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On 31 December, 2019, an outbreak of a novel coronavirus, SARS-CoV-2, that causes the COVID-19
disease, was first reported in Hubei, mainland China. This epidemics’ health threat is probably one of the
biggest challenges faced by our interconnected modern societies. According to the epidemiological reports,
the large basic reproduction number R0 ∼ 3.0, together with a huge fraction of asymptomatic infections,
paved the way for a major crisis of the national health capacity systems. Here, we develop an age-stratified
mobility-based metapopulation model that encapsulates the main particularities of the spreading of
COVID-19 regarding (i) its transmission among individuals, (ii) the specificities of certain demographic
groups with respect to the impact of COVID-19, and (iii) the human mobility patterns inside and among
regions. The full dynamics of the epidemic is formalized in terms of a microscopic Markov chain approach
that incorporates the former elements and the possibility of implementing containment measures based on
social distancing and confinement. With this model, we study the evolution of the effective reproduction
number RðtÞ, the key epidemiological parameter to track the evolution of the transmissibility and the
effects of containment measures, as it quantifies the number of secondary infections generated by an
infected individual. The suppression of the epidemic is directly related to this value and is attained when
R < 1. We find an analytical expression connecting R with nonpharmacological interventions, and its
phase diagram is presented. We apply this model at the municipality level in Spain, successfully forecasting
the observed incidence and the number of fatalities in the country at each of its regions. The expression for
R should assist policymakers to evaluate the epidemics’ response to actions, such as enforcing or relaxing
confinement and social distancing.

DOI: 10.1103/PhysRevX.10.041055 Subject Areas: Biological Physics, Complex Systems,
Interdisciplinary Physics

I. INTRODUCTION

As of August 2020, the novel coronavirus, SARS-CoV-2,
has infected more than 20 000 000 persons worldwide with
COVID-19, causing more than 700 000 deaths. From its
onset, the scientific community has embarked on an unprec-
edented search for efficient ways to stop the advance of the

epidemic wave. This extraordinary effort has involved
different disciplines: epidemiological studies to characterize
the transmission patterns of the new coronavirus, large-scale
clinical trials to test treatments that improve the course of the
most severe cases, and the design of vaccines that safely
provide immunity to the world’s population.
Once the epidemiological parameters were found [1–10],

the mathematics and physics community made use of the
most advanced epidemic models [11–18] to track and
anticipate the spread of the epidemics (see Ref. [19] for
an exhaustive review on these efforts). Nevertheless, the
particularities of both SARS-CoV-2 transmission and
the heterogeneous clinical evolution of patients with
COVID-19 call for a rethinking of conventional models
toward adapted models that explicitly take into account

*alexandre.arenas@urv.cat
†gardenes@unizar.es

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 10, 041055 (2020)

2160-3308=20=10(4)=041055(21) 041055-1 Published by the American Physical Society

https://orcid.org/0000-0003-0937-0334
https://orcid.org/0000-0002-8582-1531
https://orcid.org/0000-0001-5204-1937
https://orcid.org/0000-0003-1820-0062
https://orcid.org/0000-0003-3156-0417
https://orcid.org/0000-0002-7563-9269
https://orcid.org/0000-0002-6388-4056
https://orcid.org/0000-0002-0723-1536
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.10.041055&domain=pdf&date_stamp=2020-12-18
https://doi.org/10.1103/PhysRevX.10.041055
https://doi.org/10.1103/PhysRevX.10.041055
https://doi.org/10.1103/PhysRevX.10.041055
https://doi.org/10.1103/PhysRevX.10.041055
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


these details and the characteristics of the populations
affected by the pandemic. Among these characteristics,
capturing the specific demographic distribution, the com-
plex patterns of social contacts, and the geographic
mobility networks among populations is essential to under-
stand and forecast the impact that nonpharmacological
containment measures, such as social distancing or confine-
ment, have on the spread of the pathogen.
Here, we propose a mathematical (mechanistic) model

particularly tailored to capture the main features of the
propagation of SARS-CoV-2. This model relies on pre-
vious metapopulation models by the authors [20–24] to
incorporate the specific characteristics of SARS-CoV-2
transmission and the clinical features of COVID-19
patients. Concerning transmission, we consider the impor-
tant effect that the large fraction of asymptomatic infections
(around 40% [25]) have on the covert spread of the disease
in the early stages, causing a delayed response of contain-
ment measures based on the observed incidence of symp-
tomatic patients. For the clinical aspect, we consider the
long hospitalization times required by critical cases admit-
ted to the intensive care unit (ICU), since the saturation of
these units constitutes one of the main political and health
threats of COVID-19 epidemics.
To incorporate the former knowledge into a single frame-

work, we build an epidemiological model with ten compart-
ments characterizing the epidemiological and clinical status
of individuals in each patch that make up themetapopulation.
In addition, we split the former partition into three age strata
(young, adults, and older adults), thus allowing us to capture
in a stylized way the main epidemiological, clinical, and
behavioral differences between these groups. On the one
hand, SARS-CoV-2 importation and exportation events
between patches are mostly due to the mobility of the active
population. On the other hand, the medical evolution of
COVID-19 displays significant differences across age strata
[13,26,27]. In this regard, infections in the young group lead
to null or mild symptoms [28], whereas, for older individuals,
the infection evolves towardmore severe symptoms and often
requires hospitalization.
The detailed structure of the metapopulation framework

offers the possibility of designing and evaluating the
impact of contention policies to stop the propagation of
SARS-CoV-2. In particular, we focus on those policies
relying on global or targeted quarantine measures due to
the extreme relevance of these interventions for the course
of the pandemic. This way, our formalism allows us to
incorporate the temporal evolution of the fraction of the
confined population and to assess the performance of
lockdown policies to mitigate the pandemic. Taking
advantage of this possibility, we explore several epidemic
scenarios characterized by different contention measures
and evaluate their impact on the decrease of the epidemic
prevalence and the saturation of the Spanish health system
during March, April, and May 2020. As a very relevant

application, our model enables us to derive the selection of
the minimum degree of confinement needed to avoid the
health system crisis while not disrupting the economic
fabric of the country.
In a nutshell, the proposed model takes into account, in a

stylized way, three main peculiarities of the SARS-CoV-2
transmission: (i) the silent transmission of the pathogen
through the young portion of the population, (ii) the large
potential for the spatial dissemination of the pathogen
provided by the mobility patterns of adults, and (iii) the
severe pathology caused by COVID-19 in the elderly that
yields to a dramatic increase of medical and hospital
demands. Thus, the model can be viewed as three coevolving
spreading processes with different spatiotemporal scales.
The analysis of the model and the main results are

presented as follows. First, we show the main features of
the dynamical model in Sec. II, describing first how
epidemiological, clinical, and social data are incorporated
into the metapopulation framework and, finally, showing
its validation comparing with data corresponding to the
COVID-19 outbreak in Spain. Once the model is defined
and validated, we tackle in Sec. III the analytical derivation
of the effective reproduction number. In Sec. IV, this
expression is analyzed in detail to unravel the nonlinear
dependency between the mobility restrictions and the
epidemic incidence. Finally, in Sec. V, we round off the
article by summarizing the main findings of the work and
discussing the implications in public health policies aimed
at facing COVID-19.

II. METAPOPULATION MODEL

We present below the details of the metapopulation
framework tailored for capturing the spread of SARS-
CoV-2 and the evolution of COVID-19 patients. This
presentation is divided into four parts: the explanation of
the compartmental dynamics for each age stratum in a single
patch, the description of contagion processes governed
by social contacts and the mobility among patches, the
incorporation of contention measures aimed at reducing
human mobility and increasing social distance, and, finally,
the validation of the model with data corresponding to the
epidemic wave in Spain.

A. Compartmental dynamics

The epidemic model is built upon previous work on the
method known as the microscopic Markov chain approach
(MMCA) [29,30]. It is designed for the modelization of
epidemic spreading dynamics but is also applied to other
types of processes, e.g., information spreading and traffic
congestion [31–36].
In the original MMCA formalism, which analyzes a

susceptible-infected-susceptible dynamics in a single pop-
ulation (i.e., each node representing an individual), the
description of the dynamics is made using as variables the
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probabilities piðtÞ of each node i being infected at time t.
The MMCA equations express how these probabilities
evolve in time [29]: A node is infected at a time step if it
was previously infected and did not recover or was
susceptible and became infected by one of its neighbors:
piðtþ 1Þ ¼ piðtÞð1 − μÞ þ ½1 − piðtÞ�ΠiðtÞ. These equa-
tions just rely on probabilities, i.e., sums of probabilities
of disjoints events, and products of probabilities of
(approximately) independent events. Moreover, they are
deterministic; thus, they can be iterated from any desired
initial condition to know the evolution of the piðtÞ of
each node.
The capacity of describing the epidemics at the level of

nodes explains the qualification of MMCA as a microscopic
methodology. This characteristic distinguishes MMCA from
the more common mean-field approaches, which are based
on differential equations that express the rate of change of
the fraction of infected individuals: The variables, the
equations, and even time are analyzed differently.
The adaptation of MMCA to the study of epidemics

in structured metapopulations, with heterogeneous agents,
and subject to recurrent mobility patterns, is performed
by some of the authors in previous works [20–24]. The
main difference with respect to standard MMCA is that
variable ρmi ðtÞ represents the probability that individuals,
with residence at node i, are in state m. An alternative
interpretation for them is as the fraction of individuals
living at the node that are in the given state. However, the
equations of the dynamics are better understood with the
probabilistic semantics.
The evolution of these probabilities fρmi ðtÞg determines

the dynamical state of a single patch i and is dictated by the
underlying compartmental model. Here, this compartmen-
tal model is composed of the following epidemiological
and clinical compartments: susceptible (S), exposed (E),
asymptomatic infectious (A), symptomatic infectious (I), to
be admitted in ICU (prehospitalized in ICU, PH), fatal
prognosis (predeceased, PD), admitted in ICU that will
recover (HR) or decease (HD), recovered (R), and deceased
(D). Compartments PH and PD are introduced to account
for the delays observed for individuals before they are
admitted in ICU or before they die outside ICU, respec-
tively. Similarly, the compartments HR and HD represent
the individuals in ICU but separated according to their final
state (recovered or deceased, respectively), which is
reached at different rates.
As anticipated above, the population of a patch is further

divided intoNG age strata. Although we present the model in
a general form, its application to COVID-19 makes use of
only the three age strata mentioned above (NG ¼ 3): young
people (Y), with age up to 25; adults (M), with age between
26 and 65; and elderly people (O), with age larger than 65.
This differentiation is very relevant in light of the observation
of a large fraction of infected asymptomatic individuals at
ages (<25), in contrast with the abundance of severe and
critical cases reported for people at older ages (>65).

Let us suppose we have a population of N individuals
distributed in NP regions, with ni individuals residing in
region (patch) i. We also consider that individuals belong
to one of NG different age strata, in such a way that ngi
individuals of age strata g live in region i. Thus,

N ¼
XNG

g¼1

XNP

i¼1

ngi ¼
XNP

i¼1

ni ¼
XNG

g¼1

ng; ð1Þ

where ng is the total population of age strata g. Our system
is completely characterized by variables ρm;g

i ðtÞ, which
account for the probabilities that individuals of age stratum
g assigned to patch i are in state m at time t, where m ∈
fS; E; A; I; PH; PD;HR;HD; R;Dg and g ∈ fY;M;Og.
The temporal evolution of these quantities is given by

ρS;gi ðtþ 1Þ ¼ ρS;gi ðtÞ½1 − Πg
i ðtÞ�; ð2Þ

ρE;gi ðtþ 1Þ ¼ ρS;gi ðtÞΠg
i ðtÞ þ ð1 − ηgÞρE;gi ðtÞ; ð3Þ

ρA;gi ðtþ 1Þ ¼ ηgρE;gi ðtÞ þ ð1 − αgÞρA;gi ðtÞ; ð4Þ

ρI;gi ðtþ 1Þ ¼ αgρA;gi ðtÞ þ ð1 − μgÞρI;gi ðtÞ; ð5Þ

ρPD;g
i ðtþ 1Þ ¼ μgθgρI;gi ðtÞ þ ð1 − ζgÞρPD;g

i ðtÞ; ð6Þ

ρPH;g
i ðtþ1Þ¼μgð1−θgÞγgρI;gi ðtÞþð1−λgÞρPH;g

i ðtÞ; ð7Þ

ρR;gi ðtþ 1Þ ¼ μgð1 − θgÞð1 − γgÞρI;gi ðtÞ
þ χgρHR;g

i ðtÞ þ ρR;gi ðtÞ; ð8Þ

ρHD;g
i ðtþ 1Þ ¼ λgωgρPH;g

i ðtÞ þ ð1 − ψgÞρHD;g
i ðtÞ; ð9Þ

ρHR;g
i ðtþ1Þ¼ λgð1−ωgÞρPH;g

i ðtÞþð1−χgÞρHR;g
i ðtÞ; ð10Þ

ρD;g
i ðtþ 1Þ ¼ ζgρPD;g

i ðtÞ þ ψgρHD;g
i ðtÞ þ ρD;g

i ðtÞ: ð11Þ

These MMCA equations correspond to a discrete-time
dynamics, in which each time step represents a day.
Note that the sum over all ρm;g

i ðtÞ for a given patch i
and age group g equals 1 for each time step t.
The rationale of the former compartmental dynamics

is the following. Susceptible individuals get infected by
contacts with asymptomatic and symptomatic infected
agents, with a probability Πg

i ðtÞ (described in Sec. II B)
becoming exposed. Exposed individuals turn into asymp-
tomatic at a certain rate ηg, which, in turn, become
infectious at a rate αg. Once infected, three paths emerge,
which are reached at an infectious rate μg. The first one is
death without being hospitalized in ICU, with probability
θg, after a latency period governed by rate ζg. Otherwise,
with probability γg the individuals are hospitalized in ICU,
which are reached at rate λg, while with probability 1 − γg
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they recover. Individuals in ICU have a fatality probability
ωg, which is reached at a rate ψg, whereas the recovery is
reached at a rate χg. See Fig. 1 for a sketch of the
compartmental model with all the transitions and
Tables I–III for the list of the parameters and their values
to simulate the spreading of COVID-19 in Spain, which are
discussed in Appendix A.

B. Social contacts and mobility among patches

To understand the geographical diffusion of the disease,
as a result of human-human interactions in small geo-
graphical patches, one has to combine the contagion
process with the long-range disease propagation due to
human mobility across different spatial scales. For the case
of epidemic modeling, the usual metapopulation scenario
assumes that the individuals within each patch are well
mixed; i.e., pathogens can be transmitted from an infected
host to any of the healthy agents placed in the same patch
with the same probability. The second aspect of the
metapopulation approach concerns the mobility of agents.
Each host is allowed to change its current location and
occupy another patch, thus fostering the spread of patho-
gens at the system level. Mobility of agents between
different patches is usually represented in terms of a
network where nodes are locations while a link between
two patches represents the possibility of moving between
them. Here, we include a set of modifications to the
standard metapopulation frameworks, using the average
contact network within each age strata and among them and
taking into account also differences in mobility patterns
between working-age individuals and the rest. Now we
detail how contagions of susceptible individuals of a patch i

and age stratum g are captured in the Markovian equations
through the probability Πg

i ðtÞ. The value of Πg
i ðtÞ encodes

the probability that a susceptible agent belonging to age
stratum g and patch i contracts the disease. Under the model
assumptions, this probability is given by

Πg
i ðtÞ ¼ ð1 − pgÞPg

i ðtÞ þ pg
XNP

j¼1

Rg
ijP

g
jðtÞ; ð12Þ

where pg denotes the degree of mobility of individuals
within age stratum g, Rg

ij is the mobility matrix (fraction of
individuals of group age g that choose destination j while
living in region i), and Pg

i ðtÞ denotes the probability that
those agents get infected by the pathogen inside patch i.
This way, the first term in the rhs of Eq. (12) denotes the
probability of contracting the disease inside the residence
patch, whereas the second term contains those contagions
taking place in any of the neighboring areas. Furthermore,
we assume that the number of contacts increases with the
density of each area according to a monotonically increas-
ing function f. Finally, we introduce an age-specific
contact matrix C, whose elements Cgh define the fraction
of contacts that individuals of age stratum g perform with
individuals belonging to age stratum h. With the above
definitions, Pg

i reads

Pg
i ðtÞ ¼ 1 −

YNG

h¼1

YNP

j¼1

Y
m∈fA;Ig

ð1 − βmÞz
ghkgifðñi=siÞCgh½nm;h

j→iðtÞ=ñhi �:

ð13Þ

Dg

Sg Eg Ag

Susceptible
Healthy, 

can get infected

Exposed
Infected but 

not yet infectious

Asymptomatic
Infectious but displaying 

no or mild symptoms

PH

g

PD

g

Ig

Infected
Infectious and

displaying symptoms
Hospitalized in ICU

Hospitalized in ICU

Deceased

Recovered
No longer infectious, 
develops immunity

A, I
g

μμ
g

g

g )

μg g g

μ g 
g

g

g

g )

g 
g

g

g

Cgh{Ah, Ih}
A Susceptible individual becomes 

Exposed upon contact with Asymptomatic 
or Infected agents, according to the 

contact matrix C.

Hos
With good prognosis

With fatal prognosis

g ) HR

g

Hos

gg

g

HD

g

g

Pre-
Hospitalized

Pre-
Deceased

Rg

FIG. 1. Compartments of the epidemic model. The acronyms correspond to susceptible (Sg), exposed (Eg), asymptomatic infectious
(Ag), symptomatic infectious (Ig), prehospitalized in ICU (Pg

H), predeceased (Pg
D), in ICU before recovery (Hg

R), in ICU before death
(Hg

D), deceased (Dg), and recovered (Rg), where g denotes the age stratum of all compartments. The arrows indicate the transition
probabilities.
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Parameters βA and βI correspond to the infection prob-
abilities for contacts of a susceptible individual with
asymptomatic and symptomatic infected individuals,
respectively. The exponents represent the number of
contacts made by an agent of age stratum g in patch i
with infectious individuals—compartments A and I,
respectively—of age stratum h residing at patch j.
Accordingly, the double product expresses the probability
for an individual belonging to age stratum g not being
infected while staying in patch i.
The term zghkgifðñi=siÞ represents the overall number of

contacts (infectious or noninfectious) that an agent from
age group g makes inside patch i. These contacts, as
mentioned above, increase monotonically with the density
of patch i following function fðñi=siÞ, where si is the area
of patch i measured in square kilometers and ñi represents
the effective population inside patch i. Likewise, the term
zg is a normalization factor introduced to ensure that the
average degree of population belonging to age group g is
hkgi. Therefore (see details in Appendix B),

zg ¼ ngPNP
i¼1 fðñisiÞñ

g
i

; ð14Þ

where the effective population at patch i, i.e., the number of
people present at patch i when commuting takes place, is
given by

ñi ¼
XNG

g¼1

ñgi ; ð15Þ

which is distributed in age strata of size

ñgi ¼
XNP

j¼1

Mg
jin

g
j: ð16Þ

For convenience, we define the effective mobility
matrices Mg

ji:

Mg
ji ¼ ð1 − pgÞδij þ pgRg

ji; ð17Þ

that take into account both the degree of mobility of the
population and the transition probabilities to the neighbor-
ing patches.
From now on, we use the tilde notation to indicate

variables measured while the commuting is active, to
distinguish them from variables when all the population
is in its residence patch.
The function fðxÞ governing the influence of population

density is selected, following Ref. [41], as

fðxÞ ¼ 1þ ð1 − e−ξxÞ: ð18Þ
The last term of the exponents in Eq. (13) contains the
probability that these contacts are contagious, which is

proportional to nm;h
j→i, the expected number of individuals of

age stratum h in the given infectious state m (either A or I)
which transit from region j to region i:

nm;h
j→iðtÞ ¼ nhjρ

m;h
j ðtÞMh

ji: ð19Þ

The discrete-time nature of this model allows for an easy
computation of the time evolution of all the relevant
variables, providing information at the regional level.

C. Modeling confinement measures

Finally, this formalism allows for quantifying the per-
formance of different containment measures aimed at
reducing the impact of COVID-19. In this section, we
put our focus on the effect of extended lockdown policies
promoted across the entire system, but other interventions
such as modifying the morphology of the mobility network
or isolating specific age groups can also be assessed with
our framework.
To incorporate confinement policies in our formalism,

we consider that a fraction of a given age stratum κg0ðtÞ is
under lockdown at time t. In this sense, let us remark that
the time series κg0ðtÞ allows us to tune the strength of those
confinement measures proposed to contain COVID-19. In
this sense, κg0 ¼ 1 corresponds to a total lockdown scenario
in which all activity is paralyzed, whereas κg0 ¼ 0 reflects a
less strict policy not affecting the population. Moreover, we
introduce the effects of social distancing measures taken by
the population as a reduction δ of the number of contacts
made by the nonconfined population. We assume the social
distancing δ to be constant in time, while the confinement
level κg0ðtÞ is time dependent.
Let us denote as tc the initial time from which lockdown

interventions are deployed. The incorporation of lockdown
policies in the formalism demands some modifications
of the equations. First, population confinement implies a
reduction of the mobility within the population. Therefore,
the degree of mobility pg becomes time dependent and now
reads

pgðtÞ ¼ ½1 − κg0ðtÞΘðt − tcÞ�pg; ð20Þ

where ΘðxÞ is the Heaviside function, that is 1 if x ≥ 0

and 0 otherwise. As a by-product, ñgi and zg also become
dependent on time; see Eqs. (14)–(16). Second, the con-
fined population reduces their interactions to the members
of their households. Equally, independently of whether they
are confined or not, the contacts of individuals belonging to
age strata O are reduced to their household contacts, since
they do not form part of the working population. Therefore,
in the lockdown scenario, the average degree of elderly
population is hkOc i ¼ kOh , with kOh being the contacts taking
place inside their households [42]. In contrast, given the
nature of the interventions deployed by the authorities, the
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contacts outside the household of the nonconfined pop-
ulation belonging to age strata Y andM are restricted to the
workplace and shaped by social distancing. To incorporate
both aspects, in the lockdown scenario, we define the
average degree of individuals belonging to age group
g ∈ fY;Mg at time t, kgcðtÞ, as

hkgciðtÞ ¼ κg0ðtÞkgh þ ½1 − κg0ðtÞ�ð1 − δÞkghþw; ð21Þ

where kgh and kghþw, which encode the contacts made by
confined (at home) and nonconfined (at home and at work)

population, respectively, are obtained from Ref. [42]. This
way, the average number of daily contacts hkgi of agents
belonging to each group g ∈ fY;M;Og should be updated
to account for this dependence:

hkgiðtÞ ¼ ½1 − Θðt − tcÞ�hkgi þ Θðt − tcÞhkgci: ð22Þ

The time dependence of the number of interactions affects
the probability that an individual from age group g and
patch i becomes infected, Pg

i ðtÞ, which is now given by

Pg
i ðtÞ ¼ 1 −

YNG

h¼1

YNP

j¼1

Y
m∈fA;Ig

ð1 − βmÞz
gðtÞhkgiðtÞf½ñiðtÞ=si�Cgh½nm;h

j→iðtÞ=ñhi ðtÞ�: ð23Þ

Finally, a perfect confinement would entail the complete
shielding of fully susceptible households against the
disease. Therefore, the confinement of the population
modifies the pool of susceptible individuals reachable
by their infectious counterparts [43]. Unfortunately, in
practical terms, complete isolation of households is
impossible, since their members are required to go out
for essential activities such as buying groceries, drugs, etc.
Therefore, we introduce a household permeability ϕ
accounting for the social mixing among members from
different households in these situations. We fix the house-
hold permeability ϕ as constant in time. While the
interactions among members of different confined house-
holds clearly shape household isolation, we assume that
they do not substantially modify the average number of
contacts of the population.
In this scenario, a relevant indicator to quantify the

efficiency of the policy is the probability of one individual
living in a household, inside a given municipality i, without
any potentially infectious individual. Assuming that con-
finement is implemented at time tc, this quantity, denoted in
the following as CHiðtcÞ, is given by

CHiðtÞ ¼
�
1

ni

XNG

g¼1

½1 − ρE;gi ðtÞ − ρA;gi ðtÞ − ρI;gi ðtÞ�ngi
�σ

:

ð24Þ

This confinement strategy is introduced in the dynamical
Eqs. (2)–(11) by modifying Eqs. (2) and (3) for the time
after tc:

ρS;gi ðtþ 1Þ ¼ ½ρS;gi ðtÞ þ ρCH;g
i ðtÞ�½1 − Πg

i ðtÞ�
× ½1 − Θðt − tcÞð1 − ϕÞκg0ðtÞCHiðtÞ�; ð25Þ

ρE;gi ðtþ 1Þ ¼ ½ρS;gi ðtÞ þ ρCH;g
i ðtÞ�Πg

i ðtÞ
× ½1 − Θðt − tcÞð1 − ϕÞκg0ðtÞCHiðtÞ�
þ ð1 − ηgÞρE;gi ðtÞ; ð26Þ

ρCH;g
i ðtþ 1Þ ¼ ½ρS;gi ðtÞ þ ρCH;g

i ðtÞ�
× ð1 − ϕÞκg0ðtÞCHiðtÞΘðt − tcÞ; ð27Þ

where we add a new compartment CH to hold the
individuals under household isolation after applying confine-
ment and returning them to the susceptible pool as confine-
ment is relaxed. Confinement also affects the average
number of contacts; thus, we must also update Eq. (13).
In summary, we introduce a confinement strategy driven

by social distancing and the isolation of a certain fraction of
the population, which, in turn, reduces the average number
of contacts, the mobility, and, as a result, the probability of
becoming infected, thus reducing the overall prevalence of
the disease. Therefore, confinement policies are captured in
the formalism by the time series describing confinement
κg0ðtÞ, the social distancing factor δ, and household per-
meability ϕ. See Table IV for the list of the confinement
parameters and their values to simulate the spreading of
COVID-19 in Spain, which are discussed in Appendix A.

D. Validation of the model

The metapopulation model is calibrated with real data of
fatalities caused by COVID-19 in Spain until April 8, using
approximate Bayesian computation [45]. Because of the
absence of more specific data, we take the reduction in the
work mobility as a proxy for the temporal evolution of
the confined population in Spain. Furthermore, since
displacements not related to work activities were banned
as the lockdown was enforced, the evolution of the work
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mobility reflects well the variations in the population under
confinement. The confinement measures are introduced
into the model from March 14 onward (before this date, no
intervention was made). We obtain the time series κg0ðtÞ
from official reports [44] by estimating the work mobility
reduction with respect to a baseline day, November 19,
2019. We assume that these time series are equal for all age
groups and refer in the following to κY;A;O0 ðtÞ as κ0ðtÞ.
Further details on the data used and model calibration are
shown in Appendixes A and C.
Once calibrated, we validate our model using two data-

sets: the evolution of daily fatalities in Spain [Fig. 2(a)] and
the evolution of the daily number of newly detected

symptomatic individuals [Fig. 2(b)]. The results in these
figures show a qualitative and quantitative agreement in
all the phases corresponding to the different containment
interventions implemented by the government of Spain.
Note that the time series of new symptomatic individuals is
rescaled to account for case underreporting. For the sake of
visualization, Figs. 2(a) and 2(b) incorporate the lockdown
stages depicted as horizontal bars that correspond to the
different interventions enforced in Spain. In LM, Spain was
under lockdown but laboral mobility was allowed. In a
stricter scenario (EM), only essential mobility (that corre-
sponding to the commuting of essential workers) was
allowed. In ECS, in addition to permitting laboral mobility,

(a) (b)

(c) (d)

FIG. 2. Model validation and spatiotemporal propagation of COVID-19 across Spain. Top: Solid lines show model predictions for the
daily fatalities (a) and the daily number of new symptomatic individuals (b), whereas dots correspond to real data. The shadowed areas
represent the 95% prediction interval. Bottom: Correlation between the accumulated number of deaths (r ¼ 0.98) (c) and accumulated
number of reported cases (r ¼ 0.90) (d) per 100 000 inhabitants observed by May 15 and those predicted by the model. The plot shows
this correlation at the level of Comunidades Autónomas of Spain. Error bars cover the 95% prediction interval.
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children and elderly people were allowed to go out during
certain times of the day and adults could practice sports
outdoors. In R1, the first phase of the reopening after the
lockdown, some commercial activity was allowed. The
shaded area covers 95% prediction intervals for the model
trajectories.
Finally, taking advantage of the spatial resolution of the

metapopulation framework, we show in Figs. 2(c) and 2(d)
the accumulated number of fatalities and reported cases at
the level of Comunidades Autónomas with those predicted
by the model. In both cases, the plots show a remarkable
agreement (correlations of r ¼ 0.98 and r ¼ 0.90, respec-
tively), capturing the large heterogeneity of the impact of
COVID-19 across the country.
In Supplemental Material [46], we show the use of the

model to evaluate different containment scenarios, exploit-
ing factors such as the age compartmentalization and the
spatial nature of the framework. However, although being
illustrative of its use to inform policy makers, we move on,
analyzing the model to delve into the consequences of
nonpharmacological interventions.

III. EFFECTIVE REPRODUCTION NUMBER

The stage of an ongoing outbreak is typically quantified
by studying the effective reproduction numberRðtÞ, which
captures the number of secondary cases that an individual
infected at time t will produce through the duration of its
infectious period. To compute the evolution of RðtÞ using
our model and understand its dependencies, we present an
incremental rationale from the most rough approximation
to the most accurate formula.
Let us consider, first, a scenario (known as mean-field in

physics) in which an infected subject i makes hki contacts
each time step. Assuming an infection probability β per
contact, the expected number of individuals infected by i
at each time step is βhkiρS, where ρS is the fraction of
susceptible individuals on the population. We can estimate
how many individuals are infected by subject i over an
infectious period of duration τ as

R ¼ τβhkiρS: ð28Þ

This very simple mean-field approach is already very
informative, as it reveals the main dependencies of R on
the variables of the epidemic propagation, indicating the
actionable variables we can resort on to reduce R. Acting
on the infection probability β can be attained with the use of
face masks and physical distance or through pharmaco-
logical interventions via prophylactic treatments. Another
actionable variable is hki, which can be modified by human
behavioral changes such as confinement. Also, the infec-
tious period τ can be modified by implementing a fast
testing policy to confirm and isolate suspected cases.
Finally, the value of ρS, that can be directly estimated

from the model, is highly dependent on the extent of
lockdown policies, on the level of immunity reached in the
population, or on the degree of vaccinated individuals when
this pharmacological intervention is available.
The previous approach, however, neglects many impor-

tant social, demographic, and mobility details key to
shaping the way in which secondary infections spread
through a geographically distributed heterogeneous pop-
ulation. Likewise, it obviates the temporal evolution of the
group of individuals susceptible to contracting the disease.
This naive approach can be largely improved by leveraging
the information of the proposed age-structured mobility-
driven metapopulation epidemic model.

A. Determination of the effective reproduction
number from the dynamics

Let us define Rg
i , the effective reproduction number of

geographical patch i and age stratum g, as the number of
secondary cases produced by an infected individual belong-
ing to patch i and age stratum g [47]. Mathematically,Rg

i is
expressed as

Rg
i ¼ τghβgi

XNP

j¼1

XNG

h¼1

kghij ρ̃
S;h
j : ð29Þ

In the above expression, the following quantities interplay:
the duration of the infectious period of each age stratum g,
τg; the average infectivity during the infectious period, hβgi,
per age stratum g; the average number of daily contacts an
individual belonging to patch i and age stratum g makes
with individuals in patch j belonging to age stratum h, kghij ;
and the fraction of susceptible individuals present in patch j
belonging to age stratum h, ρ̃S;hj . In summary, the structure
of Rg

i resembles the mean-field expression presented in
Eq. (28), but it takes explicitly into account the mixing of
individuals according to their age strata and mobility
patterns (kghij and ρ̃S;hj ). Nevertheless, this expression is
still a static snapshot at time t.
We can extend this approach to include both the temporal

dependence and the heterogeneity of contacts induced
by the daily commuting patterns, making use of all the
probabilities provided by our model equations. Moreover,
here, we aim at studying the temporal evolution of the
effective reproduction number beyond the early stage of the
disease. In this sense, we define the reproduction number of
patch i and age stratum g as the number of infections
observed if we seed an infected individual in the afore-
mentioned patch and age stratum [47]. This definition
involves considering that this infected individual, with
residence in patch i, may commute to patch j, where it
will be able to contact and infect susceptible individuals
coming from any other patch k.
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First, we calculate the expected number of susceptible
individuals of age stratum h which move from region k to
region j as

nS;hk→jðtÞ ¼ nhkρ
S;h
k ðtÞMh

kjðtÞ: ð30Þ

The fraction of susceptible individuals of each age stratum
g present at time t in patch j is expressed by

ρ̃S;hj ðtÞ ¼ 1

ñhj ðtÞ
XNP

k¼1

nS;hk→jðtÞ: ð31Þ

Next, we compute the number of susceptible contacts made
by an individual of age stratum g and patch i, which can be
expressed as

Qg
i ðtÞ ¼

XNP

j¼1

XNG

h¼1

zgðtÞhkgiðtÞf
�
ñjðtÞ
sj

�
Cghρ̃S;hj ðtÞMg

ijðtÞ:

ð32Þ

Using this expression and assuming that we have an
individual from patch i and age stratum g that has become
infectious, we can compute the effective reproduction
number for each patch and age stratum as

Rg
i ðtÞ ¼

�
βA
αg

þ βI
μg

�
Qg

i ðtÞ: ð33Þ

In Eq. (33), we assume that the fraction of susceptible
individuals as well as the average number of contacts is
constant during the infectious period. However, the fraction
of susceptible individuals obviously changes during that
time. More importantly, as containment measures come
into play, the number of contacts varies as well. To account
for the temporal variability of these quantities, we calculate
the contributions to Rg

i ðtÞ of the infections produced since
the individual became exposed at time t. The contributions
can be determined through the probabilities to be exposed,
ζE;g, asymptomatic, ζA;g, or symptomatic, ζI;g, t time steps
after an infection. The evolution of these probabilities is
given by

ζE;gðtþ 1Þ ¼ ð1 − ηgÞζE;gðtÞ; ð34Þ

ζA;gðtþ 1Þ ¼ ηgζE;gðtÞ þ ð1 − αgÞζA;gðtÞ; ð35Þ

ζI;gðtþ 1Þ ¼ αgζA;gðtÞ þ ð1 − μgÞζI;gðtÞ: ð36Þ

Since the seed is initially placed as exposed, the initial
conditions are given by ζE;gð0Þ¼1 and ζA;gð0Þ ¼
ζI;gð0Þ¼0. Accordingly, solving explicitly the recursive
Eqs. (34)–(36), we find

ζE;gðtÞ ¼ ð1 − ηgÞt; ð37Þ

ζA;gðtÞ ¼ ηg

αg − ηg
½ð1 − ηgÞt − ð1 − αgÞt�; ð38Þ

ζI;gðtÞ ¼ ηgαg

ðαg − ηgÞðμg − ηgÞðμg − αgÞ
× ½ðμg − αgÞð1 − ηgÞt þ ðηg − μgÞð1 − αgÞt
þ ðαg − ηgÞð1 − μgÞt�: ð39Þ

Incorporating these probabilities into Eq. (33), we obtain
the following expression for the effective reproduction
number of individuals of age stratum g in patch i:

Rg
i ðtÞ ¼

X∞
s¼t

½ζA;gðs − tÞβA þ ζI;gðs − tÞβI�

×
XNP

j¼1

XNG

h¼1

kghij ðsÞρ̃S;hj ðsÞ; ð40Þ

where

kghij ðtÞ ¼ zgðtÞhkgiðtÞf
�
ñjðtÞ
sj

�
CghMg

ijðtÞ: ð41Þ

The variables Rg
i ðtÞ tell us the effective reproduction

number of one newly infected individual from age stratum
g with residence in i.
To compute the temporal evolution of the global effective

number RðtÞ or the effective number RgðtÞ associated to a
given age stratum g at time t, we must make a weighted
average taking into account the distribution of newly
infected individuals across patches and age strata.
Therefore, these indicators read

RðtÞ¼
P

m∈fS;CHg
PNP

i¼1

PNG
g¼1 ½ρm;g

i ðt−1Þ−ρm;g
i ðtÞ�ngiRg

i ðtÞP
m∈fS;CHg

PNP
i¼1

PNG
g¼1 ½ρm;g

i ðt−1Þ−ρm;g
i ðtÞ�ngi

ð42Þ

and

RgðtÞ ¼
P

m∈fS;CHg
PNP

i¼1 ½ρm;g
i ðt − 1Þ − ρm;g

i ðtÞ�ngiRg
i ðtÞP

m∈fS;CHg
PNP

i¼1 ½ρm;g
i ðt − 1Þ − ρm;g

i ðtÞ�ngi
;

ð43Þ

respectively. To show the validity of the former analytical
expression for the effective reproduction number RðtÞ, we
perform in Appendix E a comparison of its time evolution
with the results obtained by using EpiEstim [48,49] applied
to both the incidence in our model and the daily incidence
data observed in Spain.

MODELING THE SPATIOTEMPORAL EPIDEMIC SPREADING OF … PHYS. REV. X 10, 041055 (2020)

041055-9



B. Monitoring the effect of contention measures
in Spain

To check the effect of the policies aimed at reducing the
impact of COVID-19 in Spain, we compute the expression
of RðtÞ according to Eq. (42) using the reported variations
of κ0 in this country from March 14. In Fig. 3, we represent
RðtÞ along with the time series of the degree of confine-
ment κ0ðtÞ [obtained from the Instituto Nacional de
Estadistica (INE) of Spain [44]]. Note that the confinement
during the progressive exit of the lockdown state lies
between 0.7 and 0.6 approximately, stabilizing RðtÞ < 1.
However, there is a clear tendency of RðtÞ to grow as the
confinement level was relaxed in May (see also Fig. 9 in
Appendix E). This growing tendency may be one of the
reasons leading to the second epidemic wave Spain is
facing during the months of July and August 2020.
Furthermore, in the plot, we obtain from Eq. (43) the

effective reproduction number by age strata, that is, the
RgðtÞ of the young, adult, and elderly population (being
g ∈ fY;M;Og). There, we notice that relevant hetero-
geneities exist among the reproduction number of the
different age strata. In particular, at the end of the curve,
we observe that a supercritical scenario for the adult
population [RMðtÞ > 1] is compatible with a global sub-
critical regime. This valuable information opens up the
possibility of designing suppression strategies that allow a
certain age stratum to haveRðtÞ > 1, provided the average
value of the whole population is below the threshold
RðtÞ < 1. The same conclusion applies in terms of geo-
graphical areas instead of ages. This result offers a

perspective on epidemic control that could be very useful
to design strategic interventions targeting individual age
stratum or particular geographical areas in heterogeneously
distributed populations.
The analytical expression for Rg

i in relation to confine-
ment κ0, social distancing δ, and household permeability ϕ
can be exploited to ascertain the implications of non-
pharmacological interventions. Let us assume that the aim
of the intervention is that of keeping the epidemic under
control, in the absence of any other tool besides confine-
ment and social distance. In this case, the strong goal must
be that of keeping of Rg

i ðtÞ ≤ 1∀ i; g, or the weaker goal
RðtÞ ≤ 1. We can use the analytical dependence ofRðtÞ to
estimate the minimal, constant intervention in κ0 and δ such
that the goal is achieved.
In Fig. 4, we present, for the case of Spain, the lower

bounds of confinement needed, assuming fixed social
distancing, to achieve RðtÞ < 1. This analysis makes use
of RðtÞ to obtain the minimum possible confinement that,
while damaging the socioeconomic structure as little as
possible, allows the epidemic to be controlled and gradu-
ally mitigated. Note that the previous goal can be relaxed,
or changed, according to any other demands of the
authorities, as, for example, maintaining the number of
ICUs in the health system below a certain threshold,
minimizing the number of fatalities, or achieving suppres-
sion in the minimum time. Figure 4 highlights the relevance
of timely and strict lockdown policies, to avoid the break-
down of the health system, in the absence of other non-
pharmacological interventions. We observe that small
variations in the fraction of confined population κ0 entail

FIG. 3. Effect of lockdown policies on the effective reproduction number. Temporal evolution of the effective reproduction number
RðtÞ for each age stratum and its average computed according to Eq. (42). Inset: The black line represents the temporal evolution of the
degree of confinement κ0ðtÞ extracted from data daily updated by INE [44]. The blue line shows the average over a 7-day timewindow to
smooth out fluctuations observed in the data. To improve the visibility of the inset, degrees of confinement from March 14 until March
28 are not represented.
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significant changes in the time needed to mitigate an
epidemic wave.

IV. QUANTIFYING THE EFFECT OF
CONTAINMENT MEASURES OVER RðtÞ

The expression for the global effective number RðtÞ
[Eq. (42)], while useful for computing the impact that
contention measures have on the spreading dynamics, does
not allow a direct interpretation of how these policies, in
particular, confinement and social distancing, influence
the epidemic detriment. Here, starting from the complete
expression derived forRðtÞ, we consider some simplifying
assumptions that allow us to unravel the contribution of
these measures and, based on these approximations, derive
an expression for the critical confinement needed to bend
the epidemic curve.

A. Phase diagram of RðtÞ as a function
of confinement and social distancing

To reveal the explicit dependence of RðtÞ on confine-
ment and social distancing interventions, we now simplify
Eq. (40) by, first, neglecting the heterogeneities among
different subpopulations and, second, considering a static
view in which the pool of susceptible individuals from each
age stratum hρS;gi remains constant during the intervention
(constant κ0). The latter assumption enables us to recover
Eq. (28) which, after introducing the aforementioned
confinement parameters, reads

RgðtcÞ ≈
�
βA
αg

þ βI
μg

�
½1 − κ0ð1 − ϕÞhCHi�

× ½κ0kgh þ ð1 − δÞð1 − κ0Þkghþw�

×
XNG

h¼1

CghhρS;hðtcÞi; ð44Þ

where hCHi denotes the average fraction of households
without any infected member.
Equation (44) shows an explicit quadratic dependence

of RgðtcÞ on κ0 that helps to understand the effectiveness
of lockdown interventions. In Fig. 5(a), we plot a phase
diagram illustrating how the global effective reproduc-
tion number is shaped by the fraction of confined
population κ0 and the household permeability ϕ. We
highlight the phase transition occurring at RðtcÞ ¼ 1
(white solid line) separating two different regimes,
RðtcÞ > 1 (flattening) and RðtcÞ < 1 (bending). Note
also that, as the permeability of confinement ϕ increases,
the transition point is reached for larger values of
confinement κ0, this transition being lost for very high
values of ϕ≳ 0.83.
To shed light onto the qualitative differences between

the regimes separated by the transition described above,
in Fig. 5(b), we plot the number of daily new cases for
different levels of confinement, κ0, while keeping the social
distancing as calibrated, δ ¼ 0.207 (95% credible interval
CrI: 0.053–0.359). The confinement is applied at time tc
corresponding to March 14. It is observed that, as confine-
ment is applied to a small fraction of the population
(κ0 > 0), the curve for the number of new cases per day
starts to broaden and the maximum shifts forward in time.
Such a mitigation strategy is known as flattening the curve,
in which containment delays and lowers the incidence
peak. The consequence of the flattening scenario is that the
impact over health systems is ameliorated at the expense
of a larger epidemic period. However, as confinement is
increased (higher κ0), there is a sharp change in the
behavior of the epidemic curve for κ0 between 0.4 and
0.6, signaling that the transition point RðtcÞ ¼ 1 lies
between these two values. In particular, for values of κ0
large enough, the epidemic curve reaches its maximum
soon after containment is put in place, achieving a
completely new scenario, referred to as bending the curve,
in which incidence decreases steadily and the epidemic
wave is shortened.
The bending scenarios shown in Fig. 5(b) correspond

qualitatively to the trend observed in Fig. 2(b). In fact, from
the sequence of values κ0ðtÞ in the inset in Fig. 3, we
observe that the degree of confinement achieved clearly
places the epidemic in the bending regime. Also, from the
evolution κ0ðtÞ, we notice that after April 14 (the day when
the gradual lifting of lockdown starts) a clear relaxation of
confinement is observed.

FIG. 4. Relation between the confinement level and time
needed for epidemic extinction. Top: Time to epidemic extinction
from May 15 as the reproduction number is fixated from this day
onward. The reproduction number is kept constant by adjusting
the confinement level through time. We define epidemic ex-
tinction as a daily incidence of fewer than ten cases. Bottom:
Average confinement level necessary to keep the reproduction
number constant. At each time step, we correct the confinement
level by steps of 0.1% until the effective reproduction number
RðtÞ differs less than 1% from the envisaged value.
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B. Critical confinement for the single patch
and age stratum approximation

As previously shown, the relaxation of confinement
progressively weakens the bending regime, raising the
question of how far containment measures can be relaxed
without entering the flattening region.
We address the analysis of this effect, by deriving the

expression of the critical confinement κc0 at which the
transition from flattening to bending regimes takes place.
The expression for the effective reproduction number in
Eq. (40) includes a variety of terms and factors. The
complexity of the expression hinders an intuitive under-
standing of the roots behind the transition from flattening to
bending the epidemic curve induced by an efficient confine-
ment. In order to have an analytical estimation of κc0, let us
consider a single well-mixed population with only one age
stratum and constant confinement in time. Furthermore, to
express R, we assume that circumstances do not change
during the infectious period of an individual. In other words,
the number of contacts stays constant, and we neglect the
depletion of susceptible individuals. Accordingly, after
confinement, the reproduction number is expressed as

R ¼ ρS
�
βA

α
þ βI

μ

�
½1 − κ0ð1 − ϕÞhCHi�

× ½κ0hkhi þ ð1 − δÞð1 − κ0Þhkhþwi�: ð45Þ

If we impose the condition for mitigation and suppres-
sion of the epidemicsR ≤ 1, the critical confinement value
κc0 must fulfill the equation

ðκc0Þ2ð1 − ϕÞhCHi½hkhþwið1 − δÞ − hkhi�
− κc0fhkhþwið1 − δÞ½1þ hCHið1 − ϕÞ� − hkhig

þ hkhþwið1 − δÞ − 1

ρSðβAα þ βI

μ Þ
¼ 0: ð46Þ

Defining the following coefficients:

A ¼ ð1 − ϕÞhCHi½hkhþwið1 − δÞ − hkhi�; ð47Þ

B ¼ hkhþwið1 − δÞ½1þ hCHið1 − ϕÞ� − hkhi; ð48Þ

C ¼ hkhþwið1 − δÞ − 1

ρSðβAα þ βI

μ Þ
; ð49Þ

we can write Eq. (46) as

Aðκc0Þ2 − Bκc0 þ C ¼ 0; ð50Þ

whose solution is given by

κc0 ¼
B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p

2A
: ð51Þ

Note that only the physically meaningful solution
κc0 ∈ ½0; 1� must be retained.
To further analyze the relevance of the mechanisms

characterizing the confinement of individuals in our model,
we illustrate in Fig. 6 the effects of social distance encoded
in δ and the household permeability ϕ on the critical

(a) (b)

FIG. 5. Relationship between R, confinement, and permeability. (a) Effective reproduction number when mobility restrictions are
imposed RðtcÞ (color code) as a function of the confinement κ0 and the household permeability ϕ computed from Eq. (44). The white
solid line denotes the conditionRðtcÞ ¼ 1 separating the different regimes for which enforcing the confinement leads to the flattening or
bending of the epidemic curve, respectively. The dashed white lines represent contour lines for different values of RðtcÞ. The social
distancing value is fixed to δ ¼ 0.207. See Appendix D for an analysis of the sensitivity of the results. (b) Temporal evolution of the
daily fatalities as a function of the confined population κ0 in a single intervention taking place on March 14.
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confinement value κc0. We observe a nontrivial functional
dependence revealing that, by increasing the social distance
of individuals or promoting better household isolation, the
fraction of confined population needed to keep an outbreak
under control is notably reduced.

V. CONCLUSIONS

As the COVID-19 pandemic affects more and more
countries and threatens to overload the critical capacity of
health systems, the absence of a SARS-CoV-2 vaccine
requires forceful nonpharmacological containment inter-
ventions by governments. Among these interventions, the
confinement of populations and social distancing have been
implemented by many countries in an attempt to reduce the
impact on health systems and save the time necessary to try
more efficient treatments against this emerging pathogen.
To mount the strategy against SARS-CoV-2 and antici-

pate its trajectory, it is necessary, in addition to correctly
modeling its epidemiological characteristics, to take into
account as closely as possible the influence of the vari-
ability of social contacts that the pathogen uses to spread.
Here, we have presented a metapopulation model to track
the spatiotemporal evolution of COVID-19. This frame-
work incorporates the essential factors of the SARS-CoV-2
transmission and clinical outcome of COVID-19 patients
by considering three group of ages: young individuals
(being mainly asymptomatic carriers of the pathogen),
adult people (characterized by a working activity that
involve recurrent mobility patterns), and the elderly (dis-
playing the most severe and critical COVID-19 cases).
Although the age partition can be further split into more
groups, the former partition appears to be the minimal one

to capture the main characteristics of the current epidemics.
Apart from the recurrent mobility between patches (in the
current work municipalities), contacts at the local level
are modeled using a mean-field approach that incorporates
a density-dependent function for the contact patterns
between age groups. This assumption allows the straight-
forward consideration of household confinement and also
enables one to explore contention strategies aimed at
reducing the sociability within and between age-specific
groups. The model constitutes an stylized framework to
explore early nonpharmacological interventions when mas-
sive testing and contact tracing are not available, as was the
case of the first epidemic wave in Spain and many other
countries around the globe.
Analyzing in detail this model, we have shown that it is

possible to construct the expression of the effective repro-
duction number RðtÞ capturing both the epidemiological
characteristics of COVID-19 and those social patterns that
facilitate its expansion. This expression enables an accurate
evaluation of the spreading potential of SARS-CoV-2 on a
given population and, more importantly, the assessment of
the effects of implementing or lifting nonpharmacological
interventions in advance. It can be used to assess the extent
of nonpharmacological interventions on a given territory
seeking for the less harming intervention in terms of
confinement level and time needed to epidemic suppression.
Focusing on the outbreak in Spain, we have analyzed the

effects of different degrees of confinement, κ0, using the
expression for RðtÞ evaluated at the time tc when contain-
ment is applied. This way, we can accurately determine the
effects on the slowdown and suppression of the epidemic
caused by different degrees of confinement. Calculating the
value RðtcÞ, we observe a transition as the set of confined
inhabitants decreases and the consequent social mixing
increases. This transition defines a critical confinement κc0
that separates a supercritical scenario, in which RðtcÞ > 1
flattens the curve, to another subcritical one, RðtcÞ < 1,
that bends the epidemic curve due to the profound change
in the social contacts structure, making it almost impossible
for the virus to spread.
The exact critical confinement separating the supercriti-

cal and subcritical regimes is highly dependent on the
underlying social structure and the intrinsic mobility
patterns of each population. Furthermore, it depends on
the time it is applied, since it depends on the available pool
of susceptible agents that can be culled out from the system.
The generality of the expression for RðtÞ provided here
makes it possible to apply it to any population and to use
with any metapopulation epidemic model, paving the way
for implementing timely and well-founded epidemiological
and socially based nonpharmacological responses.
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APPENDIX A: PARAMETERS FOR THE
MODELIZATION OF THE SPREADING

OF COVID-19

We now describe the choice of our parameters to study
the epidemic outbreak in Spain, whose values are enumer-
ated in Tables I–IV.
Throughout the manuscript, the patches of the metapo-

pulation correspond to municipalities which constitute the
lowest administrative divisions in Spain. Regarding the
population structure, we obtain the population distribution,
population pyramid, and average household size at the
municipality level from Instituto Nacional de Estadística
[50], whereas the age-specific contact matrices are extracted
from an international social study [42]. At the beginning
of the pandemic, the entire population is assumed to
follow their usual mobility patterns, so pg ¼ 1 for every

TABLE I. Parameters of the model related to geographic and population data, including mobility, and their values
for Spain. See Appendix A for a detailed explanation.

Symbol Description Estimates for g ∈ fY;M;Og in Spain

ngi Region population Data provided by INE
si Region surface Data provided by INE
Rg
ij Mobility matrix Data provided by INE

hkgi Average total number of contacts (11.8,13.3,6.8)

hkghi Average number of contacts at home (3.1,3.2,3.3)

hkgwi Average number of contacts at work (1.8,5.2,0.0)

Cgh Contacts-by-age matrix

 
0.5980 0.3849 0.0171
0.2440 0.7210 0.0350
0.1919 0.5705 0.2376

!

ξ Density factor 0.01 km2

pg Mobility factor (1.0,1.0,1.0)
σ Average household size 2.5

TABLE II. Epidemic parameters of the model and their estimations with 95% credible intervals for COVID-19 in
Spain, with strata separation g ∈ fY;M;Og when appropriate. See Appendix A for a detailed explanation.

Symbol Description States COVID-19 Spain estimates Assignment

βI Infectivity of symptomatic S → E 0.075 Calibrated
95% CrI: 0.068–0.082

βA Infectivity of asymptomatic S → E 0.5βI Assumed

ηg Exposed rate E 2.444 days−1 Calibrated
95% CrI: 1.823–3.064

αg Asymptomatic rate A ð5.671; 2.756; 2.756Þ days−1 Calibrated
95% CrIY : 5.046–6.356
95% CrIM: 2.135–3.377
95% CrIO: 2.135–3.377

μg Infectious rate I ð1; 3.915; 3.915Þ days−1 Y: Assumed
95% CrI: 3.470–4.360 M, O: Calibrated
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age group g. To construct the daily mobility network, we
first assume that the elderly and young population do not
leave their residential municipality, so their corresponding
mobility matrices read RY;O

ij ¼ δij. Finally, the mobility
matrix governing adult population movements is estimated
from extensive surveys conducted by Instituto Nacional de
Estadística in 2011 [50], which capture the commuting
patterns of the population living inside each municipality.
Regarding epidemiological parameters, the incubation

period is reported to be η−1 þ α−1 ¼ 5.2 days [2] in average
which, in our formalism, must be distributed into the
exposed and asymptomatic compartments. In principle, if
one does not expect asymptomatic transmissions, most of
this time should be spent inside the exposed compartment,
the asymptomatic infectious compartment thus being
totally irrelevant for disease spreading. However, along
the line of some works [51–53], we find that the unfolding
of COVID-19 cannot be explained without accounting for
infections from individuals not developing any symptoms
previously. In particular, after calibrating the model, we
estimate α−1 ¼ 2.756 (95% CrI: 2.135–3.377) days as the
asymptomatic infectious period; see Appendix C for the
details of the calibration methodology. In turn, the infec-
tious period while being symptomatic is calibrated to μ−1 ¼
3.915 days (95% CrI: 3.470–4.360), except for the young

stratum, for which we reduce it to 1 day, assigning the
remaining days as asymptomatic; this reduction is due to
the reported mild symptoms in young individuals, which
may become unnoticed [28]. Furthermore, we assume
asymptomatic individuals are half as infectious as symp-
tomatic ones, βA ¼ 0.5βI , as in Refs. [54,55].
Regarding the clinical parameters, we fix the fatality rate

ω ¼ 30% for ICU patients according to official reports
[37]. We incorporate from previously published studies the
typical time from ICU admission to death as ψ−1 ¼ 7 days
[39] and the stay in ICU for those overcoming the disease
as χ−1 ¼ 21 days [40]. In turn, the parameters γg and θg,
controlling the infected population requiring ICU beds
and dying without occupying any of them, are estimated by
correcting the real observed values [37] with the estimated
underreporting from Ref. [38] (see next paragraph).
Likewise, the parameters ζg and λg are computed by
assuming that times between onset of symptoms and
ICU occupation or fatal outcome are 8 and 11 days [37]
on average, respectively.
To account for underreporting, we compare the

seroprevalence estimates of the extensive sero-
epidemiological extensive survey [38] made by the
Spanish authorities with that derived from the official
reported data. In particular, 0.53% of the Spanish pop-
ulation was diagnosed as COVID-19 cases by May 4,

TABLE IV. Parameters describing the confinement and their estimations with 95% credible intervals for COVID-
19 in Spain, with strata separation g ∈ fY;M;Og when appropriate. See Appendix A for a detailed explanation.

Symbol Description COVID-19 Spain estimates Assignment Epidemiological significance

κg0 Mobility reduction Time-varying Estimated Decreases population mobility
from INE [44] Decreases average number

of contacts
Increases household isolation

ϕ Household permeability 0.174 Calibrated Mixing among households
95% CrI: 0.079–0.269 Decreases household isolation

δ Social distancing 0.207 Calibrated Reduces contacts of the
95% CrI: 0.053–0.359 nonconfined population

TABLE III. Clinical parameters of the model and their estimations with 95% credible intervals for COVID-19 in
Spain, with strata separation g ∈ fY;M;Og when appropriate. See Appendix A for a detailed explanation.

Symbol Description States COVID-19 Spain estimates References

θg Direct death probability I → PD (0.0,0.008,0.047) [37,38]
γg ICU probability I → PH (0.0003,0.003,0.026) [37,38]

ζg Predeceased rate PD 7.084 days−1 [37]
95% CrI: 6.640–7.537

λg Prehospitalized in ICU rate PH 4.084 days−1 [37]
95% CrI: 3.640–4.537

ωg Fatality probability in ICU PH → HD 0.3 [37]
ψg Death rate in ICU HD 7 days−1 [39]
χg ICU discharge rate HR 21 days−1 [40]

MODELING THE SPATIOTEMPORAL EPIDEMIC SPREADING OF … PHYS. REV. X 10, 041055 (2020)

041055-15



whereas the actual seroprevalence observed was 5.0%
(95% confidence interval CI: 4.7–5.4). Therefore, we
estimate that 89.4% (95% CI: 88.7–90.2) of COVID-19
cases have not been diagnosed in Spain and use this value
to rescale the time series for the daily new symptomatic
cases shown in Fig. 2(b).

Finally, regarding the parameters controlling the effi-
ciency of the measures taken by the authorities, we
calibrate those depending on social awareness and indi-
vidual behavior, such as social distancing δ and household
permeability ϕ, due to the lack of data. In contrast, the
fraction of the population under confinement κ0ðtÞ is
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FIG. 7. Calibration analysis. The diagonal of the table contains the posterior distributions for the parameters obtained after model
calibration. The lower triangular part shows the scatter plot for every pairwise combination of parameters present in the posterior
parameter space, whereas the upper triangular one represent the entries of the covariance matrix for the parameters involved in the
calibration.
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straightforwardly incorporated from data on the mobility
reduction daily updated by INE which are shown in Fig. 3.
Figure 7 contains the posterior distribution for the

calibrated epidemiological parameters along with the
covariance matrix showing the relations between those
parameters involved in the calibration.

APPENDIX B: NORMALIZATION FACTOR FOR
EACH AGE GROUP

Here we want to explain the rationale behind the nor-
malization factor zg, first introduced in Eq. (14), which
shapes the number of contacts made by individuals belong-
ing to age group g. In the main text, we state that
zghkgifðñi=siÞ represents the total number of contacts that
an agent from age group gmakes inside patch i. To construct
this term, let us start by assuming that the number of contacts
within a patch increases monotonically with the density
according to a given function f. Therefore, in general terms,
we can write the number of interactions of one individual
belonging to age-group g inside patch i, kgi , as

kgi ¼ xgf

�
ñi
si

�
; ðB1Þ

being xg an (in principle) arbitrary constant which may
differ for the different age-groups g. In fact, xg allows for re-
scaling the contacts such that the average number of
interactions of individuals belonging to strata g across the
entire population is hkgi. This constraint imposes that

XNP

i¼1

ñgi x
gf

�
ñi
si

�
¼ nghkgi: ðB2Þ

This way, xg can be expressed as

xg ¼ zghkgi; ðB3Þ
where zg, which is defined as the normalization factor
throughout the manuscript, is given by

zg ¼ ngXNP

i¼1

ñgi fðñisiÞ
: ðB4Þ

APPENDIX C: MODEL CALIBRATION

Several procedures are proposed in the literature to
calibrate the mathematical models aimed at reproducing
the evolution of COVID-19 across a given country.
Calibration using indicators such as ICU occupation, daily
incidence, or the number of fatalities rely on the quality of
the data obtained. Unfortunately, in Spain, the data acquis-
ition process is very messy, given the different protocols

that every Comunidad Autónoma follows. For example, the
number of officially reported cases does not constitute a
reliable indicator in Spain because of delays in reporting to
the National Health system as well as temporal variations
in the number of tests. This unreliability makes reported
cases a very noisy variable to fit. In front of this important
problem, we finally decide to calibrate the model with the
number of daily fatalities, data that are curated by the
Spanish government.
The calibration procedure consists of the following steps:
(1) Most of the parameters governing the clinical out-

come of the disease are incorporated from either
previous studies or official reports and do not take
any part in the calibration of the model. Therefore,
the calibration is mostly focused on the epidemio-
logical parameters governing the unfolding of the
disease, whose values remain still uncertain. In
particular, the parameters subjected to calibration
are the number of initial infectious seeds A0, the
infectivity βI, the asymptomatic infectious period
α−1, and the infectious symptomatic period μ−1.
Finally, regarding the confinement, household per-
meability ϕ and social distancing δ need also to be
calibrated due to the lack of data, whereas the values
for κg0ðtÞ are directly incorporated in the model from
mobility reduction estimations published by INE.

(2) The initial date from which our model runs is
February 9. To spatially distribute the initial seeds,
the reported cases by March 3 are backtracked until
February 9 and let the model run. Once the initial
seeds are set, we calibrate the epidemiological part
of the model by performing an approximate Baye-
sian computation (ABC) [45] including real data
about the new daily fatalities at a national scale until
April 8.
We use the logarithmic least squares error as an

objective function for the ABC. The daily fatalities
from April 8 onward [Fig. 2(a)] as well as the daily
new cases for the whole time span [Fig. 2(b)] serve
as validation. As stated in Sec. A, the time series for
the daily new cases provided by the health author-
ities is rescaled according to the findings of the
nationwide serological survey to correct for the
underreporting.

(3) Our model is able to predict the spatiotemporal
propagation of COVID-19 triggered by communi-
tary contagions and human mobility. To leverage the
full potential of the formalism, we also check the
accuracy of the formalism in predicting the fatalities
at a regional level. We observe that the introduced
seeds corresponding to the reported cases by
March 3 are enough to predict the fatalities observed
in some areas but fail in capturing the evolution of
COVID-19 in other regions, possibly due to initial
underreporting of cases there. To solve this discord-
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ance, we introduce the minimal set of infectious
individuals in those largest populated cities of each
Comunidad Autónoma to ensure a fair correspon-
dence between the data and model, which is opti-
mized by using the Nelder-Mead method.

APPENDIX D: SENSITIVITY ANALYSIS

Here, we perform a sensitivity analysis to check the
robustness of our results concerning the time evolution of
the effective reproduction number. As the value for RðtÞ is
independent from the clinical parameters, we restrict the
sensitivity analysis to those epidemiological parameters
assumed to be constant when calibrating the model. In
particular, we focus on studying how the values of RðtÞ in
both supercritical and subcritical regimes are affected by
changes in the incubation period η−1 þ α−1, the infectivity
of individuals without symptoms βA, and the infectious
symptomatic period of young population ðμYÞ−1.
Figure 8 compares the original distribution for the

effective reproduction number before and after confinement
is enforced with those obtained by introducing a 10%
relative modification in each of the aforementioned param-
eters. The mean and the shape of the distribution remain
almost unaltered in both supercritical and subcritical

regimes, thus proving the robustness of the results reported
throughout the manuscript.

APPENDIX E: VALIDATION OF EFFECTIVE
REPRODUCTION NUMBER

The validation of our analytical expression Eq. (42) for
the effective reproduction number is performed by compar-
ing it with the case reproduction number obtained using
EpiEstim [48,49]. We apply EpiEstim to both the incidence
in our model (EpiEstim model) as well as the real incidence
data (EpiEstim data); see Fig. 9. The incidence in our model
corresponds to the one of the compartment exposed (E).
The real incidence data, collected until May 15, are shifted
by 6 days due to the average lag between symptom onset
and report [37]. The data are then subsequently shifted
another 5 days accounting for the time in our model
between becoming exposed and developing symptoms.
Estimations of the reproduction number are then performed
on both datasets by averaging over 50 randomly chosen
parameter sets of our posteriors. For each parameter set,
the generation time distribution is fixed correspondingly.
Additionally, we perform a rolling average of 10 days on all
curves. Please note that, for the EpiEstim data curve, the
confidence interval is narrower than the line’s thickness.
The curve is plotted until the last day EpiEstim is able to
perform an estimation.
We observe a good agreement between the analytical

expression and the estimation by EpiEstim on the incidence
of our model. Qualitatively, also the estimation using
real incidence data matches the analytical expression. In
particular, the difference on which day the two curves drop
below one is only around 2 days. The fact that the

FIG. 9. Validation of effective reproduction number. Repro-
duction number from the analytical expression compared to an
estimation of the case reproduction number obtained using
EpiEstim [48,49] on the incidence in our model (EpiEstim
model) as well as the real incidence data (EpiEstim data).

FIG. 8. Sensitivity analysis. Distribution of effective reproduc-
tion number R values while exploring the parameter space by
tuning parameters βA=βI , η−1 þ α−1, and ðμYÞ−1 as described in
Appendix D on (a) a supercritical regime (2020-03-01) and (b) a
subcritical regime (2020-04-01). As a reference, we provide a
baseline distribution obtained fixing the aforementioned param-
eters to the values reported in Table III.
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estimation on real incidence data results in a higher
reproduction number at the beginning of the epidemics
is probably due to the quickly increasing test capacity as
the first cases were detected in Spain. Instead of observing
the actual growth of the epidemic, tests performed in the
beginning discovered to what extent the epidemic had
already spread in the population. Unfortunately, there are
no data available on how the number of performed tests
evolved until April 23.

APPENDIX F: CODE AVAILABILITY

The model described above is implemented in the open
source Julia programming language [56]. The source code
is freely available online in Ref. [57], distributed under the
open source licence GNUAGPL-3. The documentation can
be read in Ref. [58].
For the ABC calibration described in Appendix C, we

use the AproxBayes Julia package [59], that implements
the approximate Bayesian computation method defined
in Ref. [45].
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S1. EPIDEMIC SCENARIOS

Apart from capturing the past course of a real pan-
demic and forecasting its future evolution, the framework
here presented constitutes an useful tool for evaluating
different interventions of interest for policy making. In
this regard, the complexity of the equations governing the
evolution of an age-stratified metapopulation, allows for
incorporating realistic interventions and assessing their
performance in reducing the impact of the disease over
the population. Taking advantage of this possibility, we
now study four different scenarios: the constraint of the
inter-territorial mobility, the closure of the epicenter of
the pandemic in Spain, and the selective confinement to
elderly and young population and the extension of the
strict lockdown regime.

A. Constraining mobility among provinces

First, we aim at modifying the morphology of the mo-
bility network to unveil the role that human flows over
different territories have played in fostering the spread of
COVID-19. In particular, we are interested in revealing
the relevance of the mobility network for the dissemina-
tion of the first cases in Spain until lockdown was en-
forced.

For this purpose, we compare the evolution of the spa-
tial diffusion of COVID-19 with the picture provided by
an alternative scenario in which the mobility between
provinces (the administrative division of Comunidades
Autónomas in Spain) is forbidden since the beginning of
the disease. In mathematical terms, this policy is re-
flected in the mobility network by turning every flow
connecting different provinces into self-loops, so that
the population following these mobility paths stay in-
side their municipality. It is important to stress that this
mobility restriction does not imply any kind of household
confinement.

∗ alexandre.arenas@urv.cat
† gardenes@unizar.es

Figure S1 shows the distribution across Spain’s terri-
tory of the municipalities with more than 10 cases as of
March 15 when no mobility restriction is at work (left)
and when the inter-provincial mobility is blocked (right).
The maps in this figure clearly reveal the relevance of
inter-provincial mobility at the early stages of the dis-
ease. In particular, we check that those connections dis-
seminated the initial infectious seeds across more munici-
palities, thus making more difficult to concentrate efforts
to fight local outbreaks.

B. Closing the epicenter of the pandemic

Madrid became the epicenter of the pandemic during
the first epidemic wave in Spain. The international con-
nectivity facilitating the arrival of imported cases along
with a massive community transmission driven by the
high population density existing in Madrid lead to the
rapid unfolding of COVID-19 epidemics there. In the
presence of clear epidemic centers, one typically discussed
intervention consists in isolating these zones from the rest
of the territory. To have quantitative information about
the impact of such intervention, we remove the flows in
the mobility network involving Madrid and analyze the
course of the disease.

In Fig. S2 we represent the time evolution of the rela-
tive difference number of cases when Madrid is isolated
with its corresponding to the original mobility network.
Positive values indicate a beneficial effect of the policy
whereas negative values encode a detrimental impact of
Madrid closure. Overall, restricting Madrid mobility has
a positive impact in the course of the epidemic. Nonethe-
less, note that the effect of the geographical closure of
the most affected areas is not very pronounced, for it
should be combined with strong local control policies im-
plemented inside them to efficiently control the outbreak.

C. Selective confinement of non-active population

A crucial factor to understand the disparate COVID-
19 numbers across similar countries is the timeliness of

mailto:alexandre.arenas@urv.cat
mailto:gardenes@unizar.es
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Figure S1. Spatial distribution of COVID-19 cases according to two different underlying mobility networks: the original one,
estimated from INE data (left) and a new one where mobility between different provinces is removed (right). In both panels,
red colored areas correspond to municipalities with more than 10 reported cases by March 15.

Figure S2. Time evolution of the relative reduction in the cumulative number of cases (a) and new daily cases (b) in an epidemic
scenario where Madrid is isolated from the rest of Spain. This is achieved by removing those flows connecting Madrid with
different regions in the mobility network.

the policies promoted to keep its propagation under con-
trol. One typical example can be found in Europe during
the first epidemic wave: while countries such as Austria
or Portugal deployed early interventions, thus alleviat-
ing the impact of COVID-19, other countries such as
Spain or Italy acted late when the disease was already
widespread across their territories. In this sense, the fear
of dismantling the socio-economic fabric of the countries
when isolating the active population constitutes one of
the most important conditioning factor preventing these
countries from acting earlier.

In light of this problem, one alternative intervention,
aimed at keeping most of the country functionality and
improving the control of the epidemic, would have been
to enforce an early selective confinement of the non-active
population. To capture this intervention in our formal-
ism, we restrict the contacts of the young and elderly

population to those taking place inside their households
at a given time tc′ before the state of emergency was de-
clared in Spain (March 14, 2020). After this day, the
lockdown of young and elderly patterns is again coupled
to the one of the active population.

In Fig. S3 we illustrate the huge benefit of cutting pos-
sible transmission chains by performing timely selective
confinements at the early stages of the disease, i.e., when
the number of cases grows exponentially. In particular
the results are obtained when this age-selective confine-
ment is applied on February 28.

D. Extension of strict lockdown period

Finally, we address the benefits of prolonging the sec-
ond lockdown period in Spain when every activity with
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Figure S3. Effect of enforcing a selective confinement to non-active population (see text for details) on the course of the
pandemic in Spain. The course is characterized by the time evolution of the cumulative number of cases (a) and new daily
cases (b) for both the baseline and the intervened (YO) scenarios. Colored ribbons cover a 95% prediction interval.

Scenarios Cases Daily new cases

Real [2,060,526 - 3,347,466] [2,720 - 19,273]

1 week [2,037,360 - 3,175,669] [1,700 - 11,731]

2 weeks [1,994,002 - 3,047,854] [968 - 6,845]

4 weeks [1,977,928 - 2,970,631] [449 - 3,437]

Table S1. Predictive interval on the number of cases and daily
new cases for the different scenarios considered in Fig. S4.

the exception of essential services was banned (EM win-
dow in Fig. 2 of the main text). For this purpose, we
depict the evolution of the number of cases and daily new
cases under the observed mobility and when increasing
the duration of the EM lockdown. To do so, we extend
the time series {κ0(t)} characterizing the evolution of the
mobility reduction over the EM lockdown (see Fig. 3 of
the main text) during three different periods: 1 week, 2

weeks or 4 weeks. In each of the three cases, after the
extra lockdown window, the evolution of the mobility is
kept as it was observed after the original EM period.
The predictions show a reduction in both metrics as we
increase the weeks of lockdown, showing a clear decreas-
ing trend in the number of daily new cases on the most
restrictive scenario. Remarkably, simulations also show
considerable shrinking of the uncertainty range for daily
new cases as we add weeks to the confinement policy, see
Table S1 and Fig. S4. Namely, the upper bound goes
from 19,273 daily new cases for the real scenario to just
3,437 for the four-week lockdown extension scenario. Al-
though a complete stop of the spreading is almost impos-
sible to achieve without a vaccine or clinical treatment,
reducing the incidence to a manageable value through
an extension on the lockdown duration could have had
an essential role in mitigating, or at least delaying the
current second wave.
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Figure S4. Evolution of the number of number of cases (a), and daily new reported cases (b) as function of time. Lines
represent different scenarios where the total lockdown was extended starting on April 10 one week, two weeks, four weeks. For
comparison purposes we added the real scenario. Colored ribbons covers a 95% prediction interval.
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