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A B S T R A C T

The dynamics of many epidemic compartmental models for infectious diseases that spread in a single host
population present a second-order phase transition. This transition occurs as a function of the infectivity
parameter, from the absence of infected individuals to an endemic state. Here, we study this transition, from
the perspective of dynamical systems, for a discrete-time compartmental epidemic model known as Microscopic
Markov Chain Approach, whose applicability for forecasting future scenarios of epidemic spreading has been
proved very useful during the COVID-19 pandemic. We show that there is an endemic state which is stable
and a global attractor and that its existence is a consequence of a transcritical bifurcation. This mathematical
analysis grounds the results of the model in practical applications.
1. Introduction and main results

The problem of modelling the spread of a contagious disease among
individuals has been studied in deep over many years [1–4]. The
development of compartmental models, i.e., models that divide the
individuals among a set of possible states, has given rise to a new collec-
tion of techniques that enable, for instance, the analysis of the onset of
epidemics [5–15], the study of epidemics in structured networks [16–
21], or the study of the impact of a vaccination campaign [22–27]. All
previous works heavily rely on the mathematical approach to the study
of epidemic spreading [28] and here we follow the same spirit.

In this paper we consider a connected undirected network 𝑛
made up of 𝑛 nodes, whose weights 𝑟𝑖𝑗 ∈ [0, 1] represent the contact
probability between nodes 𝑖 and 𝑗. Since the network is undirected
and connected, the 𝑛 × 𝑛 contacts matrix 𝑅 = (𝑟𝑖𝑗 ) is symmetric and
irreductible. We also assume the absence of self-loops, thus 𝑟𝑖𝑖 = 0 for
all 𝑖. The non-zero entries of matrix 𝑅 represent the existing links in the
network that are used to transmit the infection, while 𝑟𝑖𝑗 = 𝑟𝑗𝑖 = 0 is
used to indicate that nodes 𝑖 and 𝑗 are not connected. In the special
case that all non-zero contact probabilities are one, 𝑟𝑖𝑗 = 𝑟𝑗𝑖 = 1,
matrix 𝑅 becomes the adjacency matrix of the network. Note that, for
a non-connected network, we can apply our results separately to every
connected component of the network.

We now define a discrete dynamical system based on the infection
process on the network [10], called the Microscopic Markov Chain
Approach (MMCA), that is a mathematical model for the well-known
susceptible–infected–susceptible (SIS) epidemic spreading model. In the
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SIS model on networks, each node may be in one of two different states:
susceptible (healthy) or infected. The discrete-time dynamic of the SIS
makes that, at each time step, susceptible nodes may get infected (with
probability 𝛽 ∈ [0, 1]) by contacts with their infected neighbours, while
infected nodes may recover spontaneously (with probability 𝜇 ∈ [0, 1]).
We consider that, at each time step, all nodes contact to all their
neighbours, known as a reactive process. Other options are also possible,
like contacting only a maximum number of neighbours, or even just one
neighbour per time step; this last option is known as a contact process.
From now on, we will restrict our analysis to the reactive process,
which is the most common choice in the literature of the SIS model.

Following [10], we also add to the SIS dynamic the possibility
of one-step reinfections, which means that an infected node that has
recovered, may become infected by its neighbours within the same time
step. The rationale is that the recovery of a node cannot last too long if
it has many infected neighbours, thus it should effectively be equivalent
to a non-recovery. An example could be computer viruses and other
kinds of malware: to get rid of the virus, you cannot just remove it
from one computer, since the neighbours would infect it again almost
immediately.

The MMCA model provides a mathematical description of the SIS
spreading process based on the use of the probabilities of the nodes of
being infected. Denoting 𝑝𝑘𝑖 the probability that node 𝑖 is infected at the
time step 𝑘, its evolution is given by the MMCA equation

𝑝𝑘+1𝑖 = (1 − 𝑞𝑘𝑖 )(1 − 𝑝
𝑘
𝑖 ) + (1 − 𝜇)𝑝𝑘𝑖 + 𝜇(1 − 𝑞

𝑘
𝑖 )𝑝

𝑘
𝑖 , (1)
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Fig. 1. Expected fraction of infected nodes, 𝜓 ∶= 1
𝑛

∑𝑛
𝑖=1 𝑝

∞
𝑖 , as a function of the infection probability 𝛽. On the left, numerical results obtained in [10] by using Monte Carlo

simulations (symbols) and MMCA (lines) for scale-free networks with 𝑛 = 104 nodes and different exponents of the degree distribution: 2.3 (purple), 2.7 (yellow), 3.3 (red), 3.5
(green). On the right, sketch showing the epidemic threshold 𝛽0. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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where 𝑞𝑘𝑖 is the probability that the node 𝑖 is not infected by any
neighbour at time step 𝑘, whose value can be approximated as

𝑞𝑘𝑖 =
𝑛
∏

𝑗=1
(1 − 𝛽𝑟𝑖𝑗𝑝𝑘𝑗 ) . (2)

The three summands in the right hand side of the equation in (1)
account for the three different ways in which a node may be infected
at time 𝑘 + 1: (𝑖) being susceptible at time 𝑘 and getting infected by
its neighbours; (𝑖𝑖) being infected and not recovering; or (𝑖𝑖𝑖) being
infected, recover, and becoming infected again (one-step reinfection).
On the other hand, the equality in (2) states that the probability of a
node not being infected by any of its neighbours is equal to the product
of the probabilities that each individual neighbour does not infect it.
It implicitly assumes independence between the neighbours, which is
good approximation in many cases, as shown in [10]; see [20] for an
extension of the MMCA model that takes into account joint probabilities
between pairs of connected nodes, thus significantly alleviating the
independence approximation.

According to the MMCA equation in (1), the evolution of this
discrete dynamical system is governed by the iteration of the map

𝐹 = (𝐹1,… , 𝐹𝑛) ∶ R𝑛 ⟶ R𝑛

where, for 𝑖 = 1, 2,… , 𝑛, and setting 𝐩 = (𝑝1, 𝑝2,… , 𝑝𝑛) ∈ R𝑛,

𝑖(𝐩) ∶= 1 −
(

1 − (1 − 𝜇)𝑝𝑖
)

𝑞𝑖(𝐩) with 𝑞𝑖(𝐩) ∶=
𝑛
∏

𝑗=1
(1 − 𝛽𝑟𝑖𝑗𝑝𝑗 ). (3)

In other words, if (𝑝01,… , 𝑝0𝑛) is the vector of initial conditions then
(𝑝𝑘+11 ,… .𝑝𝑘+1𝑛 ) = 𝐹 𝑘(𝑝01,… , 𝑝0𝑛) where 𝐹 𝑘 = 𝐹◦𝐹 𝑘−1. Due to the physical
nature of the problem, 𝐹 maps [0, 1]𝑛 to [0, 1]𝑛, and we restrict the study
of the discrete dynamical system generated by 𝐹 on the compact set
𝛺 = [0, 1]𝑛.

Numerical simulations [10] show that these kind of systems, gov-
erned by the map 𝐹 in (3), converge to an asymptotic distribution

lim
𝑘→∞

𝐹 𝑘(𝐩) = 𝐩∞ = (𝑝∞1 ,… , 𝑝∞𝑛 )

independently on the initial condition 𝐩 ∈ 𝛺. Hence it seems that there
exists a fixed point that is a global attractor for the discrete dynamical
system under consideration. The numerical simulations also show that
the location of this global attractor 𝐩∞ undergoes a bifurcation at
𝛽0 ∶=

𝜇
𝜌(𝑅) , where 𝜌(𝑅) is the spectral radius of the matrix 𝑅, see Fig. 1.

ur goal here is to prove this analytically.
One can easily verify that the origin 𝟎 = (0,… , 0) is a fixed point

f 𝐹 for any 𝛽, 𝜇 ∈ [0, 1]. We shall prove that for each 𝜇 ∈ (0, 1) this
ixed point undergoes a transcritical bifurcation at the epidemic threshold
2

𝛽0 ∶= 𝜇
𝜌(𝑅) , see Fig. 2. Indeed, the origin is a stable fixed point for

𝛽 < 𝛽0 and, as 𝛽 tends to 𝛽0, it collides with an unstable fixed point 𝐳𝟎
coming from outside 𝛺. Then, for 𝛽 > 𝛽0, the origin is unstable while 𝐳𝟎
is stable and inside 𝛺. This exchange of stability due to the transcritical
bifurcation explains the graph in Fig. 1 because additionally we will
prove that 𝟎 is a global attractor for 𝛽 < 𝛽0 and 𝐳𝟎 is a global attractor
for 𝛽 > 𝛽0, i.e.,

lim
𝑘→∞

𝐹 𝑘(𝐩) =
{

𝟎 if 𝛽 < 𝛽0,
𝐳𝟎 if 𝛽 > 𝛽0,

for all 𝐩 ∈ 𝛺 ⧵ {𝟎}.

More concretely, our main results are summarized in the following
statement, where ‖ ‖2 stands for the Euclidean norm in R𝑛.

Theorem A. Let us consider a connected undirected network 𝑛 with
associated matrix 𝑅 and parameters 𝛽, 𝜇 ∈ (0, 1). Then the following holds:

(a) The origin 𝟎 is a fixed point of 𝐹 for all parameter value and, for
each 𝜇, it undergoes a transcritical bifurcation as the 𝛽 varies through
the bifurcation value 𝛽0 ∶=

𝜇
𝜌(𝑅) .

(b) If 𝛽 < 𝛽0 then 𝟎 is a stable hyperbolic fixed point of 𝐹 and
lim𝑘→∞ 𝐹 𝑘(𝐱) = 𝟎 for all 𝐱 ∈ [0, 1]𝑛.

(c) If 𝛽 > 𝛽0 then there exists a fixed point 𝐳0 of 𝐹 in the interior
of [0, 1]𝑛 that is stable and verifying lim𝑘→∞ 𝐹 𝑘(𝐱) = 𝐳0 for all
𝐱 ∈ [0, 1]𝑛 ⧵ {𝟎}. Moreover the map 𝛽 ↦ ‖𝐳0‖2 is monotonous
increasing.

In the proof of Theorem A we combine local and global techniques.
he most difficult part is of course to prove the global attraction of a

ocal attracting fixed point. For the parameter values in statement (𝑏)
he map 𝐹 is contracting on [0, 1]𝑛 and the result follows by applying
he Contraction Mapping Theorem. The same approach is no longer
alid in order to show (𝑐) because for those parameter values the map
has two different fixed points on [0, 1]𝑛. We use in this case that the

ell-known facts about fixed points of positive, monotone and convex
unctions on the real line extend to similar maps on an ordered Banach
pace (i.e., a Banach space with a partial order induced by a positive
one).

. Proof of the main results

The following result is well known (see for instance [29, pp. 154])
ut since we were not able to find a proof we include it here for
ompleteness. In the statement (𝐷𝐺)𝑥 stands for the differential matrix
f 𝐺 at the point 𝑥. We also consider the vector 𝑝-norm ‖𝑥‖𝑝 in R𝑛,
⩽ 𝑝 ⩽ ∞, and its induced matrix norm ‖𝐴‖ = sup ‖𝐴𝑥‖𝑝 in 𝑀 .
𝑝 𝑥≠0

‖𝑥‖𝑝 𝑛×𝑛
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Fig. 2. Sketch of the transcritical bifurcation of 𝐹 at 𝛽0 ∶= 𝜇
𝜌(𝑅)

. For 𝛽 ≈ 𝛽0 the fixed point in red is unstable and the one in blue stable. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
Lemma 2.1. Let 𝐷 be a convex subset of R𝑛 and consider a 𝒞 1 mapping
𝐺 ∶ 𝐷 → R𝑛 such that ‖𝐷𝐺𝑥‖𝑝 ⩽ 𝜅 for all 𝑥 ∈ 𝐷. Then ‖𝐺(𝑥) − 𝐺(𝑦)‖𝑝 ⩽
𝜅‖𝑥 − 𝑦‖𝑝 for all 𝑥, 𝑦 ∈ 𝐷.

roof. Given 𝑥, 𝑦 ∈ 𝐷, let us set 𝑔(𝑡) ∶= 𝐺
(

𝑡𝑥+(1− 𝑡)𝑦
)

, which is a well
defined 𝒞 1 function from the interval [0, 1] to R𝑛, so that

(𝑥) − 𝐺(𝑦) = 𝑔(1) − 𝑔(0) = ∫

1

0
𝑔′(𝑡)𝑑𝑡 = ∫

1

0

(

𝐷𝐺
)

𝑡𝑥+(1−𝑡)𝑦(𝑥 − 𝑦)𝑑𝑡.

Consequently

‖𝐺(𝑥) − 𝐺(𝑦)‖𝑝 ⩽ ∫

1

0
‖

(

𝐷𝐺
)

𝑡𝑥+(1−𝑡)𝑦(𝑥 − 𝑦)‖𝑝𝑑𝑡 ⩽ 𝜅‖𝑥 − 𝑦‖𝑝,

where in the second inequality we use that ‖𝐴𝑥‖𝑝 ⩽ ‖𝐴‖𝑝‖𝑥‖𝑝. This
proves the result. ■

In the next statement, and in what follows, we say that 𝐴 = (𝑎𝑖𝑗 )
is a nonnegative (respectively, positive) matrix if 𝑎𝑖𝑗 ⩾ 0 (respectively,
𝑎𝑖𝑗 > 0) for all 𝑖, 𝑗. We also define entrywise inequalities for two
matrices 𝐴 = (𝑎𝑖𝑗 ) and 𝐵 = (𝑏𝑖𝑗 ) with the same size as

𝐴 ⪯ 𝐵 ⇔ 𝑎𝑖𝑗 ⩽ 𝑏𝑖𝑗 for all 𝑖, 𝑗 (4)

and

𝐴 ≺ 𝐵 ⇔ 𝑎𝑖𝑗 < 𝑏𝑖𝑗 for all 𝑖, 𝑗.

The reverse relations 𝐴 ⪰ 𝐵 and 𝐴 ≻ 𝐵 are defined similarly [30].

Lemma 2.2. The following holds:

(a) If 𝐴 and 𝐵 are nonnegative square matrices with 𝐴 ⪯ 𝐵 then
𝜌(𝐴) ⩽ 𝜌(𝐵) and ‖𝐴‖2 ⩽ ‖𝐵‖2.

(b) If 𝐴 is a nonnegative square matrix then 𝜌(𝐼𝑑 + 𝐴) = 1 + 𝜌(𝐴).
(c) If 𝐴 is a symmetric matrix then ‖𝐴‖2 = 𝜌(𝐴).
(d) If 𝐴 is a nonnegative square matrix then 𝜌(𝐴) is an eigenvalue of

𝐴 and there is a nonnegative vector 𝐮 ≠ 𝟎 such that 𝐴𝐮 = 𝜌(𝐴)𝐮.
Moreover the algebraic multiplicity of the eigenvalue 𝜌(𝐴) is 1 in case
that 𝐴 is an irreductible matrix.

Proof. All the assertions are well-known and we refer the reader
to [31] for the proof. More concretely, for the first and second inequal-
ity in (𝑎) see Corollary 8.1.19 and 5.6.P41, respectively. The assertion
in (𝑏) is proved in Lemma 8.4.2. On the other hand ‖𝐴‖2 =

√

𝜌(𝐴𝑡𝐴), see
age 346, so that (𝑐) follows using that 𝐴 is symmetric by assumption.
he proof of the first assertion in (𝑑) can be found in Theorem 8.3.1,
hereas the second one follows by the Perron–Frobenius Theorem (see
heorem 8.4.4). ■

The following result characterizes the so-called transcritical bifur-
ation. The toy model for this kind of 1-parameter bifurcation is the
teration of the map 𝑥↦ (1 + 𝜈)𝑥− 𝑥2, which has two fixed points, one
t 𝑥 = 0 for all 𝜈 and the other at 𝑥 = 𝜈, see Fig. 3. For 𝜈 < 0 the fixed
oint 𝑥 = 0 is stable, whereas 𝑥 = 𝜈 is unstable. As 𝜈 increases, the
3

Fig. 3. Transcritical bifurcation in the model 𝑥 ↦ (1 + 𝜈)𝑥 − 𝑥2, where the stable
fixed point is depicted in blue and the unstable one in red. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version
of this article.)

unstable fixed point approaches the origin and coalesces with it when
𝜈 = 0. Finally, when 𝜈 > 0 the origin becomes unstable and 𝑥 = 𝜈 is now
stable. In other words there has been an exchange of stabilities between
the two fixed points. The next result provides sufficient conditions
for the occurrence of this local bifurcation when the phase space is
𝑛-dimensional. Its counterpart for flows was originally proved by J.
Sotomayor in [32], see also [33, p. 150] and [34, p. 338]. With regard
to the version for iteration of maps the reader is referred to [35, chapter
VII], where it is given the proof of a similar result for the saddle–node
bifurcation that can be easily adapted.

Theorem 2.3. Let 𝑓 ∶ R𝑛 ×R → R𝑛 be a 𝒞 2 map verifying the following:

(a) 𝐱0 is a fixed point for all 𝜈, i.e., 𝑓 (𝐱0; 𝜈) = 𝐱0 for all 𝜈.
(b) The Jacobian matrix of 𝑓 ( ⋅ ; 𝜈0) evaluated at 𝐱 = 𝐱0, that is

𝐷𝐱𝑓 (𝐱0; 𝜈0), has a simple eigenvalue 𝜆 = 1 and all the other
eigenvalues have modulus strictly smaller than one.

(c) The derivatives

𝐰
[

𝐷𝐱𝐱𝑓 (𝐱0; 𝜈0)(𝐯, 𝐯)
]

=
𝑛
∑

𝑖,𝑗,𝑘=1
𝑤𝑘𝑣𝑖𝑣𝑗

𝜕2𝑓𝑘(𝐱0; 𝜈0)
𝜕𝑥𝑖𝜕𝑥𝑗

and

𝐰
[

𝐷𝐱𝜈𝑓 (𝐱0; 𝜈0)𝐯
]

=
𝑛
∑

𝑖,𝑘=1
𝑤𝑘𝑣𝑖

𝜕2𝑓𝑘(𝐱0; 𝜈0)
𝜕𝑥𝑖𝜕𝜈

are different from zero, where 𝐯 and 𝐰 are respectively the right
(column) and left (row) eigenvectors for 𝜆 = 1 of 𝐷 𝑓 (𝐱 ; 𝜈 ).
𝐱 0 0
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Then the discrete dynamical system that yields the iteration of the map
𝐱 ↦ 𝑓 (𝐱; 𝜈) undergoes a transcritical bifurcation at the fixed point 𝐱0 as
𝜈 varies through the bifurcation value 𝜈 = 𝜈0.

Proof of Theorem A. Our first task will be to compute the first and
second order partial derivatives of the map 𝐹 = (𝐹1,… , 𝐹𝑛) ∶ R𝑛 → R𝑛.
Recall that, for each 𝑖 = 1, 2,… , 𝑛,

𝐹𝑖(𝐱) = 1 +
(

(1 − 𝜇)𝑥𝑖 − 1
)

𝑞𝑖(𝐱), where 𝑞𝑖(𝐱) =
𝑛
∏

𝑗=1
(1 − 𝛽𝑟𝑖𝑗𝑥𝑗 ). (5)

Let us first note that, for 𝑗 = 1,… , 𝑛,

𝜕𝑞𝑖(𝐱)
𝜕𝑥𝑗

= −𝛽𝑟𝑖𝑗
𝑛
∏

𝑘=1
𝑘≠𝑗

(1 − 𝛽𝑟𝑖𝑘𝑥𝑘),

which vanishes in case that 𝑖 = 𝑗 since 𝑟𝑖𝑖 = 0 by assumption. Hence
𝜕𝐹𝑖(𝐱)
𝜕𝑥𝑖

= (1 − 𝜇)𝑞𝑖(𝐱) and, for 𝑗 ≠ 𝑖,

𝜕𝐹𝑖(𝐱)
𝜕𝑥𝑗

= 𝛽𝑟𝑖𝑗
(

1 − (1 − 𝜇)𝑥𝑖
)

𝑛
∏

𝑘=1
𝑘≠𝑗

(1 − 𝛽𝑟𝑖𝑘𝑥𝑘). (6)

Thus the Jacobian matrix of 𝐹 at the origin writes as

𝐷𝐱𝐹 (𝟎) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 − 𝜇 𝛽𝑟12 … 𝛽𝑟1𝑛
𝛽𝑟21 1 − 𝜇 … 𝛽𝑟2𝑛

⋮ ⋮ ⋱ ⋮

𝛽𝑟𝑛1 … 𝛽𝑟𝑛 𝑛−1 1 − 𝜇

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= (1 − 𝜇)𝐼𝑑 + 𝛽𝑅. (7)

Some easy computations show that if 𝑖, 𝑗 and 𝑘 are pairwise distinct
then

𝜕2𝐹𝑖(𝐱)
𝜕𝑥𝑗𝜕𝑥𝑘

= −𝛽2𝑟𝑖𝑗𝑟𝑖𝑘(1 − (1 − 𝜇)𝑥𝑖)
𝑛
∏

𝓁=1
𝓁≠𝑗,𝑘

(1 − 𝛽𝑟𝑖𝓁𝑥𝓁)
𝜕2𝐹𝑖(𝐱)
𝜕𝑥2𝑖

= 0

𝜕2𝐹𝑖(𝐱)
𝜕𝑥𝑖𝜕𝑥𝑗

= −𝛽𝑟𝑖𝑗 (1 − 𝜇)
𝑛
∏

𝓁=1
𝓁≠𝑗

(1 − 𝛽𝑟𝑖𝓁𝑥𝓁)
𝜕2𝐹𝑖(𝐱)
𝜕𝑥2𝑗

= 0

(8)

In particular,

𝜕2𝐹𝑖(𝟎)
𝜕𝑥𝑗𝜕𝑥𝑘

= −𝛽2𝑟𝑖𝑗𝑟𝑖𝑘 ⩽ 0,
𝜕2𝐹𝑖(𝟎)
𝜕𝑥2𝑗

= 0 and
𝜕2𝐹𝑖(𝟎)
𝜕𝑥𝑖𝜕𝑥𝑗

= −𝛽𝑟𝑖𝑗 (1−𝜇) ⩽ 0. (9)

That being established, we begin with the proof of assertion (𝑎), that
ill follow by applying Theorem 2.3. To this end we fix 𝜇 and to stress

he dependence on 𝛽 we introduce the notation 𝐹 (𝐱; 𝛽). In doing so we
observe that 𝐹 (𝟎; 𝛽) = 𝟎 for all 𝛽 and, from (7),

𝜌
(

𝐷𝐱𝐹 (𝟎; 𝜷)
)

= 1 − 𝜇 + 𝛽𝜌(𝑅). (10)

Here we also apply (𝑏) in Lemma 2.2 taking 1 − 𝜇 > 0 and 𝛽 > 0 into
account. It is also clear that 𝐯 is an eigenvector of 𝑅 with eigenvalue 𝜆
if, and only if, 𝐯 is an eigenvector of 𝐷𝐱𝐹 (𝟎; 𝛽) with eigenvalue 1−𝜇+𝛽𝜆.
Note in addition that the multiplicities of the respective eigenvalues
are the same. By (𝑑) in Lemma 2.2, since 𝑅 is an irreducible and
nonnegative matrix, 𝜆 = 𝜌(𝑅) is a simple eigenvalue of 𝑅 and there
is a nonnegative vector 𝐮 ≠ 0 such that

𝑅𝐮 = 𝜌(𝑅)𝐮. (11)

Accordingly if we set 𝛽0 ∶= 𝜇
𝜌(𝑅) , from (10), the Jacobian matrix

𝐷𝐱𝐹 (𝟎; 𝛽0) has a simple eigenvalue 𝜆 = 1 and all the other eigenvalues
have modulus strictly smaller than one. In particular,

𝐷𝐱𝐹 (𝟎; 𝛽0)𝐮 = 1𝐮. (12)

So far we have proved that the assumptions (𝑎) and (𝑏) in Theorem 2.3
hold. In order to show that (𝑐) is also true we note that 𝐷 𝐹 (𝟎; 𝛽 ) is a
4

𝐱 0
symmetric matrix, see (7), so that its right and left eigenvectors of 𝜆 = 1
are, respectively, 𝐮 and 𝐮𝑡. Taking this into account we claim that

𝐮𝑡
[

𝐷𝐱𝐱𝐹 (𝟎; 𝛽0)(𝐮,𝐮)
]

=
𝑛
∑

𝑖,𝑗,𝑘=1
𝑢𝑘𝑢𝑖𝑢𝑗

𝜕2𝐹𝑘(𝟎; 𝛽0)
𝜕𝑥𝑖𝜕𝑥𝑗

< 0. (13)

To this end we shall use that 𝐮 is a nonnegative vector. Therefore
𝐮 = (𝑢1,… , 𝑢𝑛) with 𝑢𝑖 ⩾ 0 for all 𝑖 = 1, 2,… , 𝑛 and there exists some
𝓁 such that 𝑢𝓁 > 0. On account of (9), the claim will follow once we
prove that the sum of the 𝑛 terms in (13) with 𝑘 = 𝑖 = 𝓁 is exactly
−𝜇(1 − 𝜇)𝑢3𝓁 , which is negative. Indeed, from (7) and (12), we get

𝛽0
𝑛
∑

𝑗=1
𝑟𝓁𝑗𝑢𝑗 = 𝜇𝑢𝓁 > 0,

and the combination of this with the third equality in (9) yields

𝑢2𝓁

𝑛
∑

𝑗=1
𝑢𝑗
𝜕2𝐹𝓁(𝟎; 𝛽0)
𝜕𝑥𝓁𝜕𝑥𝑗

= −𝛽0(1 − 𝜇)𝑢2𝓁

𝑛
∑

𝑗=1
𝑟𝓁𝑗𝑢𝑗 = −𝜇(1 − 𝜇)𝑢3𝓁 < 0.

This proves the inequality in (13), as desired. On the other hand, from
(7) and (11),

𝐮𝑡
[

𝐷𝐱𝛽𝐹 (𝟎; 𝛽0)𝐮
]

=
𝜇
𝛽0

‖𝐮‖2 ≠ 0,

here we also use that 𝛽0 =
𝜇
𝜌(𝑅) by definition. This shows that the last

assumption in Theorem 2.3 is also satisfied and so we can conclude that
the fixed point at the origin undergoes a transcritical bifurcation as the
𝛽 varies through the bifurcation value 𝛽0.

From now on, for simplicity in the exposition, we shall omit the
dependence of 𝐹 on the parameters. That being said, let us turn now
to the proof of the assertions in (𝑏). With this aim in view we first note
hat, from (6),

⩽
𝜕𝐹𝑖(𝐱)
𝜕𝑥𝑗

⩽ 𝛽𝑟𝑖𝑗 , for 𝑗 ≠ 𝑖, and 0 <
𝜕𝐹𝑖(𝐱)
𝜕𝑥𝑖

⩽ 1 − 𝜇.

Here we also use that 0 < 1 − 𝛽𝑟𝑖𝑗𝑥𝑗 ⩽ 1 due to 𝑟𝑖𝑗 , 𝑥𝑗 ∈ [0, 1]. Thus, for
ll 𝐱 ∈ [0, 1]𝑛, the Jacobian matrix 𝐷𝐹 (𝐱) is a nonnegative and verifies
𝐹 (𝐱) ⪯ (1 − 𝜇)𝐼𝑑 + 𝛽𝑅, recall (4). Hence, by applying Lemma 2.2,

𝐷𝐹 (𝐱)‖2 ⩽ ‖(1 − 𝜇)𝐼𝑑 + 𝛽𝑅‖2 = 𝜌
(

(1 − 𝜇)𝐼𝑑 + 𝛽𝑅
)

= 1 − 𝜇 + 𝛽𝜌(𝑅) for all 𝐱 ∈ [0, 1]𝑛,

here we use that 𝑅 is symmetric. It is clear then that the condition
< 𝛽0 ∶= 𝜇

𝜌(𝑅) implies ‖𝐷𝐹 (𝐱)‖2 ⩽ 𝜅 for all 𝐱 ∈ [0, 1]𝑛 with 𝜅 ∈
[0, 1). Thus, by applying Lemma 2.1 with 𝑝 = 2, 𝐹 is a contraction
on [0, 1]𝑛. Since one can easily verify that 𝐹

(

[0, 1]𝑛
)

⊂ [0, 1]𝑛 and
𝐹 (𝟎) = 𝟎, the application of the Contraction Mapping Theorem (see
for instance [35, Theorem 2.5]) shows that lim𝑘→∞ 𝐹 𝑘(𝐱) = 𝟎 for all
𝐱 ∈ [0, 1]𝑛. The fact that 𝟎 is hyperbolic follows from (10) because
𝜌
(

𝐷𝐹 (𝟎)
)

= 1 − 𝜇 + 𝛽𝜌(𝑅) < 1 provided that 𝛽 < 𝛽0. On account of
this, and by applying the Stable Manifold Theorem (see [35, Theorem
10.1] for instance), we conclude that 𝟎 is stable.

We proceed next with the proof of (𝑐). So let us assume that 𝛽 > 𝛽0.
In this case from (10) it turns out that 𝑟 ∶= 𝜌

(

𝐷𝐹 (𝟎)
)

> 1. Thus, since
it is a nonnegative matrix, by applying (𝑑) in Lemma 2.2 there exists
a nonnegative vector 𝐯 = (𝑣1,… , 𝑣𝑛) ≠ 𝟎 such that

𝐷𝐹 (𝟎)𝐯 = 𝑟𝐯 with 𝑟 > 1. (14)

We claim that

𝐹 (𝜀𝐯) ⪰ 𝜀𝐯 for 𝜀 > 0 small enough.

In order to prove this we use (14) and that 𝐹 (𝐳) = 𝐹 (0)+(𝐷𝐹 )𝟎𝐳+o(‖𝐳‖),
o get

(𝜀𝐯) − 𝜀𝐯 = 𝜀𝑟𝐯 − 𝜀𝐯 + o(‖𝜀𝐯‖) = 𝜀‖𝐯‖
(

𝑟 − 1
‖𝐯‖

𝐯 + o(‖𝜀𝐯‖)
‖𝜀𝐯‖

)

.

Since 𝑟 > 1 this shows that the 𝑖th component of 𝐹 (𝜀𝐯) − 𝜀𝐯 is strictly
positive for 𝜀 > 0 small enough provided that 𝑣 > 0. In case that 𝑣 = 0
𝑖 𝑖
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we will show that the 𝑖th component of 𝐹 (𝜀𝐯) is also zero. Indeed, from
14) we obtain

1 − 𝜇)𝑣𝑘 + 𝛽
𝑛
∑

𝑗=1
𝑟𝑘𝑗𝑣𝑗 = 𝑟𝑣𝑘 for 𝑘 = 1, 2,… , 𝑛,

hich particularized to 𝑘 = 𝑖 yields ∑𝑛
𝑗=1 𝑟𝑖𝑗𝑣𝑗 = 0. Since all the

ummands are nonnegative this implies that 𝑟𝑖𝑗𝑣𝑗 = 0 for all 𝑗 =
, 2,… , 𝑛. Thus, from (5), 𝐹𝑖(𝜀𝐯) = 0, as desired. This proves the validity
f the claim. We observe on the other hand that the image of 𝟏 ∶=
1,… , 1) by 𝐹 is in the interior of [0, 1]𝑛. In short, shrinking 𝜀 > 0 if
ecessary and setting 𝐱𝜀 ∶= 𝜀𝐯, we have that

𝜀 ⪯ 𝐹 (𝐱𝜀) ≺ 𝐹 (𝟏) ≺ 𝟏. (15)

ur next goal will be to prove that, for any 𝐱, 𝐲 ∈ [0, 1]𝑛,

⪯ 𝐲 ⇒ 𝐹 (𝐱) ⪯ 𝐹 (𝐲). (16)

ndeed, to see this let us set 𝑔(𝑡) ∶= 𝐹
(

𝑡𝐲 + (1 − 𝑡)𝐱
)

, which is a well
efined 𝒞 1 function from [0, 1] to R𝑛, so we can write

(𝐲) − 𝐹 (𝐱) = 𝑔(1) − 𝑔(0) = ∫

1

0
𝑔′(𝑡)𝑑𝑡 = ∫

1

0

(

𝐷𝐹
)

𝑡𝐲+(1−𝑡)𝐱(𝐲 − 𝐱)𝑑𝑡.

he integrand is a nonnegative vector because we have already proved
hat the Jacobian of 𝐹 at any 𝐱 ∈ [0, 1]𝑛 is a nonnegative matrix and,
n the other hand, 𝐱 ⪯ 𝐲 by assumption. This fact implies 𝐹 (𝐱) ⪯ 𝐹 (𝐲)
nd proves the validity of the assertion in (16).

Given any two points 𝐚,𝐛 ∈ [0, 1]𝑛 with 𝐚 ⪯ 𝐛 we define the
ypercube

(𝐚,𝐛) ∶= {𝐳 ∈ [0, 1]𝑛 ∶ 𝐚 ⪯ 𝐳 ⪯ 𝐛}.

hen, since 𝐱𝜀 ≺ 𝐳 ≺ 𝟏 implies 𝐱𝜀 ⪯ 𝐹 (𝐱𝜀) ⪯ 𝐹 (𝐳) ⪯ 𝐹 (𝟏) ⪯ 𝟏 due to (15)
nd (16), we obtain that
𝑘
(

𝛺(𝐱𝜀, 𝟏)
)

⊂ 𝛺
(

𝐹 𝑘(𝐱𝜀), 𝐹 𝑘(𝟏)
)

for all 𝑘 ∈ N. (17)

he sequence {𝐹 𝑘(𝐱𝜀)}𝑘∈N converges to a fixed point 𝐳0 of 𝐹 inside
0, 1]𝑛 ⧵ {𝟎} because each one of the entries is a monotonous increasing
equence of real numbers smaller than 1, again due to (15) and (16).
imilarly {𝐹 𝑘(𝟏)}𝑘∈N converges to a fixed point 𝐳1 of 𝐹 inside [0, 1]𝑛⧵{𝟎}
ecause each one of the entries is a monotonous decreasing sequence
f real numbers greater than 0. Consequently

⋂

⩾1
𝐹 𝑘

(

𝛺(𝐱𝜀, 𝟏)
)

⊂ 𝛺
(

𝐳0, 𝐳1
)

,

here 𝐳0 and 𝐳1 are fixed points of 𝐹 verifying 𝟎 ≺ 𝐳0 ⪯ 𝐳1 ≺ 𝟏.
Furthermore, since 𝐱𝜀 tends to 𝟎 as 𝜀→ 0, this shows that
⋂

⩾1
𝐹 𝑘

(

(0, 1]𝑛
)

⊂ 𝛺
(

𝐳0, 𝐳1
)

.

At this point we claim that if 𝐱 ∈ [0, 1]𝑛 ⧵ {𝟎} with ∏𝑛
𝑖=1 𝑥𝑖 = 0 then

𝐹 𝑛−1(𝐱) ∈ (0, 1]𝑛. Clearly, on account of the above inclusion, once we
prove this we will get that
⋂

𝑘⩾1
𝐹 𝑘

(

[0, 1]𝑛 ⧵ {𝟎}
)

⊂ 𝛺
(

𝐳0, 𝐳1
)

. (18)

For the sake of simplicity in the exposition, in order to prove the claim
we assume, for instance, that 𝑥1 ≠ 0. To this aim let us also note, see
(5), that the 𝑖th component 𝐹𝑖(𝐱) is equal to zero if, and only if,

(

1 − (1 − 𝜇)𝑥𝑖
)

𝑛
∏

𝑗=1
(1 − 𝛽𝑟𝑖𝑗𝑥𝑗 ) = 1,

which in turn occurs if, and only if, 𝑥𝑖 = 0 and 𝑟𝑖𝑗𝑥𝑗 = 0 for all 𝑗 =
1, 2,… , 𝑛. Consequently 𝐹1(𝐱) ≠ 0. Observe moreover that there exists
at least one 𝑗 ∈ {2,… , 𝑛} such that 𝑟1𝑗 > 0 because the node labelled
y 1 must be linked with at least another node. Thus 𝑟1𝑗𝑥1 > 0, so that,

in addition to 𝐹1(𝐱) ≠ 0, we can also assert that 𝐹𝑗 (𝐱) ≠ 0. Repeating this
2

5

argument we obtain that 𝐹 (𝐱) has at least three components different
from zero, 𝐹 3(𝐱) has at least four components different from zero, and
so on. Hence 𝐹 𝑛−1(𝐱) ∈ (0, 1]𝑛. This proves the claim and, accordingly,
the validity of (18).

It is clear at this point that if we show that 𝐳0 = 𝐳1 then, taking (18)
into account,

lim
𝑘→∞

𝐹 𝑘(𝐱) = 𝐳0 for all 𝐱 ∈ [0, 1]𝑛 ⧵ {𝟎}. (19)

To prove this we shall appeal to the results of Amann [36] with regard
to the fixed points in ordered Banach spaces. More concretely, the fact
that 𝐳0 = 𝐳1 follows by applying [36, Theorem 24.3], which asserts if
𝐸 is an ordered Banach space whose positive cone 𝑃 has nonempty
interior, 𝐷 is a convex subset of 𝐸 and 𝑓 ∶ 𝐷 → 𝐸 is a strongly
ncreasing and strongly order concave map with a fixed point 𝑥0 ∈ 𝐷,
hen 𝑓 has at most one fixed point �̄� with �̄� > 𝑥0. Thus our task is to
how that if we take 𝐸 = R𝑛 with the usual norm, 𝑃 = {𝐱 ∈ R𝑛 ∶ 𝑥𝑖 ⩾
for all i=1,2,. . . ,n} and 𝐷 = [0, 1)𝑛 then 𝐹 |𝐷 is a strongly increasing

nd strongly order concave map. For readers convenience we explain
uccinctly the involved notions to check that the hypothesis in [36,
heorem 24.3] are fulfilled. The ordering induced by a cone 𝑃 in 𝐸

s defined as

≦ 𝑦⇔ 𝑦 − 𝑥 ∈ 𝑃 .

s usual, 𝑥 < 𝑦 means 𝑥 ≦ 𝑦 but 𝑥 ≠ 𝑦. If the interior of the positive
cone 𝑃 is nonempty, i.e., �̊� ≠ ∅, then a map 𝑓 is said to be strongly
increasing (see [36, p. 641]) in case that

𝑥 < 𝑦⇒ 𝑓 (𝑦) − 𝑓 (𝑥) ∈ �̊� .

n our setting, the fact that 𝐹 |𝐷 is a strongly increasing follows by
applying [36, Theorem 7.2] because for each 𝐱 ∈ 𝐷 = [0, 1)𝑛 we have

𝐷𝐹 )𝐱𝑢 ∈ �̊� for all 𝑢 ∈ �̊� .

Indeed, this is an easy consequence of the following three observations:

• 𝑢 ∈ �̊� if, and only if, 𝑢𝑖 > 0 for all 𝑖 = 1, 2,… , 𝑛.
• 𝜕𝐹𝑖(𝐱)

𝜕𝑥𝑗
⩾ 0 for all 𝐱 ∈ [0, 1)𝑛 and, moreover, 𝜕𝐹𝑖(𝐱)

𝜕𝑥𝑗
= 0 if, and only

if, 𝑟𝑖𝑗 = 0.
• Every row in the matrix 𝑅 = (𝑟𝑖𝑗 ) has at least one strictly positive

entry.

Let 𝐷 be a nonempty convex subset of 𝐸. A map 𝑓 ∶ 𝐷 → 𝐸 is said to
be strongly order convex if

𝑓 (𝑥) + 𝜏
(

𝑓 (𝑦) − 𝑓 (𝑥)
)

− 𝑓
(

𝑥 + 𝜏(𝑦 − 𝑥)
)

∈ �̊�

for every 𝜏 ∈ (0, 1) and every pair of distinct comparable points 𝑥, 𝑦 ∈
𝐷, see [36, p. 690]. The map is called strongly order concave if −𝑓 is
strongly order convex. We shall show that 𝐺 ∶= −𝐹 |𝐷 is a strongly
order convex map by applying [36, Theorem 23.3], which characterizes
these maps in terms of a condition on the second order derivative. In
our case this condition is verified if, for each 𝐱 ∈ 𝐷 = [0, 1)𝑛 and
𝑖 = 1, 2,… , 𝑛,

𝑢𝑡𝐻(𝐺𝑖)𝐱𝑢 > 0 for all 𝑢 ∈ �̊� , (20)

where 𝐻(𝐺𝑖)𝐱 is the Hessian matrix of 𝐺𝑖 ∶ 𝐷 → R at 𝐱. In its regard,
from (8), we get that 𝜕2𝐺𝑖(𝐱)

𝜕𝑥𝑗𝜕𝑥𝑘
⩾ 0 for all 𝐱 ∈ 𝐷 = [0, 1)𝑛. Moreover, in

case that 𝑖 ≠ 𝑗, we have 𝜕2𝐺𝑖(𝐱)
𝜕𝑥𝑖𝜕𝑥𝑗

= 0 if, and only if 𝑟𝑖𝑗 = 0. On account
of this the validity of (20) follows noting that for each 𝑖 there exists
at least one 𝑗 ≠ 𝑖 with 𝑟𝑖𝑗 > 0 and that if 𝑢 ∈ �̊� then 𝑢𝑖 > 0 for all
𝑖 = 1, 2,… , 𝑛. Hence 𝐹 |𝐷 is indeed a strongly order concave map. We
are now in position to apply [36, Theorem 24.3] to the restriction of 𝐹
to 𝐷 = [0, 1)𝑛. In doing so, due to 𝐹 (𝟎) = 𝟎 and, recall (18), 𝟎 < 𝐳0, we
obtain that 𝐳0 = 𝐳1 and, consequently, (19) follows.

We remark that, from (19), 𝐳0 is the unique fixed point of 𝐹 on
𝑛
[0, 1] ⧵ {𝟎}. The fact that it is stable follows noting that, on account of
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(17), 𝐳0 is inside a sequence of invariant hypercubes that shrink to it.
It only remains to be proved that the map 𝛽 ↦ ‖𝐳0‖2 is increasing. To
this end, for each fixed 𝜇, we denote by 𝐳0(𝛽) the unique fixed point of
𝐹 ( ⋅ ; 𝛽) on [0, 1]𝑛 ⧵ {𝟎}. We also observe that

𝜕𝐹𝑖(𝐱; 𝛽)
𝜕𝛽

= (1 − (1 − 𝜇)𝑥𝑖)𝑞𝑖(𝐱)
𝑛
∑

𝑗=1

𝑟𝑖𝑗𝑥𝑗
1 − 𝛽𝑟𝑖𝑗𝑥𝑗

⩾ 0 for all 𝐱 ∈ [0, 1]𝑛.

Given any 𝐱 ∈ [0, 1]𝑛, this implies that if 𝛽1 ⩽ 𝛽2 then 𝐹 (𝐱; 𝛽1) ⪯ 𝐹 (𝐱; 𝛽2).
Indeed, this is so because, setting ℎ(𝑡) ∶= 𝐹

(

𝐱; 𝑡𝛽2 + (1 − 𝑡)𝛽1
)

,

𝐹 (𝐱; 𝛽2) − 𝐹 (𝐱; 𝛽1) = ℎ(1) − ℎ(0) = ∫

1

0
ℎ′(𝑡)𝑑𝑡

= (𝛽2 − 𝛽1)∫

1

0
∇𝛽𝐹 (𝐱; 𝛽)

|

|

|𝛽=𝑡𝛽2+(1−𝑡)𝛽1
𝑑𝑡,

with the integrand being a nonnegative vector due to 𝜕𝛽𝐹𝑖(𝐱; 𝛽) ⩾ 0 for
all 𝑖 = 1, 2,… , 𝑛. In particular this shows that if 𝛽1 ⩽ 𝛽2 then

𝐳0(𝛽1) = 𝐹
(

𝐳0(𝛽1); 𝛽1
)

⪯ 𝐹
(

𝐳0(𝛽1); 𝛽2
)

,

which, on account of (16), implies that the bounded sequence
{𝐹 𝑘

(

𝐳0(𝛽1); 𝛽2
)

}𝑘∈N is increasing. Hence it converges to the fixed point
𝐳0(𝛽2) of 𝐹 ( ⋅ ; 𝛽2), that must verify 𝐳0(𝛽1) ⪯ 𝐳0(𝛽2). Accordingly 𝛽1 ⩽ 𝛽2
implies 𝐳0(𝛽1) ⪯ 𝐳0(𝛽2). Therefore each entry of the vector 𝐳0(𝛽) is an
increasing function of 𝛽 and, consequently, 𝛽 ↦ ‖𝐳0(𝛽)‖2 is increasing.
This proves the last assertion in (𝑐) and concludes the proof of the
result. ■

3. Discussion

In this paper we have presented a bifurcation analysis for the family
of epidemic models known as Microscopic Markov Chain Approach. We
prove that the second-order phase transition towards the endemic phase
is well captured by a transcritical transition of the dynamical system.
Exploiting the analysis of this transition we show that the endemic state
is stable and globally attracting for all values of the parameters beyond
the critical transition. This result is essential to ground mathematically
the numerical scenarios found by finite iterations of the model, and
paves the way for further analysis of extensions of the presented model.
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