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Summary

We present here and compare the most common approaches to community structure
identification in terms of sensitivity and computational cost. The work is intended as an
introduction as well as a proposal for a standard benchmark test of community detection
methods.

1. Introduction

The analysis of complex networks has received a vast amount of attention from the
scientific community during the last decade. Statistical physicists in particular have
become interested in the study of networks describing the topologies of a wide variety
of systems, from biological technological or social networks. Although several
questions have been addressed (see the review paper by Costa et al. for a complete set
of measurements), many important ones still resist complete resolution. One such
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problem is the analysis of modular structure found in many networks. Distinct modules
or communities within networks can loosely be defined as subsets of nodes which are
more densely linked, when compared to the rest of the network. Such communities, as
usually called in social sciences, have been observed, using some of the methods we
shall go on to describe, in many different contexts, including biological networks,
economic networks and most notably social networks. As a result, the problem of
identification of communities has been the focus of many recent efforts. As a concrete
example we show in Figure 1 the network representing the Spanish research community
of Statistical and Nonlinear Physicists (FISES, http://www.fises.es).

Figure 1. FisEs network. Network of scientists that contributed to the Statistical Physics
(Fisica Estadistica) conferences in Spain.

We consider two scientists linked if they have co-authored a panel contribution to any
of the conferences. To be able to consider the historical structure of this network we
““accumulate" the network over all the conferences, that is, once a link is created, it
remains, even if the authors never collaborated again. The final network (accumulated
over all the years) is comprised of 784 nodes with 655 (84%) of those belonging to the
giant component. Green nodes denote the member of the scientific committees.

Nodes belonging to the same community are more than likely to have other properties
in common and hence community detection in large networks is potentially very useful
for instance when trying to understand dynamical properties. In the world wide web,
community analysis has uncovered thematic clusters. In biochemical or neural
networks, communities may be functional groups, and separating the network into such
groups could simplify the functional analysis considerably.
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The problem of community detection has been the subject of study in various
disciplines. A simpler version of this problem, the graph bi-partitioning problem (GBP)
has been the topic of study in the realm of computer science for decades. Here one looks
to separate the graph into two equal-size communities, which are connected with the
minimum number of links. This is indeed an NP complete problem; however several
methods have been proposed to reduce the complexity of the task. In real networks one
cannot assume how many communities there are, but in general it is more than two.
This makes the process much more costly.

Furthermore communities can be organized in hierarchies, meaning that different
organizational levels can be simultaneously important and the question to the best
partition has not a single answer. This hierarchical organization strongly affects the
dynamical properties of networks. Another additional issue is that sometimes there is
not a clear separation among communities and they present a certain degree of
overlapping.

In this chapter we would like to present the recent advances made in the field of
community identification in networks in a clear and simple fashion. To this end, the
sections are organized as follows. In the next section we describe some ways to define
communities in a network context. Following this, we present a method to evaluate a
particular partition of a network. Then, we go on to describe the various recent methods
starting with link removal methods, going on to agglomerative methods, followed by
methods optimizing modularity and finally “other” methods. Some of the methods
presented do not necessarily fit into just one of these classifications, and there may be
some overlap. We finally introduce different structural organizations in networks and
dynamical applications of modular networks.

2. Definitions of Communities

There is not a unique definition of what a community is, instead the idea of
communities is different and has been evolving depending on the field that defines it.
The first definitions of community come from the field of social networks, where the
communities are studied and understood according to the effect that an individual player
has on the network and vice versa. Some of these ideas have been used and developed
by some of the methods we present below, while new approaches have also been
adopted from other fields such as physics or mathematics.

The different definitions of what is a community are all based in the concept of a
subgraph, that is, groups of nodes and all the connections between them. The definitions
can be classified into two main conceptual categories, those who use self-referral
information and those based on comparative definitions.

Self referring definitions only use information of the structure of the network to decide
what groups of nodes can be considered as a community. The most restricting and
simple community structure is a clique, defined as a subgraph that is fully connected
(i.e. it has all the possible edges between its nodes). Since this constraint is rarely
fulfilled in real sparse networks, there are other approaches that relax it, such as n-
cliques, n-clans and n-clubs. Self-referring definitions, while useful in characterizing
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communities, which are already known, are not the best choice while trying to find
them since the methods to find the cliques in a network is very costly.

A second type of definitions use topological information to compare if a group of nodes
is a community or not, for instance, counting how many links have the nodes of the
subgraph inside of it and how many links have them with nodes outside the subgraph.
The strong definition of community requires that all the nodes of a community must
have a larger number of links to members of the same community than to members of
other communities. A lighter version of this definition is the weak definition of
community proposed by Radicchi et al., where it is required that the sum of links inside
the community is larger than the total number of links to the outside. This definition and
some small variations of it is the most used in the majority of the methods that we will
present later, since comparing the internal structure of a community to the external
structure gives rise to a measure of how good a particular partition is.

3. Evaluating Community Identification

Once a partition of the network into communities has been identified, the problem turns
on to evaluate how good is the partition. Girvan and Newman proposed a simple
approach, based on the intuitive idea of lack of community structure in random

networks. Consider an arbitrary partition of a given network into N _communities. We
can define a N_x N size matrix € where the elements e; represent the fraction of
total links starting at a node in partition I and ending at a node in partition j . Then, the

sum of any row of €, a; = Z;‘ei;' corresponds to the fraction of links connected to 7 .

If there is no community structure in the network the expected value of the fraction of
links within partitions can be estimated. It is simply the probability that a link begins at

anode in 7, a;, multiplied by the fraction of links that end at a node in 7, a; . Then the
expected number of intra-community links is just a;a;. We also know that the real
fraction of links exclusively within a partition is ¢;;. Comparing the two and summing
over all the partitions in the graph we get

Q:Z(eﬁ—af). (1)
i=1

This is a measure known as modularity. As an example, we can consider a network
comprised of two disconnected components. If we then have two partitions,
corresponding exactly to the two components, modularity will have a value of 1. For
particularly “bad” partitions, for example, when all the nodes are in a community of
their own, the value of modularity can take negative values.

It is tempting to think that random, Erdos-Renyi networks have little or no community
structure. However, as Guimera et al. showed, this in general 1s not the case. In fact, it is
possible to find a partition which not only has a nonzero value of modularity for random
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networks of finite size, but that this value is quite high. For example a network of 128
nodes and 1024 links has a maximum modularity of 0.208. This suggests that
community structure appears in random networks due to fluctuations.

From here on we will look at different methods of community identification presented
recently. First we consider methods based on link removal.

4. Link Removal Methods

Divisive methods extract the partition into communities of a network by removing some
(or all) of its links until the network is no longer connected or we have a division into
communities that meets certain requirements. However, to be able to obtain useful
results we need to remove the appropriate links, otherwise the communities will be
meaningful. Several methods have been proposed to identify the links that we should
remove, which we will revise in this section.

4.1. Shortest Path Centrality

One of the first divisive methods presented in uses the idea of centrality, a measure of
how central the node or link is in the network, to decide which links need to be
removed. The algorithm uses a particular type of centrality, shortest path centrality,
which measures the number of shortest paths between pairs of nodes that pass through a
certain node or link. The links with the highest centrality usually act as a bridge
between the communities, so if we remove them we can split the network into densely
connected communities.

Figure 2. Binary tree showing the result of applying the Girvan-Newman algorithm and
our visualization technique to the network of coauthors in FisEs.

The method works recursively eliminating all the links of the network, and stops when
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there are no more links and all the nodes are isolated. Every time a link is removed, all
the centralities are recalculated, otherwise we will obtain an erroneous community
detection. This part of the algorithm is the one that requires most computer power and,
for a network of size n with m links, using the fastest methods developed independently
by Newman and Brandes the speed of calculating all link betweenness-es in one step

still remains of O(mzn) for unweighted networks. This limits the size of the graph that

we can process in a reasonable time to a maximum of around 10000 nodes. Figure 2
shows the application of this algorithm to the network depicted in Figure 1.

Each branch corresponds to a real community and the tips of the branches correspond to
the people that have played a major role in the different research groups. One can
identify here that the members of the scientific committees over the years have indeed
played an important role in the development of the community and that they are
precisely quite central nodes in the respective local communities.

4.2. Extensions of the Shortest Path Centrality

The same authors of the previous method have also presented two alternative methods
to detect community structure by betweenness centrality by calculating this value using
two alternative approaches. However, although they are conceptually interesting, both
approaches require higher computation than the previous method, and they do not
improve the accuracy of it.

The first approach considers the network as a circuit, where links are assigned a unit
resistance and we select two nodes that we define as unit voltage source and sink. Using
Kirchoff’s laws we can calculate the current flow between these two nodes. Adding the
flows we will obtain a mesure similar to the centrality, where those links with the
lowest resistance (shortest path) carry the most current and, therefore, are the most
central. The second approach uses random walks to determine the betweenness
centrality of the links. The network is used as a substrate for signals that perform a
random walk between pairs of nodes. The link betweenness in this case is simply the
rate of flow of random walkers through a particular link summed over all pairs of
vertices.

4.3. Information Centrality

Another divisive algorithm available uses the network efficiency measure proposed by
Latora and Marchiori. This measure quantifies how efficient is a network in the context
of information exchange. If we remove links of the network, its efficiency decreases a
certain amount of information centrality.

This method, presented by Fortunato et al., is based on the idea that if we remove the
links that act as bridges between communities we should observe the largest drops in
network efficiency. from this premise, the method operates similarly to the shortest path
centrality method, removing recursively all the links and recalculating the efficiency of

all the links at every step. The process is slower than the GN running at O(n4), but
instead the accuracy obtained in the detection is better when the communities to be
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found are more diffuse.
4.4. Link Clustering

Another approach uses the idea that linked nodes belonging to the same community
should have a high clustering coefficient, that is, they share larger number of common
neighbors. Based on this idea, the algorithm of Radicchi et al. postulates that the
proportion of possible number of loops that go through internal links should be much
larger than the proportion of loops for links pointing to outside of the community. The
algorithm also works recursively as the previous ones, but in this case by recalculating
the link-clustering coefficient, which measures the number of loops of a certain length
that pass through each link. Longer loops require more computer resources but provide
more accurate results.

This algorithm provides a way to stop the detection process when a certain condition is
fulfilled, instead of decomposing the whole network until all the nodes are separated. It
is also faster than the previous ones, since to compute the link-clustering coefficient we
only need local information. However, it is not very useful with networks with a very
low clustering coefficient, such as trees, sparse graphs or disassortative networks, where
we do not have the necessary loops to compute the link-clustering coefficient.

5. Agglomerative Methods

Another approach to identify the communities of a network is to start from all the nodes
being in separate communities, and some strategy to join or agglomerate them in larger
groups. Here we present some of these methods and their grouping algorithms.

5.1. Hierarchical Clustering

Hierarchical clustering has been used traditionally in social networks analysis to extract
the communities of the network. The idea of this method is based on the measurement
of the similarity between the elements of the nodes according to some property. Starting
from an empty network, the method selects those node (or groups of nodes) that have
the highest similarity and joins them. This process is again repeated recursively until all
the links are added or when we meet a certain condition. The method is very fast and it
can work almost in linear time, being able to analyze networks that cannot be processed
otherwise. However, the results are highly dependent on the similarity metric that is
used to detect the communities.

5.2. L-Shell Method

A second approach focuses on identifying the community around one node of the
network by agglomerating its neighbors until a condition is fulfilled. In particular, the
algorithm consists on constructing a L-shell around one node, where a L-shell is a subset
of the nodes with a maximum distance of the shortest path to the node origin is less or
equal to L. The algorithm starts from the origin and adds more nodes by increasing the
distance L until the emerging degree (number of links to nodes outside the L-shell) is
lower than a cut-off value, and then it is stopped. Those nodes that fall inside the L-shell
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are grouped within one community.

This algorithm is particularly interesting when one is more interested in finding a single
community and not in detecting the entire community structure. If we want to make the
algorithm global, the authors suggest that we should repeat the process for each node,
and then perform a statistical analysis of the results to detect the communities. Since the
method uses local information, it is one of the fastest available.

5.3. K-Clique Method

Another approach introduced the idea that communities can overlap. In their definition
of community, one node can belong to various “thematic” communities (i.e. one can
belong to a scientific group, a family, a sports team, ... ), which usually share a certain
amount of nodes. The methodology to detect the overlapped communities is based on
the concept of 'k-clique communities'. A k-clique is a group of k nodes that is a
complete subgraph, and a 'k-clique community' is the union of all k-clique that are
adjacent (two k-cliques are adjacent if they share k — 1 nodes).

In terms of accuracy, this method is not comparable with the others presented, since it
uses a different definition of community structure. However, it has interesting
applications, i.e. it can be used to observe the level of relationship between communities
or to determine the communities where a certain node belongs.

6. Maximizing Modularity Methods

Since the modularity measure introduced previously provides a good way to evaluate
quantitatively a network partition into communities, many authors have presented
methods that focus on optimizing this value to obtain the best partition. The benefit of
all these methods is that they do not require extra information about the optimal number
of communities, since there is a point where the modularity value cannot be improved
further. On the contrary, the optimization process is not straightforward because the
partition space of any graph (even relatively small ones) is extremely large. The
following approaches present different methods to navigate the space of possible
partitions to find the highest possible value of modularity, while balancing between
accuracy and speed.

6.1. Greedy Algorithm

The first approach introduced by Newman optimizes the value of O using a greedy

algorithm. Starting from a configuration where each node corresponds to one
community, the authors compute all the changes in modularity obtained by joining any
possible pair of nodes. The highest increment is selected and the two communities are
joined, and the process is repeated until a maximum value of Q is obtained.

This method is really fast, since the recalculation of the increments only uses local
information, and can analyze a network in almost linear time. However, the accuracy
achieved is the lowest of all the modularity optimizing methods.
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The benchmark most commonly used to measure the sensitivity of a particular
community identification algorithm does not take into account the fact that networks
exhibit highly skewed community size distributions, as this shown in Figure 3, and is
potentially flawed. By comparing the results of the greedy algorithm to results obtained
from a modified version which takes community size into account, the present authors
showed that size heterogeneity can alter the comparative accuracy of community
detection.

—
-

=—

fo’ ¥ %‘E\?ﬂ;
QB

Figure 3. Example of a computer generated network with a heterogeneous distribution
of communities where the algorithm proposed in Danon et al 2006 has been applied.

6.2. Extremal Optimization

A third approach, presented by Duch and Arenas, uses a different heuristic search
procedure based on extremal optimization to find the best modularity value. The
heuristic works at a local scale, by improving the contribution of each node to the global
modularity. The nodes are assigned initially to two random partitions, and the local
modularity optimization is performed by moving the nodes with the lowest local
modularity from one group to another. When the optimization reaches an stationary
state where the modularity cannot be improved anymore, the links between the two
partitions are removed, and the process is repeated recursively while the total
modularity keeps increasing. The algorithm is relatively fast, , scaling as

O(n2 log(n)) , and it achieves the highest known modularity values for all networks
studied.

A modified version of the algorithm has later been introduced by the same authors that
adds two new improvements. First, it allows the analysis of weighted and directed

networks, using new definitions of modularity. Second, the final results can be fine-
tuned using a final bootstrap, which helps correcting small problems that appear due to
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the recursive process of the divisive part of the algorithm.
6.3. Simulated Annealing Methods

Another approach to optimize the modularity measure is to employ simulated annealing
methods. This idea was introduced by Guimera et al. when they studied modularity in
random networks. The method starts with an initial random partition of the nodes into
communities, and evolves randomly changing nodes from one community to another.
The change is always accepted if the modularity increases, and with a certain
probability otherwise. This is also repeated until the modularity cannot be improved
anymore for a certain number of steps. The algorithm is slower than some of the other
methods, but is one of the most accurate options available.

Later, Massen and Doye proposed two modifications of the simulated annealing
approach. First, their algorithm stops periodically, analyzes all the possible node
movements, and accepts the move that increases the modularity the most. Second, they
use a Basin-Hopping approach, where in each step a group of nodes are moved from
one community to another, and this movement is accepted depending on the change of
the modularity. The modifications make the process of maximization slower than the
original, but are able to find even higher modularity values.

6.4. Information Theoretic Approach

One of the most recent approaches to the community detection problem is based on an
information-theoretic framework, where the community detection problem is now
treated as an information compression problem. The idea is to reduce the link
connectivity of the network (the adjacency matrix) into a more simple description (a
module assignment vector and a module matrix). To discover the configuration that
provides the best “compression” of the network structure, they maximize the mutual
information between the encoded and the global descriptions.

The results presented in their paper show that this method performs better than the
others when detecting asymmetric communities. Another advantage is that changing the
encoding function we can detect other types of clustering beyond the classical
community structure. Similar to the mixture models, the method is also able to identify
partitions where the nodes have similar patterns of connection to other nodes.

7. Spectral Analysis Methods

An alternative to the adjacency matrix to represent the information of the connectivity
of a graph is the Laplacian matrix. The position n;; of the matrix informs about the

existence of a link between 7 and j, and the diagonal contains the degree of node 7, so

that the sum of each row and column is equal to zero. The following methods use the
algebraic properties of these matrices to identify the nodes that belong to each partition.

7.1. Spectral Bisection

The Laplacian matrix always has an eigenvector with eigenvalue 0, since the sum of
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elements over each row or column of the Laplacian matrix is equal to 0. Also, for each
disconnected component of the graph, the Laplacian matrix has a degenerate
eigenvector with its corresponding eigenvalue 0. If the components are not completely
disconnected (i.e. there are some links between them), the degeneration is no longer
present, and we obtain one eigenvalue with value zero and a few eigenvectors with an
eigenvalue slightly greater from zero. Therefore, one method to find communities is to
find the blocks that give the eigenvalues slightly greater than zero and looking at the
components of their eigenvectors.

7.2. Multi Dimensional Spectral Analysis

Another different approach that also uses the properties of the Laplacian matrix was
introduced by Donetti and Mufioz. The method consists in extracting the first few non-
trivial eigenvectors using the Lanczos method, which is very fast when applied to sparse
matrices. They consider the values of the eigenvectors as coordinates in M-dimensional
space, where M is corresponds to the number of non-trivial eigenvectors extracted.
Finally, they measure the distances between the nodes in this space, and cluster them
using hierarchical agglomerative methods, obtaining the desired partition into
communities. The method is reasonably fast, but the results depend on how many
vectors are extracted to separate the communities properly.

7.3. Constrained Optimization

Another method uses the information contained in the spectral properties of the simple
adjacency matrix (instead of using the Laplacian as the previous ones). The authors use
constrained optimization to extract the eigenvectors much faster, obtaining again a
multidimensional space where the eigenvectors contain the coordinates of the nodes. To
detect the groups that appear, they use a correlation of the average values of the
eigenvectors to measure how close two nodes are in this space. Instead of providing a
clear cut community structure, this method gives us an idea of how close any pair of
nodes is in the context of communities. The method is able to obtain good results in mid
size networks (thousands of nodes).

7.4. Approximate Resistance Networks

Wu et al. presented and extension of the resistance approach method presented before to
reduce the time complexity of it. The idea is the same, they select a pair of nodes that
act as voltage source and sink, and approximate the voltage of the rest of the nodes.
However, instead of using the costly matrix inversion used by Newman, they use an
iterative process to approximate the voltage of the other nodes. The accuracy of this
approximation is dependent on how many times the iterative step is repeated. It is also
dependent on having a good idea of the sizes of communities, which make it difficult to
use it in large networks. However, this is one of the few methods that is able to identify
the community around one node in linear time.

8. Other Methods

In this last section we include all those methods that do not fit in any of the previous
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categories.
8.1. Clustering and Curvature

Eckmann and Moses, propose an alternative method based on the concept of curvature
of a node. The curvature reflects the average distance between nodes, using the
information of the average distance between neighbors of any node (Which is between 1
if they are directly connected and 2 if they do not have any other common neighbor).
Since this value is directly related to the clustering, the authors show that finding the
connected components that have high curvature gives good insights about the
community structure of the graph. The authors have applied successfully this method to
study communities in e-mail networks.

8.2. Random Walk Based Methods

Zhou and collaborators have developed different methodologies for community
detection based on random walks. Also worthy of note is that the method is applicable
to both directed and undirected networks. They also define the concept of 'local' and
'global' community, using the information of attractor nodes (i.e. nodes that are the
closest to its neighbors) and a set of rules.

The first approach uses the information contained in the adjacency matrix to determine
algebraically the distance between two nodes, so they do not need to actually perform
the random walk on the network. This way they obtain faster and more accurate results
about which are the attractor nodes, and therefore, about what communities do we
obtain.

Later, Zhou and Lipowsky present a different method based on biased random walks. In
this modification, each walker has a higher probability to perform jumps from the
source node to the node which shares the highest number of neighbors with the source
(i.e. biasing the random walker to go down the link with the highest link clustering).

A third different method proposed by Latapy and Pons is based on the idea that a
random walker will get trapped for a longer time in a densely connected community.
They calculate a distance measure between two nodes, and apply an agglomerative
method starting with all nodes in their own community, and joining them two by two.

8.3. Q-Potts Model

Another different approach detects communities by mapping the problem of community
detection to the study of a spin system. The authors propose that if the system is in the
ground state, communities are identified as groups with equal spin values. To identify
the groups, they initialize each node with a random spin state between 1 and q, and
determine the energy of the system using a g-Potts Hamiltonian. Then, the system is
allowed to evolve using a simple Monte-Carlo method with simulated annealing until it
reaches a stationary state.

An interesting feature of this approach is that allows the detection of 'fuzzy'
communities, so we can know the level of overlapping between them. The method is
reasonably fast, since the calculation of the Hamiltonian only uses local information,
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and its sensitivity is also good. However, the method needs the input of how many
communities we want to find (appropriate values for q are also discussed in the paper).

9. Further Structural Complexity

Most of the methods reported in the previous sections deal with the goal of obtaining
the best partition of a network into a set of communities by maximizing the cost
function, the modularity. But when looking for the best partition it is implicitly assumed
that there is a unique one. It turns out, however, than in some of the networks found
there are additional levels of structural complexity, in the sense that there can be
communities at different topological levels or there can exist subgroups that belong to
more than one community at the same time. We will analyze these two features in the
following paragraphs.

9.1. Hierarchical Organization

When dealing with networks that have different scales one can immediately consider
what happens with the dynamical evolution of some interaction processes like, for
instance, diffusion or synchronization. One expects that interaction at local level
develops into a local homogeneity of the variables describing the state of the units at the
nodes of the network, and when time goes on this homogenization proceeds into larger
and larger scales.

In particular, synchronization of phase oscillators in complex networks has been
analyzed in many different articles. In early works, it was shown that high densely
interconnected sets (motifs) of Kuramoto oscillators synchronize more easily that those

with sparse connections. In this model the phase of each oscillator ¢@; evolves according
to

d .
EQ = w; +§aff Sln(¢’j _¢’r)

where @; is the natural frequency of the i-th oscillator. In the general case in which

frequencies are different the evolution is very sensitive to the particular location and the
final state is also dependent on this distribution. However, if all oscillators are identical

@; =, then, except for very regular topologies, the only attractor for the dynamics is

the completely synchronized state where all phases are identical. And it is precisely the
route to reach this attractor what has been exploited to identify communities at all scales
in a series of papers.

Then, for a complex network with a non-trivial connectivity pattern, starting from
random initial conditions, those highly interconnected units forming local clusters will
synchronize first and then, in a sequential process, larger and larger spatial structures
also will do it up to the final state where the whole population should have the same
phase. This process occurs in a progressive way at different time scales if a clear
community structure exists. Thus, the dynamical route towards the global attractor
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reveals different topological structures, those which represent communities. Therefore,
it is the complete dynamical process what unveils the whole organization at all scales,
from the microscale at a very early stage up to the macroscale at the end of the time
evolution. On the contrary, those systems endowed with a regular topological structure
will display a trivial dynamics with a single time scale for synchronization.

It is a normal practice to define, for the Kuramoto and related models, a global "order
parameter”" to characterize the level of entrainment between oscillators. However, this
definition, although suitable for mean-field models, is not efficient to identify local
dynamic effects. In particular it does not give information about the route to the
attractor (fully synchronization) in terms of local clusters which is so important to
identify functional groups or communities. For this reason, instead of considering a
global observable, it is better to define a local order parameter measuring the average of
the correlation between pairs of oscillators

pjj(t) =< COS(¢; —-¢,)>,

where the brackets stand for the average over initial random phases. The main
advantage of this approach is that it allows us to trace the time evolution of pairs of
oscillators and therefore to identify compact clusters of synchronized oscillators
reminiscent of the existence of communities.

The correlation matrix hence contains all the dynamical information of the route
towards the final synchronized state. Any element of this matrix is a monotonously
increasing function of time. In any case, due to the continuous nature of the phase the
completely synchronized state is never reached and the introduction of some sort of
threshold above which two oscillators can be considered as synchronized is necessary.
For instance, one can measure the time for two oscillators to get entrained or the time
needed by the whole system to get completely synchronized.

Under these assumptions the visualization of the dynamic evolution of the correlation
matrix of the system helps in elucidating the topology of the network. To extract the
quantitative information it is introduced a threshold 7" to convert the correlation matrix
into a binary matrix, that will be used to determine the borders between different
groups. This dynamic connectivity matrix is defined as

1 if py(0)>T

D.(T)=
(T) 0 ifp,;()<T

that depends on both the underlying topology and the collective dynamics. For a fixed
time ¢, by moving the threshold 7', we obtain different representations of D,(7") that

inform about the structure of the dynamic correlations. When the threshold is large
enough the representation of D,(7) becomes a set of disconnected clumps or

communities. Decreasing 7T  a hierarchical structure of communities is devised. Note
that since the function Pjj (7) is continuous and monotonic (because the existence of a

unique attractor of the dynamics), we can redefine Dy (7), i.e. fixing the threshold and
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evolving in time. We obtain the same information about the structure of the dynamic
connectivity matrix at different time scales. These time scales unravel the topological
structure of the connectivity matrix at different topological scales To give evidence of
the aforementioned facts we have analyzed the dynamics towards synchronization in
computer-generated networks with a clear community structure.

o
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Figure 4. Example of synchronization evolution in a 3-levels hierarchical network. Left:
network. Right: time needed for each pair of oscillators of the given network to be
synchronized, given a small threshold. Red means shorter synchronization times and
green means longer times.
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Some of them are homogeneous in degree whereas other networks have special nodes
that act as hubs. An example can be seen in Figure 4.

Finally it is important to emphasize the role of the magnitude that has been widely used
in the analysis of networks with community structure, the modularity. Given a network
structure the best partition into communities is the one that maximizes the modularity.
We showed that meta-stable patterns of synchronization in the path towards complete
synchronization are closely related to the partitions obtained optimizing modularity on
complex networks. In particular, in networks with homogeneous degree distributions
the correspondence is very precise and the larger the modularity of a given partition the
more stable the synchronized cluster is. However, in networks where there are hubs, the
correspondence fails. Hubs take longer to synchronize and hence they tend to be
isolated in our synchronization route. This fact makes a big difference in the way
synchronization evolves and the way modularity is heuristically optimized. Of course,
modularity optimization is not a dynamical process and hence it does not take into
account the relative stability of patterns. If two configurations are equivalent, in the
sense that the modularity gain is the same at some point in the optimization process then
one chooses at random one of the two configurations. This is what happens for instance
when considering isolated nodes, since there will never be isolated nodes in an optimal
modularity partition. But from a dynamical point of view such a node, or group of
nodes, that has to decide in joining one larger group or another can stay longer in this
isolation because it is dynamically stable. Finally it will join one larger group or the
other but it can be along a slow process in which the merging into the group is followed
by a subsequent merging of the full group of nodes.

One of the most attractive aspects of modularity is its non-parametric nature, the
absence of parameters to be tuned before the optimization process starts. In contrast,
traditional data clustering algorithms (e.g. A-means) always depend on initial parameters
such as the number of clusters, their minimum size, or the minimum density needed to
become a cluster. Although it seems an advantage of the modularity approach, this
absence means that it is not possible to find community structures at different scales of
description. As discussed in previous paragraphs, in networks with a well-defined
hierarchical structure, modularity can only provide insight in just one of the hierarchical
levels, without any control of the level to be analyzed. Another consequence is the
existence of a resolution limit, pointed out by Fortunato and Barthélemy, beyond which
no modular structure can be detected even though modules might have their own entity.

There are several alternatives, within the modularity framework, for the scanning of the
whole mesoscale of complex networks, from the macroscale in which all nodes are
together in a single community, to the microscale in which each node forms its own
isolated module. Reichardt and Bornholdt, following their Potts model approach to
modularity, suggested the introduction of a parameter 7 multiplying the null-case term
of modularity. This parameter controls the tradeoff between the tendency of links to join
nodes in larger communities, and the trend of the null-case term to avoid the formation
of modules. For 7 =1 the standard modularity is recovered. When 7 is increased, the
null-case becomes more important and the found communities are smaller, whereas for
values of » <1 the attractive term enforces the appearance of larger communities.
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Figure 5. Analysis of the whole mesoscale of a random homogeneous complex network
with two hierarchical levels. The plateaus in the plot of the number of modules
correspond to the two most important or stable partitions of the network.

Arenas et al. avoided the modification of the expression of modularity with the
introduction of a new parameter 7, which controls the resistance of nodes to form
communities. This resistance takes the form of a self-loop of weight » added to each
vertex. In this approach only the topology of the network is changed, but in such a way
that all the structural properties remain the same, since they only depend on the non-
diagonal elements of the adjacency or weights matrices. Scanning the resistance in a
well-defined interval and optimizing modularity for each value of r it is possible to go

from the macroscale (r < rmin) to the microscale (> P ), including the standard
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Newman and Girvan scale at » =0. They also showed that optimal partitions which
span across larger intervals of 7 are the most relevant of the whole mesoscale (see Fig.
5).

A completely different approach is that of Sales-Pardo et al., where it is proposed the
analysis of the local maxima of the modularity landscape to find a hierarchical
organization of communities. Their main idea is the definition of node affinities from
the coexistence of nodes in the same communities of the partitions which are local
maxima of Newman and Girvan modularity. These affinities are then used to group
nodes in a hierarchical structure.

Finally, a local clustering technique involving a resolution parameter was introduced. In
this case modularity is replaced by a local fitness function, which is used to find the
community in the neighbourhood of any random vertex of the network. These
communities may overlap, and form a hierarchical structure when different values of the
resolution parameter are considered.

9.2. Overlap

Another case in which the assignment of some nodes to a single partition has no sense
at all is when these nodes can belong simultaneously to two or more groups at the same
time (within the same scale, to distinguish from the previously discussed case of
hierarchical organization), in such a case we say that communities overlap. Several
methods are able to deal with this issue and even some of them have been created with
this goal in mind.

One of the methods that have become more popular in the last years is the clique-
percolation method, developed by Palla et al. The details of this method are developed
previously but here it is worth to say that overlapping communities are in this case
found by construction when nodes belong to more than one clique at the same time.

We can also find several methods which have been developed for detecting overlapping
communities. The first attempt searched the optimization of a given function and
admitting partitions where some nodes can belong to more than one group
simultaneously. Later on, a new method based on spectral clustering was developed and
nodes are assigned probabilities to belong to any of the prescribed groups. Another
similar approach was based on vertex similarity and on maximizing a cost function and
on the concept of bridge-ness.

We should also mention a couple of methods which are designed to detect community
overlapping but are not based on absolute maximization of some cost function. Some
authors have proposed an ensemble of networks, that have overlapping groups by
construction, to be used as the right benchmark for comparison of different methods and
their ability to detect communities that overlap. The main finding is that in order for the
overlapping to be detectable its size must be significantly smaller than the size of the
modules involved. Three different community detection methods were used which have
been already reported before in this paper: modularity maximization, k-clique
percolation and modularity-landscape surveying. Only the last method is able to detect
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unambiguously the heterogeneities in the group membership of the nodes that form the
overlapping region.

Finally, special mention is deserved to methods that incorporate some dynamical
properties, as for instance synchronization as being discussed earlier in the current
section. It was proposed to identify the topological overlap of communities in complex
networks with the interface between synchronized groups of Kuramoto oscillators. The
nodes that belong to this interface have clear different dynamical properties from these
in the bulk of the large clusters, since their effective frequencies jump from time to time
between the effective frequencies (homogeneous in the groups because the internal
synchronization) of the non-overlapping groups.

As a final conclusion we can say that identifying different levels of structural
organization is not an easy task and probably new methods will be necessary in the
future and these methods will probably need to be brand new and not just
implementation of existing ones based mainly on the absolute optimization of some
magnitude.

10. Applications: Search and Congestion

Community structure is also found to have an effect on the progression of dynamical
processes on networks. An example of particular importance can be seen in information
transfer or communication processes. In many studies it has been shown that congestion
occurs when the demand for transfer (packet injection rate) becomes high, greatly
reducing the efficiency of information flow.
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Figure 6. The impact of community structure on the carrying capacity of networks.
A pronounced community structure is detrimental to the efficient flow of information if
information routing is oblivious to the presence of communities. Once information on
community structure is used to define targeted routing strategies, this efficiency can be

greatly improved as is shown in Figure 6.

However, the accuracy at which community structure information is provided turns out
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to play an important role. In a hierarchical network setting, providing knowledge of
communities at the level of highest modularity will improve the transfer capacity of the
network by the largest amount. This finding suggests that designing routing protocols
which utilize the best community information, as found by the most accurate detection
algorithms would have the greatest impact on the efficiency of communication
networks.

For a stylized model of search and congestion, on networks with ad-hoc community
structure, we consider two routing strategies. Black circles denote a routing strategy that
ignores the communities, and red squares denote the alternative where community
information is utilized.

11. Conclusions

In this work we have attempted to give an overview of the modern approaches to
community identification in complex networks. A large amount of knowledge has been
collected in the field, and real progress has been made, both in the identification of
communities and their characterization. Some questions do remain open, and it is these
that we would suggest for further study. Despite these efforts, computational cost
involved in computing communities in complex network remain significant. At present,
the fastest method for finding an unknown number of communities of unknown sizes

has a cost which scales as O(nlogzn) with network size. While this makes the

analysis of extremely large networks feasible this algorithm does not guarantee that the
partition found will be the best possible one. Other algorithms which give better
partitions are more expensive. The challenge, then, is to come up with a method which
is both fast and accurate.

Another major challenge is to understand the mechanisms which are responsible for the
characteristic scale free distributions of community sizes observed. Such distributions
often suggest an underlying optimization is responsible, but this remains to be shown.
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Glossary

Community:  From a network perspective, a community is a group of nodes more
densely linked that with the rest of the network.

Modularity: Mathematical function that quantifies the community structure,
depends on the network and on the proposed partition into groups,
clusters, modules, or communities.

Centrality: Set of properties of a node that account for its role in the global
network. Several measures are degree (local centrality), betweenness,
closeness

Shortest path  Number of steps (links or edges) to reach one node from another one
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distance: following the shortest path.

Network Set of eigenvalues and eigenvectors of the Laplacian matrix of the
spectrum: network (related by a simple transformation to the adjacency matrix) .
Greedy: A greedy algorithm is any_algorithm that solves the problem by

making the locally optimal choice at each stage with the hope of
finding the global optimum.

Bibliography

A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, C. Zhou (2008) Synchronization in complex networks.
Physics Reports 469:93. [Review paper on synchronization in complex networks]

A. Arenas, A. Daz-Guilera, and C. J. Pérez-Vicente. (2006) Synchronization Reveals Topological Scales
in Complex Networks. Phys. Rev. Lett., 96:114102 [First attempt in detecting hierarchical structures in
complex networks based on dynamical methods]

A. Arenas, A.Fernandez, and S. Gomez. (2008) Analysis of the structure of complex networks at
different resolution levels. New J. Phys., 10:053039+. [Multi-resolution at multiple scales]

Albert Laszlo Barabasi and Reka Albert. (2002) Statistical mechanics of complex networks. Review of
Modern Physics, 74:47-97. [The first review on complex networks].

Alex Arenas, Leon Danon, Albert Diaz-Guilera, Pablo M Gleiser, and Roger Guimera. (2004)
Community analysis in social networks. European Physical Journal B, 38:373-380 [Community analysis
in some examples of social networks]

C. Bron and J. Kerbosch. (1973) Finding all cliques in an undirected graph. Communications of the ACM,
pages 575-577 [A paper on the determination of communities in a simple case].

E. N. Sawardecker, M. Sales-Pardo, and Amaral. (2009) Detection of node group membership in
networks with group overlap. The European Physical Journal B - Condensed Matter and Complex
Systems, 67:227 [Overlapping communities]

E. Oh, K. Rho, H. Hong, and B. Kahng. (2005) Modular synchronization in complex networks. Phys.
Rev. E, 72:047101. [Dynamical properties of structured networks]

Erzsébet Ravasz and Albert-Laszl6 Barabasi. (2003) Hierarchical organization in complex networks.
Phys. Rev. E, 67:026112. [Hierarchical networks]

F. Wu and B.A. Huberman. (2004) Finding communities in linear time: a physics approach. Eurpean
Physics Journal B, 38:331-338. [Method based on dynamical properties]

Filippo Radicchi, Claudio Castellano, Frederico Cecconi, Vittorio Loreto, and Domenico Parisi. (2004)
Defining and identifying communities in networks. Publications of the National Academy of Sciences,
101(9):2658-2663 [Weak and strong definitions of community]

John Hopcroft, Omar Khan, Brian Kulis, and Bart Selman. (2004) Tracking evolving communities in
large networks. Publications of the National Academy of Sciences USA, 101(Suppl. 1):5249-5253.
[Dynamic evolution of communities]

Jordi Duch and Alex Arenas, (2005) "Community detection in complex networks using extremal
optimization", Phys. Rev. E 72, 027104. [Method based on extremal optimization]

JReichardt and Stefan Bornholdt. (2004) Detecting fuzzy community structure in complex networks with
a g-state potts model. Phys. Rev. Lett., 93:218701. [Method based on spin models]

L. da F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas Boas. (2007) Characterization of complex
networks: A survey of measurements. Adv. Phys., 56:167-242. [A proposal for the characterization of
networks].

Leon Danon, Albert Diaz-Guilera, and Alex Arenas. (2006) The effect of size heterogeneity on
community identification in complex networks. J. Stat. Mech., 2006:P11010+ [Newman’s fast algorithm
adapted to inhomogeneous networks]

©Encyclopedia of Life Support Systems (EOLSS)
217



COMPLEX NETWORKS - Communities in Complex Networks: Identification at Different Levels - Alex Arenas, Jordi Duch, Sergi
Gomez, Leon Danon, Albert Diaz-Guilera

Leon Danon, Alex Arenas, and Albert D. Guilera. (2008) Impact of community structure on information
transfer. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 77. [Effect of the
community structure on the dynamics of information transfer)

Luca Donetti and Miguel A. Muiioz. (2004) Detecting network communities: a new systematic and
efficient algorithm. Journal of Statistical Mechanics: Theory and Experiment, (P10012). [Method based
on spectral properties]

Mark E. J. Newman. (2003) The structure and function of complex networks. SIAM Review, 45:167-256.
[A more recent review on complex networks].

Mark E. J. Newman. (2004) Detecting community structure in networks. European Physics Journal B,
38:321-330. [Early review on community detection in complex networks]

Mark E.J. Newman and Michelle Girvan. (2004) Finding and evaluating community structure in
networks. Physical Review E, 69:026113. [Computation of communities through betweenness].

Mark E. J. Newman. (2001) Scientific collaboration networks. i. network construction and fundamental
results. Physical Review E, 64:016132. [A paper on the properties of scientific networks].

Mark E.J. Newman. (2004) Fast algorithm for detecting community structure in networks. Physical
Review E, 69(066133). [Newman’s fast algorithm]

Marta Sales-Pardo, Roger Guimera, Andre A. Moreira, and Luis A. Amaral. (2007) Extracting the
hierarchical organization of complex systems. Proceedings of the National Academy of Sciences,
104:15224-15229 [Hierarchical detection of communities]

Matthieu Latapy and Pascal Pons. (2004) Computing communities in large networks using random walks.
cond-mat/0412568. [Method based on random walks properties]

Michelle Girvan and Mark E.J. Newman. (2002) Community structure in social and biological networks.
Publications of the National Academy of Sciences USA, 99(12):7821-7826 [Definition of modularity]

R. Pastor-Satorras, M. Rubi, and A. Diaz-Guilera, (eds.) (2003) Proceedings of the Conference
"Statistical Mechanics of Complex Networks". Springer. [A series of contributions on complex networks].

Roger Guimera, Leon Danon, Albert Diaz-Guilera, Francesc Giralt, and Alex Arenas. (2003) Self-similar
community structure in a network of human interactions. Physical Review E, 68(065103) [Community
analysis of the email network of Universitat Rovira I Virgili]

Roger Guimera, Marta Sales, and Luis N. A. Amaral. (2004) Modularity from fluctuations in random
graphs and complex networks. Physical Review E, 70:025101. [Computation of modularity in a null
case].

S. Bornholdt and H. G. Schuster, (eds.) (2002) Handbook of Graphs and Networks - From the Genome to
the Internet. Wiley-VCH, Berlin. [First edited book on complex networks]

Santo Fortunato and Marc Barthelemy. (2007) Resolution limit in community detection. PNAS, 104:36—
41. [Discussion about the resolution limit in communities’ identification]

Santo Fortunato, Vito Latora, and Massimo Marchiori. (2004) Method to find community structures
based on information centrality. Physical Review E, 70(056104). [A betweenness related method].

Sergei N. Dorogovtsev and J. F. F. Mendes. (2003) Evolution of Networks: From biological nets to the
internet and WWW. Oxford University Press, Oxford. [A textbook on complex networks with
mathematical approach].

Stefan Boettcher and Allon G. Percus. (2001) Extremal optimization for graph partitioning. Physical
Review E, 64 [ Application of extremal optimization]

Stefan Boettcher and Allon G. Percus. (2001) Optimization with extremal dynamics. Physical Review
Letters, 86(23):5211-5214 [Basic reference for extremal optimization methods]

Steven H. Strogatz. (2001) Exploring complex networks. Nature, 410:268-276. [a review on small-world
effect and dynamical properties of complex networks].

Ulrik Brandes. (2001) A faster algorithm for betweenness centrality. Journal of Mathematical Sociology,

©Encyclopedia of Life Support Systems (EOLSS)
218



COMPLEX NETWORKS - Communities in Complex Networks: Identification at Different Levels - Alex Arenas, Jordi Duch, Sergi
Gomez, Leon Danon, Albert Diaz-Guilera

25(2):163-177, [ The fastest method to compute betweenness].

Biographical Sketches

Alex Arenas: is associate professor at the University Rovira i Virgili. He doctorates in physics in 1996 at
the University of Barcelona. His research covers aspects of statistical physics and computer science. He
has published more than 80 papers and participated in 24 research projects.

Leon Danon: is a Research Fellow at the Harvard School of Public and the University of Warwick. He
has worked on problems such as the nature of earthquake patterns, community detection in complex
network and epidemic dynamics in structured populations (both human and animal). He has extensive
experience in the analysis of large complex datasets and development of stochastic models of infectious
diseases at multiple scales.

Albert Diaz-Guilera: Associate professor in Condensed Matter Physics at Universitat de Barcelona. PhD
in Physics in 1987 from Universitat Autonoma de Barcelona. Expert in Statistical Physics, in the last
years he has been specialized in the analysis of complex networks, mainly their dynamical properties.

Jordi Duch: He studied Computer Science at University Rovira Virgili. PhD in the Department of
Physics, at Universitat de Barcelona under the supervision of Dr. Alex Arenas. Currently postdoctoral
fellow in Luis Amaral's Group, in the Department of Chemical and Biological Engineering of
Northwestern University.

Sergio Gomez: is associate professor at Universitat Rovira i Virgili, Tarragona (Spain). He has degrees in
physics (1990) and mathematics (1995), and PhD in physics (1994) at Universitat de Barcelona. His
research is concentrated in two main fields, artificial neural networks and complex networks, and covers
both theory and application to real world phenomena.

©Encyclopedia of Life Support Systems (EOLSS)
219



