq. (33), we obtain
the following expression for the effective reproduction
number of individuals of age stratum g in patch i:

RI(t) = [¢49(s — )+ C9(s = 1))
Np Ng

Xzquh ~Sh (40)

j=1 h=

where

(1)

Sj

k€?<r>=zg<r><kg><r>f( )cghM?,m (1)

The variables RY(r) tell us the effective reproduction
number of one newly infected individual from age stratum
g with residence in i.

To compute the temporal evolution of the global effective
number R(¢) or the effective number R9(t) associated to a
given age stratum ¢ at time 7, we must make a weighted
average taking into account the distribution of newly
infected individuals across patches and age strata.
Therefore, these indicators read

> mefs, CH}Zl 12 < P (1=1)=pi" (D)]n{ R (1)

R(t)= s m
Zme{S,CH}Zz:IZg:I i (t=1)=p"(1)]n]
(42)
and
o) = Entsen Z28 D10 ) = A OlniRD
> me(S.CH} Zi:l (1 = 1) = pi(0)]n]
(43)

respectively. To show the validity of the former analytical
expression for the effective reproduction number R(z), we
perform in Appendix E a comparison of its time evolution
with the results obtained by using EpiEstim [48,49] applied
to both the incidence in our model and the daily incidence
data observed in Spain.
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B. Monitoring the effect of contention measures
in Spain

To check the effect of the policies aimed at reducing the
impact of COVID-19 in Spain, we compute the expression
of R(¢) according to Eq. (42) using the reported variations
of k in this country from March 14. In Fig. 3, we represent
R(t) along with the time series of the degree of confine-
ment k(#) [obtained from the Instituto Nacional de
Estadistica (INE) of Spain [44]]. Note that the confinement
during the progressive exit of the lockdown state lies
between 0.7 and 0.6 approximately, stabilizing R(7) < 1.
However, there is a clear tendency of R(f) to grow as the
confinement level was relaxed in May (see also Fig. 9 in
Appendix E). This growing tendency may be one of the
reasons leading to the second epidemic wave Spain is
facing during the months of July and August 2020.

Furthermore, in the plot, we obtain from Eq. (43) the
effective reproduction number by age strata, that is, the
RY(t) of the young, adult, and elderly population (being
g€ {Y,M,0}). There, we notice that relevant hetero-
geneities exist among the reproduction number of the
different age strata. In particular, at the end of the curve,
we observe that a supercritical scenario for the adult
population [R¥(¢) > 1] is compatible with a global sub-
critical regime. This valuable information opens up the
possibility of designing suppression strategies that allow a
certain age stratum to have R(z) > 1, provided the average
value of the whole population is below the threshold
R(t) < 1. The same conclusion applies in terms of geo-
graphical areas instead of ages. This result offers a
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perspective on epidemic control that could be very useful
to design strategic interventions targeting individual age
stratum or particular geographical areas in heterogeneously
distributed populations.

The analytical expression for RY in relation to confine-
ment k, social distancing 8§, and household permeability ¢
can be exploited to ascertain the implications of non-
pharmacological interventions. Let us assume that the aim
of the intervention is that of keeping the epidemic under
control, in the absence of any other tool besides confine-
ment and social distance. In this case, the strong goal must
be that of keeping of RY(r) <1V i,g, or the weaker goal
R(t) < 1. We can use the analytical dependence of R(t) to
estimate the minimal, constant intervention in k, and o such
that the goal is achieved.

In Fig. 4, we present, for the case of Spain, the lower
bounds of confinement needed, assuming fixed social
distancing, to achieve R(r) < 1. This analysis makes use
of R(t) to obtain the minimum possible confinement that,
while damaging the socioeconomic structure as little as
possible, allows the epidemic to be controlled and gradu-
ally mitigated. Note that the previous goal can be relaxed,
or changed, according to any other demands of the
authorities, as, for example, maintaining the number of
ICUs in the health system below a certain threshold,
minimizing the number of fatalities, or achieving suppres-
sion in the minimum time. Figure 4 highlights the relevance
of timely and strict lockdown policies, to avoid the break-
down of the health system, in the absence of other non-
pharmacological interventions. We observe that small
variations in the fraction of confined population x, entail
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8 Apr
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18 Apr
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08 May
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)3 May
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FIG. 3. Effect of lockdown policies on the effective reproduction number. Temporal evolution of the effective reproduction number
R () for each age stratum and its average computed according to Eq. (42). Inset: The black line represents the temporal evolution of the
degree of confinement k() extracted from data daily updated by INE [44]. The blue line shows the average over a 7-day time window to
smooth out fluctuations observed in the data. To improve the visibility of the inset, degrees of confinement from March 14 until March

28 are not represented.
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FIG. 4. Relation between the confinement level and time
needed for epidemic extinction. Top: Time to epidemic extinction
from May 15 as the reproduction number is fixated from this day
onward. The reproduction number is kept constant by adjusting
the confinement level through time. We define epidemic ex-
tinction as a daily incidence of fewer than ten cases. Bottom:
Average confinement level necessary to keep the reproduction
number constant. At each time step, we correct the confinement
level by steps of 0.1% until the effective reproduction number
R(z) differs less than 1% from the envisaged value.

significant changes in the time needed to mitigate an
epidemic wave.

IV. QUANTIFYING THE EFFECT OF
CONTAINMENT MEASURES OVER R(t)

The expression for the global effective number R(¢)
[Eq. (42)], while useful for computing the impact that
contention measures have on the spreading dynamics, does
not allow a direct interpretation of how these policies, in
particular, confinement and social distancing, influence
the epidemic detriment. Here, starting from the complete
expression derived for R(¢), we consider some simplifying
assumptions that allow us to unravel the contribution of
these measures and, based on these approximations, derive
an expression for the critical confinement needed to bend
the epidemic curve.

A. Phase diagram of R (¢) as a function
of confinement and social distancing

To reveal the explicit dependence of R () on confine-
ment and social distancing interventions, we now simplify
Eq. (40) by, first, neglecting the heterogeneities among
different subpopulations and, second, considering a static
view in which the pool of susceptible individuals from each
age stratum (p59) remains constant during the intervention
(constant k). The latter assumption enables us to recover
Eq. (28) which, after introducing the aforementioned
confinement parameters, reads

Rt~ (24200 -1 - ey

x [koky + (1 =6)(1 = xo)kj ]

%S5 compsae,), (44)
h=1

where (CH) denotes the average fraction of households
without any infected member.

Equation (44) shows an explicit quadratic dependence
of R9(z.) on K, that helps to understand the effectiveness
of lockdown interventions. In Fig. 5(a), we plot a phase
diagram illustrating how the global effective reproduc-
tion number is shaped by the fraction of confined
population k; and the household permeability ¢. We
highlight the phase transition occurring at R(z.) =1
(white solid line) separating two different regimes,
R(t.) > 1 (flattening) and R(z.) <1 (bending). Note
also that, as the permeability of confinement ¢ increases,
the transition point is reached for larger values of
confinement kj, this transition being lost for very high
values of ¢ = 0.83.

To shed light onto the qualitative differences between
the regimes separated by the transition described above,
in Fig. 5(b), we plot the number of daily new cases for
different levels of confinement, x,,, while keeping the social
distancing as calibrated, 5§ = 0.207 (95% credible interval
Crl: 0.053-0.359). The confinement is applied at time 7,
corresponding to March 14. It is observed that, as confine-
ment is applied to a small fraction of the population
(kg > 0), the curve for the number of new cases per day
starts to broaden and the maximum shifts forward in time.
Such a mitigation strategy is known as flattening the curve,
in which containment delays and lowers the incidence
peak. The consequence of the flattening scenario is that the
impact over health systems is ameliorated at the expense
of a larger epidemic period. However, as confinement is
increased (higher x), there is a sharp change in the
behavior of the epidemic curve for x, between 0.4 and
0.6, signaling that the transition point R(#.) =1 lies
between these two values. In particular, for values of
large enough, the epidemic curve reaches its maximum
soon after containment is put in place, achieving a
completely new scenario, referred to as bending the curve,
in which incidence decreases steadily and the epidemic
wave is shortened.

The bending scenarios shown in Fig. 5(b) correspond
qualitatively to the trend observed in Fig. 2(b). In fact, from
the sequence of values k((¢) in the inset in Fig. 3, we
observe that the degree of confinement achieved clearly
places the epidemic in the bending regime. Also, from the
evolution k((7), we notice that after April 14 (the day when
the gradual lifting of lockdown starts) a clear relaxation of
confinement is observed.
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Relationship between R, confinement, and permeability. (a) Effective reproduction number when mobility restrictions are

imposed R (z,) (color code) as a function of the confinement k,, and the household permeability ¢ computed from Eq. (44). The white
solid line denotes the condition R(z.) = 1 separating the different regimes for which enforcing the confinement leads to the flattening or
bending of the epidemic curve, respectively. The dashed white lines represent contour lines for different values of R(z.). The social
distancing value is fixed to § = 0.207. See Appendix D for an analysis of the sensitivity of the results. (b) Temporal evolution of the
daily fatalities as a function of the confined population k; in a single intervention taking place on March 14.

B. Critical confinement for the single patch
and age stratum approximation

As previously shown, the relaxation of confinement
progressively weakens the bending regime, raising the
question of how far containment measures can be relaxed
without entering the flattening region.

We address the analysis of this effect, by deriving the
expression of the critical confinement ki at which the
transition from flattening to bending regimes takes place.
The expression for the effective reproduction number in
Eq. (40) includes a variety of terms and factors. The
complexity of the expression hinders an intuitive under-
standing of the roots behind the transition from flattening to
bending the epidemic curve induced by an efficient confine-
ment. In order to have an analytical estimation of «{, let us
consider a single well-mixed population with only one age
stratum and constant confinement in time. Furthermore, to
express R, we assume that circumstances do not change
during the infectious period of an individual. In other words,
the number of contacts stays constant, and we neglect the
depletion of susceptible individuals. Accordingly, after
confinement, the reproduction number is expressed as

7z:ﬁ<i+é>ﬂ—mﬂ—¢ﬂaﬂ]

1
a  u
X [iig (k) + (1= 8)(1 = ko) (Kpy0)]- (45)
If we impose the condition for mitigation and suppres-
sion of the epidemics R < 1, the critical confinement value
ki must fulfill the equation

(k6)*(1 = @)(CH) [(kpy ) (1 = 8) = (k)]
= Ko { (ki) (1 = O)[1 + (CH) (1 = P)] = (kn)}

+ (kj ) (1 = 0) —m =0. (46)
Defining the following coefficients:
A= (1= @) (CH)[(kp1w)(1 = 8) = (ki) (47)
B = (ki) (1 = 8)[1 + (CH)(1 = @)] = (kn),  (48)
C= (k)1 =0) =, (49)
PG+
we can write Eq. (46) as
A(k§)? = Bk§ + C =0, (50)
whose solution is given by
o = BEVE —4AC ”i“mc. (51)

Note that only the physically meaningful solution
k§ € [0, 1] must be retained.

To further analyze the relevance of the mechanisms
characterizing the confinement of individuals in our model,
we illustrate in Fig. 6 the effects of social distance encoded
in 6 and the household permeability ¢ on the critical
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FIG. 6. Relationship between critical confinement, permeabil-
ity, and social distance. Critical confinement «{; computed from
Eq. (51) needed to ensure that the system reaches the bending
regime, i.e., R = 1, as a function of the household permeability ¢
and the social distance §.

confinement value x;. We observe a nontrivial functional
dependence revealing that, by increasing the social distance
of individuals or promoting better household isolation, the
fraction of confined population needed to keep an outbreak
under control is notably reduced.

V. CONCLUSIONS

As the COVID-19 pandemic affects more and more
countries and threatens to overload the critical capacity of
health systems, the absence of a SARS-CoV-2 vaccine
requires forceful nonpharmacological containment inter-
ventions by governments. Among these interventions, the
confinement of populations and social distancing have been
implemented by many countries in an attempt to reduce the
impact on health systems and save the time necessary to try
more efficient treatments against this emerging pathogen.

To mount the strategy against SARS-CoV-2 and antici-
pate its trajectory, it is necessary, in addition to correctly
modeling its epidemiological characteristics, to take into
account as closely as possible the influence of the vari-
ability of social contacts that the pathogen uses to spread.
Here, we have presented a metapopulation model to track
the spatiotemporal evolution of COVID-19. This frame-
work incorporates the essential factors of the SARS-CoV-2
transmission and clinical outcome of COVID-19 patients
by considering three group of ages: young individuals
(being mainly asymptomatic carriers of the pathogen),
adult people (characterized by a working activity that
involve recurrent mobility patterns), and the elderly (dis-
playing the most severe and critical COVID-19 cases).
Although the age partition can be further split into more
groups, the former partition appears to be the minimal one

to capture the main characteristics of the current epidemics.
Apart from the recurrent mobility between patches (in the
current work municipalities), contacts at the local level
are modeled using a mean-field approach that incorporates
a density-dependent function for the contact patterns
between age groups. This assumption allows the straight-
forward consideration of household confinement and also
enables one to explore contention strategies aimed at
reducing the sociability within and between age-specific
groups. The model constitutes an stylized framework to
explore early nonpharmacological interventions when mas-
sive testing and contact tracing are not available, as was the
case of the first epidemic wave in Spain and many other
countries around the globe.

Analyzing in detail this model, we have shown that it is
possible to construct the expression of the effective repro-
duction number R(¢) capturing both the epidemiological
characteristics of COVID-19 and those social patterns that
facilitate its expansion. This expression enables an accurate
evaluation of the spreading potential of SARS-CoV-2 on a
given population and, more importantly, the assessment of
the effects of implementing or lifting nonpharmacological
interventions in advance. It can be used to assess the extent
of nonpharmacological interventions on a given territory
seeking for the less harming intervention in terms of
confinement level and time needed to epidemic suppression.

Focusing on the outbreak in Spain, we have analyzed the
effects of different degrees of confinement, x,, using the
expression for R(t) evaluated at the time 7. when contain-
ment is applied. This way, we can accurately determine the
effects on the slowdown and suppression of the epidemic
caused by different degrees of confinement. Calculating the
value R(z.), we observe a transition as the set of confined
inhabitants decreases and the consequent social mixing
increases. This transition defines a critical confinement g
that separates a supercritical scenario, in which R(z.) > 1
flattens the curve, to another subcritical one, R(z.) < 1,
that bends the epidemic curve due to the profound change
in the social contacts structure, making it almost impossible
for the virus to spread.

The exact critical confinement separating the supercriti-
cal and subcritical regimes is highly dependent on the
underlying social structure and the intrinsic mobility
patterns of each population. Furthermore, it depends on
the time it is applied, since it depends on the available pool
of susceptible agents that can be culled out from the system.
The generality of the expression for R(#) provided here
makes it possible to apply it to any population and to use
with any metapopulation epidemic model, paving the way
for implementing timely and well-founded epidemiological
and socially based nonpharmacological responses.
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APPENDIX A: PARAMETERS FOR THE
MODELIZATION OF THE SPREADING
OF COVID-19

We now describe the choice of our parameters to study
the epidemic outbreak in Spain, whose values are enumer-
ated in Tables I-IV.

Throughout the manuscript, the patches of the metapo-
pulation correspond to municipalities which constitute the
lowest administrative divisions in Spain. Regarding the
population structure, we obtain the population distribution,
population pyramid, and average household size at the
municipality level from Instituto Nacional de Estadistica
[50], whereas the age-specific contact matrices are extracted
from an international social study [42]. At the beginning
of the pandemic, the entire population is assumed to
follow their usual mobility patterns, so pY =1 for every

Parameters of the model related to geographic and population data, including mobility, and their values

Symbol Description Estimates for g € {Y, M, O} in Spain
n! Region population Data provided by INE
S; Region surface Data provided by INE
R?j Mobility matrix Data provided by INE
(k%) Average total number of contacts (11.8,13.3,6.8)
(k%) Average number of contacts at home (3.1,3.2,3.3)
(k) Average number of contacts at work (1.8,5.2,0.0)
0.5980 0.3849 0.0171
co Contacts-by-age matrix (0.2440 0.7210 0.0350)
0.1919 0.5705 0.2376
13 Density factor 0.01 km?
pY Mobility factor (1.0,1.0,1.0)
c Average household size 25
TABLE II. Epidemic parameters of the model and their estimations with 95% credible intervals for COVID-19 in
Spain, with strata separation g € {Y, M, O} when appropriate. See Appendix A for a detailed explanation.
Symbol Description States COVID-19 Spain estimates Assignment
B Infectivity of symptomatic S—-E 0.075 Calibrated
95% Crl: 0.068-0.082
Pa Infectivity of asymptomatic S—E 0.54; Assumed
n? Exposed rate E 2.444 days™! Calibrated
95% Crl: 1.823-3.064
al Asymptomatic rate A (5.671,2.756,2.756) days™! Calibrated
95% Crl¥: 5.046-6.356
95% CrIM: 2.135-3.377
95% Crl?: 2.135-3.377
u9 Infectious rate 1 (1,3.915,3.915) days™! Y: Assumed

95% Crl: 3.470-4.360 M, O: Calibrated
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TABLE III.  Clinical parameters of the model and their estimations with 95% credible intervals for COVID-19 in
Spain, with strata separation g € {Y, M, O} when appropriate. See Appendix A for a detailed explanation.
Symbol Description States COVID-19 Spain estimates References
69 Direct death probability I - Pp (0.0,0.008,0.047) [37,38]
7Y ICU probability 1 - Py (0.0003,0.003,0.026) [37,38]
g9 Predeceased rate Pp 7.084 days™! [37]
95% Crl: 6.640-7.537
A Prehospitalized in ICU rate Py 4.084 days™! [37]
95% Crl: 3.640-4.537
0% Fatality probability in ICU Py — Hp 0.3 [37]
W Death rate in ICU Hp 7 days™! [39]
x? ICU discharge rate Hp 21 days™! [40]

TABLE IV. Parameters describing the confinement and their estimations with 95% credible intervals for COVID-
19 in Spain, with strata separation g € {Y, M, O} when appropriate. See Appendix A for a detailed explanation.

Symbol Description COVID-19 Spain estimates Assignment Epidemiological significance
K§ Mobility reduction Time-varying Estimated Decreases population mobility
from INE [44] Decreases average number
of contacts
Increases household isolation
¢ Household permeability 0.174 Calibrated Mixing among households
95% Crl: 0.079-0.269 Decreases household isolation
o Social distancing 0.207 Calibrated Reduces contacts of the

95% Crl: 0.053-0.359

nonconfined population

age group ¢. To construct the daily mobility network, we
first assume that the elderly and young population do not
leave their residential municipality, so their corresponding
mobility matrices read RIY]-’O = 0;;. Finally, the mobility
matrix governing adult population movements is estimated
from extensive surveys conducted by Instituto Nacional de
Estadistica in 2011 [50], which capture the commuting
patterns of the population living inside each municipality.
Regarding epidemiological parameters, the incubation
period is reported to be 57! + a~! = 5.2 days [2] in average
which, in our formalism, must be distributed into the
exposed and asymptomatic compartments. In principle, if
one does not expect asymptomatic transmissions, most of
this time should be spent inside the exposed compartment,
the asymptomatic infectious compartment thus being
totally irrelevant for disease spreading. However, along
the line of some works [51-53], we find that the unfolding
of COVID-19 cannot be explained without accounting for
infections from individuals not developing any symptoms
previously. In particular, after calibrating the model, we
estimate a~! = 2.756 (95% Crl: 2.135-3.377) days as the
asymptomatic infectious period; see Appendix C for the
details of the calibration methodology. In turn, the infec-
tious period while being symptomatic is calibrated to u~! =
3.915 days (95% Crl: 3.470-4.360), except for the young

stratum, for which we reduce it to 1 day, assigning the
remaining days as asymptomatic; this reduction is due to
the reported mild symptoms in young individuals, which
may become unnoticed [28]. Furthermore, we assume
asymptomatic individuals are half as infectious as symp-
tomatic ones, #, = 0.5f;, as in Refs. [54,55].

Regarding the clinical parameters, we fix the fatality rate
@ = 30% for ICU patients according to official reports
[37]. We incorporate from previously published studies the
typical time from ICU admission to death as y~! = 7 days
[39] and the stay in ICU for those overcoming the disease
as y~' = 21 days [40]. In turn, the parameters yY and 69,
controlling the infected population requiring ICU beds
and dying without occupying any of them, are estimated by
correcting the real observed values [37] with the estimated
underreporting from Ref. [38] (see next paragraph).
Likewise, the parameters (Y and 19 are computed by
assuming that times between onset of symptoms and
ICU occupation or fatal outcome are 8 and 11 days [37]
on average, respectively.

To account for underreporting, we compare the
seroprevalence estimates of the extensive sero-
epidemiological extensive survey [38] made by the
Spanish authorities with that derived from the official
reported data. In particular, 0.53% of the Spanish pop-
ulation was diagnosed as COVID-19 cases by May 4,
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FIG. 7. Calibration analysis. The diagonal of the table contains the posterior distributions for the parameters obtained after model
calibration. The lower triangular part shows the scatter plot for every pairwise combination of parameters present in the posterior
parameter space, whereas the upper triangular one represent the entries of the covariance matrix for the parameters involved in the

calibration.

whereas the actual seroprevalence observed was 5.0%
(95% confidence interval CI: 4.7-5.4). Therefore, we
estimate that 89.4% (95% CI: 88.7-90.2) of COVID-19
cases have not been diagnosed in Spain and use this value
to rescale the time series for the daily new symptomatic
cases shown in Fig. 2(b).

Finally, regarding the parameters controlling the effi-
ciency of the measures taken by the authorities, we
calibrate those depending on social awareness and indi-
vidual behavior, such as social distancing 6 and household
permeability ¢, due to the lack of data. In contrast, the
fraction of the population under confinement k() is
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straightforwardly incorporated from data on the mobility
reduction daily updated by INE which are shown in Fig. 3.

Figure 7 contains the posterior distribution for the
calibrated epidemiological parameters along with the
covariance matrix showing the relations between those
parameters involved in the calibration.

APPENDIX B: NORMALIZATION FACTOR FOR
EACH AGE GROUP

Here we want to explain the rationale behind the nor-
malization factor z9, first introduced in Eq. (14), which
shapes the number of contacts made by individuals belong-
ing to age group g. In the main text, we state that
29(k9) f(n;/s;) represents the total number of contacts that
an agent from age group g makes inside patch i. To construct
this term, let us start by assuming that the number of contacts
within a patch increases monotonically with the density
according to a given function f. Therefore, in general terms,
we can write the number of interactions of one individual
belonging to age-group ¢ inside patch i, k7, as

i =or (%)
Si

being xY an (in principle) arbitrary constant which may

differ for the different age-groups g. In fact, x¢ allows for re-
scaling the contacts such that the average number of
interactions of individuals belonging to strata g across the
entire population is (k7). This constraint imposes that

(B1)

Np Py
> alxif (—) = n9(k9). (B2)
=1 Si

This way, x7 can be expressed as

x9 = z9(k9), (B3)

where z7, which is defined as the normalization factor
throughout the manuscript, is given by

ng

79 = (B4)

Np

> A

i=1

APPENDIX C: MODEL CALIBRATION

Several procedures are proposed in the literature to
calibrate the mathematical models aimed at reproducing
the evolution of COVID-19 across a given country.
Calibration using indicators such as ICU occupation, daily
incidence, or the number of fatalities rely on the quality of
the data obtained. Unfortunately, in Spain, the data acquis-
ition process is very messy, given the different protocols

that every Comunidad Auténoma follows. For example, the
number of officially reported cases does not constitute a
reliable indicator in Spain because of delays in reporting to
the National Health system as well as temporal variations
in the number of tests. This unreliability makes reported
cases a very noisy variable to fit. In front of this important
problem, we finally decide to calibrate the model with the
number of daily fatalities, data that are curated by the
Spanish government.

The calibration procedure consists of the following steps:

(1) Most of the parameters governing the clinical out-
come of the disease are incorporated from either
previous studies or official reports and do not take
any part in the calibration of the model. Therefore,
the calibration is mostly focused on the epidemio-
logical parameters governing the unfolding of the
disease, whose values remain still uncertain. In
particular, the parameters subjected to calibration
are the number of initial infectious seeds A, the
infectivity f;, the asymptomatic infectious period
a~!, and the infectious symptomatic period u~'.
Finally, regarding the confinement, household per-
meability ¢ and social distancing ¢ need also to be
calibrated due to the lack of data, whereas the values
for «{)(1) are directly incorporated in the model from
mobility reduction estimations published by INE.

(2) The initial date from which our model runs is
February 9. To spatially distribute the initial seeds,
the reported cases by March 3 are backtracked until
February 9 and let the model run. Once the initial
seeds are set, we calibrate the epidemiological part
of the model by performing an approximate Baye-
sian computation (ABC) [45] including real data
about the new daily fatalities at a national scale until
April 8.

We use the logarithmic least squares error as an
objective function for the ABC. The daily fatalities
from April 8 onward [Fig. 2(a)] as well as the daily
new cases for the whole time span [Fig. 2(b)] serve
as validation. As stated in Sec. A, the time series for
the daily new cases provided by the health author-
ities is rescaled according to the findings of the
nationwide serological survey to correct for the
underreporting.

(3) Our model is able to predict the spatiotemporal
propagation of COVID-19 triggered by communi-
tary contagions and human mobility. To leverage the
full potential of the formalism, we also check the
accuracy of the formalism in predicting the fatalities
at a regional level. We observe that the introduced
seeds corresponding to the reported cases by
March 3 are enough to predict the fatalities observed
in some areas but fail in capturing the evolution of
COVID-19 in other regions, possibly due to initial
underreporting of cases there. To solve this discord-
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ance, we introduce the minimal set of infectious
individuals in those largest populated cities of each
Comunidad Auténoma to ensure a fair correspon-
dence between the data and model, which is opti-
mized by using the Nelder-Mead method.

APPENDIX D: SENSITIVITY ANALYSIS

Here, we perform a sensitivity analysis to check the
robustness of our results concerning the time evolution of
the effective reproduction number. As the value for R(¢) is
independent from the clinical parameters, we restrict the
sensitivity analysis to those epidemiological parameters
assumed to be constant when calibrating the model. In
particular, we focus on studying how the values of R(¢) in
both supercritical and subcritical regimes are affected by
changes in the incubation period 77! + 7!, the infectivity
of individuals without symptoms f,, and the infectious
symptomatic period of young population (u*)=!.

Figure 8 compares the original distribution for the
effective reproduction number before and after confinement
is enforced with those obtained by introducing a 10%
relative modification in each of the aforementioned param-
eters. The mean and the shape of the distribution remain
almost unaltered in both supercritical and subcritical

(@) 4s
45
—]
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36
Baseline B,/B, n'+a’ (e
(b)
0.8
07 [
4 [ ] [ ]
06 1 ]
05 !
0.4
Baseline BB, n+a? W)
FIG. 8. Sensitivity analysis. Distribution of effective reproduc-

tion number R values while exploring the parameter space by
tuning parameters f,/f;, 17" +a~!, and (u¥)~! as described in
Appendix D on (a) a supercritical regime (2020-03-01) and (b) a
subcritical regime (2020-04-01). As a reference, we provide a
baseline distribution obtained fixing the aforementioned param-
eters to the values reported in Table III.

regimes, thus proving the robustness of the results reported
throughout the manuscript.

APPENDIX E: VALIDATION OF EFFECTIVE
REPRODUCTION NUMBER

The validation of our analytical expression Eq. (42) for
the effective reproduction number is performed by compar-
ing it with the case reproduction number obtained using
EpiEstim [48,49]. We apply EpiEstim to both the incidence
in our model (EpiEstim model) as well as the real incidence
data (EpiEstim data); see Fig. 9. The incidence in our model
corresponds to the one of the compartment exposed (E).
The real incidence data, collected until May 15, are shifted
by 6 days due to the average lag between symptom onset
and report [37]. The data are then subsequently shifted
another 5 days accounting for the time in our model
between becoming exposed and developing symptoms.
Estimations of the reproduction number are then performed
on both datasets by averaging over 50 randomly chosen
parameter sets of our posteriors. For each parameter set,
the generation time distribution is fixed correspondingly.
Additionally, we perform a rolling average of 10 days on all
curves. Please note that, for the EpiEstim data curve, the
confidence interval is narrower than the line’s thickness.
The curve is plotted until the last day EpiEstim is able to
perform an estimation.

We observe a good agreement between the analytical
expression and the estimation by EpiEstim on the incidence
of our model. Qualitatively, also the estimation using
real incidence data matches the analytical expression. In
particular, the difference on which day the two curves drop
below one is only around 2 days. The fact that the

6
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FIG. 9. Validation of effective reproduction number. Repro-
duction number from the analytical expression compared to an
estimation of the case reproduction number obtained using
EpiEstim [48,49] on the incidence in our model (EpiEstim
model) as well as the real incidence data (EpiEstim data).
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estimation on real incidence data results in a higher
reproduction number at the beginning of the epidemics
is probably due to the quickly increasing test capacity as
the first cases were detected in Spain. Instead of observing
the actual growth of the epidemic, tests performed in the
beginning discovered to what extent the epidemic had
already spread in the population. Unfortunately, there are
no data available on how the number of performed tests
evolved until April 23.

APPENDIX F: CODE AVAILABILITY

The model described above is implemented in the open
source Julia programming language [56]. The source code
is freely available online in Ref. [57], distributed under the
open source licence GNU AGPL-3. The documentation can
be read in Ref. [58].

For the ABC calibration described in Appendix C, we
use the AproxBayes Julia package [59], that implements
the approximate Bayesian computation method defined
in Ref. [45].
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