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Abstract. Modular structure is ubiquitous in real-world complex networks, and
its detection is important because it gives insights into the structure–functionality
relationship. The standard approach is based on the optimization of a quality
function, modularity, which is a relative quality measure for the partition of a
network into modules. Recently, some authors (Fortunato and Barthélemy 2007
Proc. Natl Acad. Sci. USA 104 36 and Kumpula et al 2007 Eur. Phys. J. B
56 41) have pointed out that the optimization of modularity has a fundamental
drawback: the existence of a resolution limit beyond which no modular structure
can be detected even though these modules might have their own entity.
The reason is that several topological descriptions of the network coexist at
different scales, which is, in general, a fingerprint of complex systems. Here, we
propose a method that allows for multiple resolution screening of the modular
structure. The method has been validated using synthetic networks, discovering
the predefined structures at all scales. Its application to two real social networks
allows us to find the exact splits reported in the literature, as well as the
substructure beyond the actual split.
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1. Introduction

In 2002, Girvan and Newman [1] highlighted the relevance of community structure in complex
networks and proposed a method to detect it. This work opened a new scenario that has attracted
a great deal of attention in recent years [2, 3], especially because they identified structures which
have meaning; they revealed information about the roles of groups of nodes. This is the case,
for example, in the worldwide airports network [4], the WWW [5], biological networks [6]–[8],
social networks [1, 9] and the Internet [10, 11], among others. The information revealed by
the community structure of real networks can be very valuable and make scientists aware of
accuracy and reliability of the method used to detect this substructure.

The most important advance about community detection from the previous hit [1] was
given by the same authors [12], proposing a quality measure, modularity (Q), that allows
quantification of the modular structure. Given a network partitioned into communities or
modules, Ci being the community to which node i is assigned, the mathematical definition
of modularity [13] is expressed in terms of the weighted adjacency matrix wi j , which represents
the value of the weight in the link between the nodes i and j (0 if no link exists), and the
strengths wi =

∑
j wi j as

Q =
1

2w

∑
i

∑
j

(
wi j −

wiw j

2w

)
δ(Ci , C j), (1.1)

where the Kronecker delta function δ(Ci , C j) takes the value 1 if the nodes i and j are into the
same module, 0 otherwise, and the total strength is 2w =

∑
i wi . For unweighted networks, wi

becomes the degree of node i , and w the total number of links of the network.
The modularity of a given partition is the probability of having edges falling within

modules in the network minus the expected probability in an equivalent (null case) network
with the same number of nodes, and edges placed at random preserving the nodes’ strength.
The larger the modularity, the better the partitioning is, because the more it deviates from the
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null case. Note that the optimization of the modularity cannot be performed by exhaustive search
since the number of different partitions is equal to the Bell numbers [14], which grow at least
exponentially in the number of nodes N . Heuristics for the optimization of modularity [15]–[20]
has become the only feasible (in computational time) and accurate method to detect the modular
structure to date.

Recently, Fortunato and Barthélemy [21] showed mathematically that the optimization of
modularity has a resolution limit, raising important concerns about the reliability of the modules
detected so far using this technique, or eventually using any other quality function. Using a
definition of a module extracted from the functional form of (1.1), they subscribe to the possible
existence of undetectable submodules within the modules obtained by optimizing (1.1). The
same limitation has been observed for other quality functions different from modularity [22].
Note that the resolution limit statement could also be pointing out the existence of multiple
scales of description in terms of community structure, each one with its own importance. This
is precisely the idea that will drive our work.

Here, we address the issue of community detection in two ways: firstly, clarifying the
conceptual interpretation of the resolution limit, not as a problem but as a feature of quality
functions that can help us understand in depth the structure of networks, and secondly and most
importantly, we provide a method that allows the full screening of the topological structure at
any resolution level using the original definition of Q. Once we present the method, we will
compare it with recent approaches for exploring, also, the substructure of networks.

2. Complex networks topology represented at different scales

2.1. Resolution limit and topological scales

Rewriting (1.1) in terms of contribution of modules instead of nodes, we have

Q =

m∑
s=1

(
wss

w
−

(ws

2w

)2
)

, (2.1)

where the sum is over the m modules of the partition, wss is the internal strength of module s and
ws is the total strength of the module s. For unweighted networks, wss reduces to the number of
internal links and ws to the sum of the degrees of the nodes in module s.

The solution we propose takes advantage of the dependence of the resolution limit on the
total strength 2w. Consider the case study consisting of two identical modules with a single link
connecting them to the rest of the network and only one link connecting them to each other [21];
the resolution limit states that these modules will not be found, optimizing modularity, if their
internal strengths are

wss <
√

w/2 − 1. (2.2)

In [21], the authors neglect the contribution −1 in the second side of the inequality (2.2), which
is acceptable for large values of the total strength.

Our proposal to solve this problem is to modify the total strength 2w. Let us assume that
we increase the strength of every node by a quantity say r , then (2.2) will read

wss < 1
2

(√
(2w + Nr) − nsr − 2

)
, (2.3)

where ns stands for the number of nodes in module s, and N stands for the number of nodes in
the network. The result of this prescription resulting in (2.3) is that by rescaling the topology by
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a factor r , the above example can be separated by optimizing modularity, because the growth of
√

r is slower than that of r , i.e. at some scale controlled by r both modules will be visible using
optimal modularity.

The problem now is how to increase the strength of the nodes without altering the
topological characteristics of the original network. We solve this problem by rescaling the
topology defining Wr , from the original weighted adjacency matrix W of the graph with
the entries wi j , as follows:

Wr = W + rI , (2.4)

where I is the identity matrix. In terms of graphs, this new matrix represents the original network
with self-loops of weight r for every node. Note that the prescription in (2.4) supposes a constant
shift (translation) r of the strength of each node.

The commonly analyzed structural characteristics of networks (strength distribution,
weighted clustering coefficient, strength correlations of any order, etc) remain the same in the
new network, because the translation of strengths does not affect the original links’ weights
wi j that are the building blocks of the topology. The shift only affects the property of each
node individually and in the same way for all of them. The spectra of the original graph are
also shifted by a quantity r for each eigenvalue, preserving then any property that depends on
differences between eigenvalues. The eigenvectors are exactly the same. Finally, the associated
Laplacian matrix of the original matrix L i j = wiδi j − wi j , responsible for the behavior of linear
dynamical processes on the network [23], is also unchanged.

The interesting property of the rescaled topology Wr is that its characteristic scale in terms
of modularity has changed. Then the topological structure revealed by optimizing the modularity
for Wr is that of large groups for small values of r , and smaller groups for large values of r ,
all of which are strictly embedded in the original topology. This fact allows for the screening of
the modular structure by analyzing the optimal modular structure of Wr for different values of
r . Note that the rescaling of the topology is simply an elegant way to enhance the total strength
of the network, without varying its topological properties; then the rescaling can be used, in
principle, to analyze the structure of networks using any quality function at different resolution
levels parametrized by r .

2.2. Multiple resolution method

The analysis of modules at different resolution levels that we propose, consists of optimizing
the modularity of the graph Wr for different values of r . Denoting by Qr the modularity of the
network at scale r , the expression equivalent to (2.1) reads

Qr =

m∑
s=1

(
2wss + nsr

2w + Nr
−

(ws + nsr

2w + Nr

)2
)

. (2.5)

The topological scale determined by maximizing Q at which the detection of the modular
structure has been attacked so far, corresponds to r = 0. For positive values of r , we have access
to the substructures underneath those at r = 0, and for negative values of r we have access to
the superstructures. The topological scale corresponding to all nodes separated (forming their
own communities) is found by maximizing Qrmax , where rmax is the smallest positive value of r
that satisfies

wi j <
(wi + r)(w j + r)

2w + Nr
for all i 6= j.
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And the topological scale corresponding to a unique module formed by the whole network is
found by maximizingQrmin , where rmin has a lower bound defined by the asymptote rasymp =−

2w

N ;
for a detailed analysis, see appendix A. At the asymptote, the total strength is zero; thus no
meaningful scales can be found for values of r below it. Note that the average strength can be
written as 2w+Nr

N = r − rasymp. To compare the results at different resolutions, we adopt the usual
formulation in other areas of physics (optics, acoustics, etc), where scales are prescribed as the
logarithm of the ratio between the relevant parameters. Here, the difference between the scales
is measured as the logarithm of the ratio between strengths

log
(

2w + Nr

2w + Nr ′

)
≡ log

(
r − rasymp

r ′ − rasymp

)
.

In this new description, we have that a module is defined at each scale of description r , as a
result of the maximization of Qr . Moreover, modules that exist at a certain level of description
may disappear from our observation when changing the scale r , while others arise. Note that
nothing indicates that the substructures to which we will have access at different resolution
levels are necessarily hierarchical; indeed, in general they will not be hierarchical. Although, in
principle, all resolution scales provide some information about the topology, and are important,
the detection of partitions that are more persistent than the rest when changing the resolution r
is indicative of a tougher modular structure.

3. Results

We show the results of our method investigating the modular structure at multiple resolution
levels (different scales), for examples of synthetic and real complex networks. A first approach
on synthetic networks is illustrative of the validation of the procedure when different coexistent
topological scales are imposed by construction. We have also analyzed the modular structure of
real networks. In general, in real cases, the results are more difficult to assess because nothing
from the topology indicates the existence a priori of a more relevant structure in the network,
and only the corroboration a posteriori of the structure found with known facts about the (social,
biological, etc) meaning of it can give reliability to any method. In the experiments, we have
studied between 100 and 500 values of r inside the interval (rasymp, rmax] for synthetic networks,
and 1000 values of r for real networks. All the experiments have been cross checked using
two modularity-optimization heuristics: extremal optimization [18], and a new proposal for the
optimization of modularity based on tabu search (see appendix B for details), repeating each
one 20 times and keeping the partition obtained at the optimal value of Qr .

In figure 1, we have screened the whole range of topological scales for three synthetic
networks, representing the number of modules obtained at the optimal partition for Qr , and
the network analyzed highlighting the partition at two representative scales indicated by (I) and
(II). Although the networks studied may have more than two relevant scales, we have just drawn
two of them chosen among the most representative ones. First, we have computed the modular
structure in a hierarchical scale-free network with 125 nodes, RB 125, proposed by Ravasz and
Barabasi [24]. In figure 1(a), we plot the modular structure found, which shows three different
scales that deserve discussion. We observe clearly persistent structures in 5 and 25 communities,
respectively, that account for the subdivisions more significant in the process, showing two
hierarchical levels for the structure corresponding to the network design. Additionally, the most
stable partition in terms of resolution does not correspond to any of the previous ones, but
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Figure 1. Multiple resolution of modular structure in synthetic networks. Left:
the number of modules obtained at the optimal partition for Qr , where each
point corresponds to a different partition and the arrows indicate the optimal
partitions at r = 0. Right: networks analyzed, highlighting the partitions at two
representative scales indicated by (I) and (II); other non-highlighted partitions
are discussed in the main text. (a) RB 125 corresponds to the hierarchical
scale-free network proposed in [24]. The regions corresponding to 5, 25 and
26 modules are the most representative (stable) in terms of resolution. (b) H
13-4 corresponds to a homogeneous in degree network with two predefined
hierarchical levels. Both levels are revealed by the method at different scales. (c)
FB corresponds to the network proposed in [21] to demonstrate the resolution
limit of modularity (at r = 0). This limit is overcome at scale (II) providing us
with the partition expected.
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corresponds to the partition in 26 modules (the same as the one in 25 modules, but isolating the
main hub). The partition in 5 modules and the partition with 26 modules are highlighted on the
original network (note that the partition in 25 modules, left of the one with 26 modules, is not
highlighted, but this does not mean that the structure is less important since it also showed high
stability). This result is in perfect correspondence to the synchronization patterns produced on
this network using coupled oscillators [23]. It is worth mentioning here that we do not claim
that the most stable partition is the unique one that represents the community structure better;
we want to point out that all the partitions that are stable at a relatively wide range of scales are
of importance (see section 4.3 for an in-depth discussion).

Another network example used is the H 13-4 network [23], which corresponds to a
homogeneous in degree network with two predefined hierarchical levels, the number of nodes
being 256, the number of links of each node with the most internal community being 13 (formed
by 16 nodes), the number of links with the most external community being 4 (four groups of
64 nodes), and the number of links with any other node at random in the network being 1.
In figure 1(b), we represent the network and its corresponding modular structure at different
scales. Both the hierarchical levels are revealed by the method as they correspond to the original
construction of the network: the first hierarchical level consists of 4 groups of 64 nodes, and the
second level consists of 16 groups of 16 nodes.

Finally, we have used the FB network proposed by Fortunato and Barthélemy [21] to
demonstrate the resolution limit of modularity (at r = 0). It consists of two cliques of 20 nodes
linked with two small cliques of 5 nodes. At r = 0, the best partition cannot separate the two
small cliques. In figure 1(c), we observe that the partition searched for by the authors, formed
by the four cliques isolated in their own communities, is obtained by increasing the resolution r ,
showing that the resolution limit of modularity is overcome by the method in region (II). Note
that the region left of (I) in the figure corresponds to two groups, the first one formed by joining
both squares to its adjacent circle, and the other being the remaining circle. Also to the right of
region (II) there appears a relatively stable plateau corresponding to the disentanglement in 42
groups, resulting from the individualization of the nodes in the circles and the maintenance of
the two squared cliques.

We have also studied a couple of social networks for which explicit knowledge about
their modular structures is available, see figure 2. These particular networks, formed by social
acquaintances between individuals, have the main characteristic that after a period of study
they get decomposed into perfectly identifiable parts. The challenge is to find the modular
structure of these parts without previous knowledge of the real partition. The optimization
of modularity at r = 0 fails to provide this information, and no other method has been
able to find the real partitioned structure. However, the most representative scales in terms
of resolution optimizing Qr obtained by applying our method correspond exactly to the
real splits.

First, we have investigated the classical social network of Zachary’s karate club [25],
accounting for the study over 2 years of the friendships between 34 members of a karate
club at a US university in 1970. The network in question was divided, at the end of the
study period, into two groups after a dispute between the club’s administrator and the club’s
instructor, which ultimately resulted in the instructor leaving there and starting a new club,
taking about half of the original club’s members with him. The analysis of these data has been
a paradigmatic benchmark to test the accuracy of community-detection algorithms. Zachary
constructed a weighted network using different social measures, see figure 2(a), although in the
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Figure 2. Multiple resolution of the modular structure in real networks. Top:
the number of modules in the optimal partitions at different scales; the arrows
indicate the best partitions obtained at r = 0, which do not correspond to the
real partitions. Bottom: representation of the networks and the partitions in
the plateaus marked (I), which correspond both to the most stable scales of
description and to the known splits that have occurred in the real networks. Other
stable partitions are not discussed here because we do not have actual social
information about other groupings in these networks. (a) Zachary’s karate club
network [25]. (b) Dolphin social network by Lusseau et al [26].
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physics literature, the network has very often been considered unweighted for simplicity or
tradition, missing important information in the process.

The goal of any community-detection algorithm trying to identify modules on this network
should be to find the actual split that has occurred, assigning perfectly the nodes to the two
known resulting clubs. The first approach to this goal was given by Girvan and Newman in [1],
where they used a divisive method that produced a hierarchical tree representing the whole
modular structure. They found that the first network-splitting obtained by the method correctly
assigned all the nodes except node number 3. However, no measure of the quality of the partition
was introduced at that time, and then all levels of the hierarchical tree were equivalent, with no
way to have a preference for any partition. In [12], the same authors introduced the modularity
measure Q and reported that the best structure in the hierarchy, in terms of the value of Q,
was a partition into four groups and not two as expected. From this point on, many authors
have analyzed this network and have provided the best values of Q obtained. Today, it is well
accepted that the best partition in terms of modularity of the Zachary’s unweighted network is
achieved for four groups with the value of Q = 0.419. We have applied our method to screen
the modular structure of the original weighted network at all resolution scales of r . The results
in figure 2(a) show that the most stable level of resolution is precisely the partition resulting in
the two groups representing the two clubs, with no mismatch of any individual.

The second network analyzed is the dolphins’ social network of Lusseau et al [26]. This
network was constructed from observations of a community of 62 bottle-nose dolphins over a
period of 7 years from 1994 to 2001. The nodes in the network represent the dolphins, and the
ties between the nodes represent the associations between dolphin pairs occurring more often
than expected by chance. There is evidence [27] that a temporary disappearance of a dolphin
denoted SN100 led to the fission of the dolphin community into two identifiable parts shown
in figure 2(b). The optimization of modularity at r = 0 does not produce the expected split, but
a partition into five communities with Q = 0.518. Other approaches such as the one exposed
in [28] have also not succeeded in finding the real division. Our method allows us to reveal all
the modular structures in the whole range of resolution, indicating that the most stable solution
in terms of resolution of optimal Qr corresponds exactly to the two partitions observed in this
animal social network.

4. Discussion

The variation of topological scales, so far, is mediated by the variation of the parameter r . The
meaning of this parameter is that of a resistance to become part of a community, in the scope of
modularity. For positive values of r , we have access to the substructures below those at r = 0
(corresponding to the original scale at which modularity was defined by Newman), and for
negative values of r we have access to the superstructures. The screening of different scales of
descriptions should be useful to get deeper in the understanding of complex networks. Here,
we present a discussion about the role of the different topological scales beyond their static
definition, revealing their implications in dynamic processes on top of networks. After that, we
will also compare our method with another possible approach to the mesoscale, and finally, we
give a perspective on the significance of the mesoscale in contrast with the commonly accepted
one-scale description.
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4.1. The contact with physics

The results show that there exist several intermediate scales of description of the complex
networks, the topological mesoscale. These scales are revealed by intervals of values of the
resistance r , for which the optimal partition does not change, see figure 1. The obvious question
at this point is: what are these scales representative of? The answer to this question is not trivial,
and is intrinsically related to the functioning of the complex network as a substrate for different
dynamical processes, communication and friendship in social networks, cognitive task in neural
networks, or different levels of aggregation of computers in the Internet, for example. Our guess
is that a simple dynamical process on top of a complex network should somehow reveal the
topological mesoscale also in terms of temporal patterns. To check this hypothesis, we have
implemented a synchronization dynamics on top of different topologies following [23, 29]. The
dynamics corresponds to the non-linear interaction between oscillators connected following the
links of the complex networks. Analyzing the temporal meta-stable patterns emerging in
the evolution toward complete synchronization, we corroborate our initial guess.

The temporal mesoscale of the dynamics of synchronization (of phase oscillators) near the
synchronization attractor is governed by the solutions of the linear dynamics:

dθi

dt
= −k

∑
j

L i jθ j , i = 1, . . . , N , (4.1)

where k is a constant, θ j are the phases of the nodes and L i j is the Laplacian matrix of the
network.

To identify patterns of synchronization in time, we use [23] a discretization of the matrix
ρi j = 〈cos(θi − θ j)〉 where 〈· · ·〉 stands for the average over different realizations of the initial
conditions. In all the cases presented here, we have averaged 105 realizations, and used a
discretization threshold of 0.999. We observe that the intermediate scales that are revealed by the
synchronization process are in agreement with those found by the topological method proposed
here. The method allows not only to identify the number of communities at different scales, but
also to determine which nodes form these communities.

We show the corroboration of these claims in a set of synthetic networks, where the
modular structure at different scales is imposed by construction. In figure 3, we sketch first
the topology of a simple model of the hierarchical network [24], and the comparison between
the specific communities found at different resolution levels, and the synchronization patterns
observed in the path toward synchronization. The synthetic network of 25 nodes used combines
the scale-free property with a high clustering coefficient, and can be iterated, following the
scheme plotted in figure 3(a), to have many hierarchical levels. The results of the comparison
reveal a strong equivalence between both the processes, the static resolution method at different
scales (different values of the resistance), and the groups of synchronized nodes in time. In
figure 4, we extend this comparison to three more network structures: H 13-4 corresponding
to the homogeneous in degree network described in section 3; equivalently, the H 15-2
network [23] corresponds to a homogeneous in degree network with two predefined hierarchical
levels, the number of nodes being 256, the number of links of each node with the most internal
community being 15, the number of links with the most external community being 2, and the
number of links with any other node at random in the network being 1; the RB 125 network has
also been used in section 3 and corresponds to the same scheme exposed in figure 3(a) adding
a new hierarchical level. The plots here represent, in log–log scale, the number of communities
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Figure 3. The network structure (a) corresponds to the hierarchical network
proposed by Ravasz and Barabasi (see text for details). In (b), communities found
at different scales for the network depicted. The left arrow represents the value
of the resistance for which these structures prevail. The right arrow stands for
the time intervals for which the same structures are found in a synchronization
process (see text for details). For large positive values of r the network is
decomposed into individual nodes, while for large negative values of r the whole
network forms a single community.

as a function of the translated resistance r − rasymp, and time. The correspondence between the
patterns is highlighted, and again the correspondence is overwhelming.

Obviously, the functioning of real complex networks can rely on dynamical processes very
different from the synchronization process exposed here; however, it is still instructive to see
how a simple nonlinear process reflects the mesoscale of complex networks, or from another
viewpoint, to see how the topology of the networks imposes dynamical (temporal) scales in
their functioning.

4.2. Comparison with other methods

Some authors have proposed algorithms to extract the hierarchical organization of complex
networks by modifying the objective function [30], or by searching local minima of the
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Figure 4. Comparison between topological scales and dynamical scales
of synchronization. The plots represent, in log–log scale, the number of
communities as a function of (a) the translated resistance r − rasymp and (b) time.
Dashed red lines are a guide to the eye to emphasize the correspondence between
the plateaus observed. Legends refer to the network structure (see the text for
details).

modularity landscape [31]. These approaches differ conceptually from ours and also in practice:
(i) the modification of the quality function [30] does not always provide the correct substructure
of networks; (ii) the method based on the screening of local minima of modularity [31] is
designed assuming that the structure is hierarchical, which is not the case in many real networks.

The method proposed by Sales-Pardo et al [31] is specifically designed to unravel the
hierarchical structure in networks. The comparison with our method is then not possible within
our more general scope of any topology. For hierarchical networks, their method will find the
hierarchy of scales, as ours also does; however, for non-hierarchical networks, their method
can only produce nested communities, in contrast with ours. Conceptually, the difference can
be summarized as follows: hierarchies imply multiple scales of description, but the implication
does not hold in reverse.

The method proposed by Reichardt and Bornholdt (R&B) [30] was not designed to avoid
the resolution limit of modularity, but to offer a way to connect modularity with statistical

New Journal of Physics 10 (2008) 053039 (http://www.njp.org/)

http://www.njp.org/


13

physics. The main idea of the authors is to tune the null model (i.e. change the quality function)
and then to obtain other partitions by maximizing the new quality functions. Indeed in [22],
the authors have interestingly shown that the R&B method has the same resolution problems
envisioned in [21] for modularity. The problem is that the R&B method consisting of varying
γ (the prefactor that multiplies the null model) is not equivalent to tuning the resolution
of Newman’s modularity. The authors of [22] recognize that if the size distribution of the
communities is broad, like in collaboration networks or school friendship networks, there is
no single proper value of γ for the optimal resolution. The main difference from our method is
that, whether the size distribution of communities is broad or not, the rescaling of the topology
method that we present finds all the topological structures correctly because it is designed to
this end5.

To support the above discussion, we have built a toy model network with a simple topology,
but difficult for community-detection algorithms because it includes communities of different
sizes, some of them sparse and others dense, see figure 5. The network model is small enough to
have a clear vision of the modules, and to be attacked with computationally costly techniques in
reasonable time. While our method succeeds in the process, the R&B method fails. The results
of our method and the R&B method with varying γ are presented in figure 5.

It is worth noting that the parameter γ in the R&B approach does not correspond to any
value of r . Only when γ = 1 and r = 0, do both the definitions become equal, and are exactly
Newman’s original definition. Rewriting Qr in (2.5) in terms of nodes,

Qr =
1

2w + Nr

∑
i

∑
j

(
wi j + rδi j −

(wi + r)(w j + r)

2w + Nr

)
δ(Ci , C j), (4.2)

and comparing it with the R&B modularity

Q R&B
γ =

1

2w

∑
i

∑
j

(
wi j − γ

wiw j

2w

)
δ(Ci , C j), (4.3)

for both prescriptions to be equivalent for all partitions, one must show that

(wi + r)(w j + r)

2w + Nr
− rδi j = γ

wiw j

2w
, ∀i, j. (4.4)

If i 6= j , the relationship between r and γ becomes

γ =
2w

2w + Nr
·
wi + r

wi
·
w j + r

w j
, (4.5)

which is only fulfilled for r = 0 and γ = 1, the trivial case stated earlier, because otherwise
one would have different values of γ for each pair of the nodes i and j . Therefore, there is no
transformation of Qr into QR&B

γ , and they are screening different things.
To conclude this section, and for the sake of clarification, we would like to state that

the hierarchical dendrogram produced using the Girvan and Newman algorithm [1] is not
assimilable to any of the procedures described here, namely the Sales-Pardo et al proposal,
the R&B method, or our current method. In their seminal paper, Girvan and Newman [1] never
state that the dendrogram produces a hierarchy of topological scales, because there is no such
effect. Their dendrogram is not designed to optimize any quantity at each level of the tree, which

5 An interesting comparison between the R&B method and our method (when it was still a preprint in arXiv) was
performed by Kumpula et al [32].
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Figure 5. (a) Toy model network with communities of different sizes and
densities. (b) Top: number of modules as a function of the topological scale r
using our method; the red line indicates the range of scales for which the natural
partition (four stars and clique) is obtained. Bottom: number of modules as a
function of the parameter γ in the R&B model; the natural partition (four stars
and one clique) is not obtained for any value of γ .

is precisely why they defined modularity as an indicator to select a level of description in the tree
that will be representative of the community structure [12]. The Girvan and Newman algorithm
cannot produce the scales of description we have screened here, as can be checked by observing
the dendrogram for the Zachary Karate club presented in [12].

4.3. Which is the ‘best’ scale of description of complex networks?

The question about the determination of the ‘best’ scale of description of a complex network
is natural but ill-posed in the current scenario. Throughout the paper, we have stated that the
more ‘stable’ partitions, in terms of persistence maximizing Qr when varying the scales with r ,

New Journal of Physics 10 (2008) 053039 (http://www.njp.org/)

http://www.njp.org/


15

are somehow more relevant in the topological description of the mesoscale. Their existence is
an observed fact: some partitions are more persistent than others when changing the resolution
scale of the topology. We think that this fact is not surprising, as it is not in many physical
systems: phenomena that are observed persistently over a wide range of scales vanish at other
scales, and others emerge. In general, these more persistent phenomena are usually more
important to understand the system. More stable partitions are relevant in the sense that they
usually have a known meaning, but we cannot state that other partitions not so prevalent are
uninformative. All of them are embedded in the topology and give their particular information.

Summarizing what we think about the determination of the ‘best’ or ‘more relevant’ scale
of description, we can say that the existence of relevant scales of description of a complex
network should unavoidably pass through the definition of ‘relevant’. Throughout the paper,
we have never tried to define ‘relevant’ directly from the results obtained with our method,
but a posteriori. We use, in the case of synthetic networks and real networks, the information
that we have a priori (e.g. knowledge about the hierarchy imposed by construction, or known
splits) to determine which scale is more relevant and then to check whether it is found by
the method. What we observe is that these relevant scales are usually related to partitions
that are significantly persistent (stable) at different scales (variation of r ). However, to invert
the argument is not straightforward. It is true that one could invent a function that peaks
at the scales we see in reality and that are known, as for example a function that accounts for the
homogeneity of the obtained communities, but this inevitably imposes new conditions on the
definition of the module. Matching the above discussion, let us expose the following: if such a
function that indicates the most ‘relevant’ scale of description (and then partition) exists, why
not use this function as the objective function to optimize? This argument is strong because
it implies that to determine if any scale is more important than others, one must optimize a
different quality function designed to this end, not modularity.

5. Conclusions

In conclusion, motivated by the recent finding that the optimization of modularity has a
resolution limit, related to the characteristic scale imposed by the total strength (sum of weights)
of the network, we propose a multiple resolution procedure that allows the optimization of
the modularity process to go deep into the structure. The main idea consists of rescaling the
topology by defining a new network from the original one, providing each node with a self-loop
of the same magnitude r . The new network presents the same characteristics as the original
network in terms of connectivity, but allows the search of modules at different topological scales.
We have provided examples of the modular substructure found in synthetic and real complex
networks. The results are sets of partitions that screen the full range of structural modules from
individual nodes up to the whole network in each particular scale.

The analysis of the results reveals that some topological scales are more persistent (stable)
in terms of resolution than others. These stable scales provide specific information about the
main modular aspects of the structure: in the synthetic networks analyzed, they correspond to
the predefined structural scales imposed ad hoc; and in real networks they correspond exactly
to previous knowledge about the networks, which has not been recovered by any other method
used for studying these network topologies to date. With this method, we release optimization
of modularity from resolution problems, and give new ideas about the description of complex
networks. The existence of several scales of description of complex networks has deep analogies
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to the usual study of complex systems in physics, where different models have been formulated
at different spatial scales to get insights into different aspects of their phenomenology.
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Appendix A. Resistance limiting cases

Here, we present mathematical proofs of the physical limiting cases of the resistance for
weighted undirected and directed networks, namely the limit of resistance for which all nodes
are isolated, and the limit for which all nodes become members of a single group that represents
the whole network.

A.1. Resistance limiting cases for weighted undirected networks

Let wi j = w j i > 0, i 6= j , be the weights of a complex network, where wi j = 0 if there is no link
between nodes i and j . We suppose that this network is connected; otherwise, each connected
component should be analyzed one by one. The addition of a common resistance r to all nodes
may be understood as the definition of a new network with weights

w′

i j =

{
wi j , if i 6= j,
r, if i = j.

(A.1)

The strengths of this network are

w′

i =

∑
j

w′

i j = wi + r, (A.2)

and its total strength is

2w′
=

∑
i

w′

i = 2w + Nr. (A.3)

Now, the modularity of the new network is calculated as

Qr =
1

2w′

∑
i

∑
j

(
w′

i j −
w′

iw
′

j

2w′

)
δ(Ci , C j), (A.4)

which may also be written as

Qr =
1

2w′

∑
i

∑
j ( 6=i)

(
wi j −

w′

iw
′

j

2w′

)
δ(Ci , C j) + Dr , (A.5)

where

Dr =
1

2w′

∑
i

(
r −

w′

i
2

2w′

)
. (A.6)

Note that Dr does not depend on the community partition.
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A.1.1. All nodes isolated. If we have

w′

i j −
w′

iw
′

j

2w′
< 0, ∀i 6= j, (A.7)

then Qr in (A.5) is maximized when δ(Ci , C j) = 0, ∀i 6= j , i.e. modularity attains its maximum
when all the nodes are isolated in clusters of just one node. In terms of resistance, they simply
become second-order inequalities,

(2w + Nr)wi j < (wi + r)(w j + r), ∀i 6= j , (A.8)

which can easily be solved for all pairs of nodes joined by an edge. Thus, rmax is the minimum
value of r which satisfies all these inequalities, and for r > rmax all nodes are separated in the
optimal community configuration.

A.1.2. All nodes in the same community. Let us analyze the behavior of modularity just to the
right of the asymptote rasymp = −

2w

N . For convenience, we write the resistance as

r = −
2w

N
+ ε, (A.9)

where ε = ε/N and ε is a small positive constant.
The first term of modularity in (A.4) can be split in the following way:∑

i

∑
j

w′

i j

ε
δ(Ci , C j) =

∑
i

∑
j

w′

i j

ε
−

∑
i

∑
j ( 6=i)

wi j

ε
(1 − δ(Ci , C j))

= 1 −
a

ε
, (A.10)

where a is the sum of weights of edges connecting different communities. If there are two or
more communities, then a > 0, otherwise a = 0.

The analysis of the second (null case) term of (A.4) requires a communities expansion:∑
i

∑
j

w′
iw

′
j

ε2
δ(Ci , C j) =

∑
c

∑
i

∑
j

w′
iw

′
j

ε2
δ(Ci , c)δ(C j , c)


=

∑
c

1

ε2

(∑
i

w′
iδ(Ci , c)

)∑
j

w′
jδ(C j , c)


=

1

ε2

∑
c

(∑
i

(wi + r)δ(Ci , c)

)2

=
b

ε2
, (A.11)

where b > 0, and b ∼ O(ε2) only if all strengths are equal; on the contrary, b ∼ O(1).
Therefore,

Qrasymp+ε = 1 −
a

ε
−

b

ε2
, (A.12)

which has asymptotic behavior

lim
ε→0+

Qrasymp+ε =

{
−∞ if two or more communities,
0 if only one community.

(A.13)
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This means that, for values of the resistance just above the asymptote, the optimal communities
configuration is that with all the nodes together in a single module that corresponds to the whole
network.

A.2. Resistance limiting cases for weighted directed networks

Let wi j > 0, i 6= j be the weight of an arc that goes from the i th to the j th node, where wi j = 0
if there is no link between them. We suppose that this network is connected in the weak sense
(weak connected components), i.e. the connected components are found as if the arcs were
undirected; otherwise, each connected component should be analyzed one by one.

The natural generalization of modularity to cope with directed networks was introduced
in [33], and is expressed as

Qr =
1

2w

∑
i

∑
j

(
wi j −

wout
i win

j

2w

)
δ(Ci , C j), (A.14)

where the input and output strengths of the network are

wout
i =

∑
j

wi j , (A.15)

win
j =

∑
i

wi j (A.16)

and its total strength is

2w =

∑
i

wout
i =

∑
j

win
j =

∑
i j

wi j . (A.17)

The addition of a common resistance r to all the nodes may be understood as the definition
of a new network with weights

w′

i j =

{
wi j , if i 6= j,
r, if i = j.

(A.18)

The strengths of this network are

w′out
i = wout

i + r, (A.19)

w′in
j = win

j + r, (A.20)

and its total strength is

2w′
=

∑
i

w′out
i =

∑
j

w′in
j = 2w + Nr. (A.21)

Now, the modularity (A.14) of the new network is calculated as

Qr =
1

2w′

∑
i

∑
j

(
w′

i j −
w′out

i w′in
j

2w′

)
δ(Ci , C j), (A.22)

which may also be written as

Qr =
1

2w′

∑
i

∑
j ( 6=i)

(
wi j −

w′out
i w′in

j

2w′

)
δ(Ci , C j) + Dr , (A.23)
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where

Dr =
1

2w′

∑
i

(
r −

w′out
i w′in

i

2w′

)
. (A.24)

Note that Dr does not depend on the community partition.

A.2.1. All nodes isolated. If we have(
w′

i j −
w′out

i w′in
j

2w′

)
+

(
w′

j i −
w′out

j w′in
i

2w′

)
< 0, ∀i < j, (A.25)

then Qr in (A.23) is maximized when δ(Ci , C j) = 0, ∀i 6= j , i.e. modularity attains its
maximum when all the nodes are isolated in clusters of just one node. In terms of the resistance,
they simply become second-order inequalities,

(2w + Nr)(wi j + w j i) < (wout
i + r)(win

j + r) + (wout
j + r)(win

i + r), ∀i < j, (A.26)

which can easily be solved for all pairs of nodes joined by an arc. Thus, rmax is the minimum
value of r which satisfies all these inequalities, and for r > rmax all nodes are separated in the
optimal community configuration.

A.2.2. All nodes in the same community. The analysis of this case follows the same steps as in
appendix A.1.2, yielding also (A.12):

Qrasymp+ε = 1 −
a

ε
−

b

ε2
. (A.27)

The only difference is that now:

b =

∑
c

(∑
i

(wout
i + r)δ(Ci , c)

)∑
j

(win
j + r)δ(C j , c)

. (A.28)

Unlike for undirected networks, the value of b is not guaranteed to be positive, and then:

lim
ε→0+

Qrasymp+ε =

{
−sign(b) ∞, if two or more communities,
0, if only one community.

(A.29)

This means that, only if b is positive for all the different community partitions, for values of the
resistance just above the asymptote, the optimal communities configuration is that with all nodes
together in a single module that corresponds to the whole network. Otherwise, the modularity
will rise to +∞ for the maximum modularity configuration, and the single module structure
might not be present for any value of the resistance.

Appendix B. Optimization of the modularity using the Tabu heuristic

We propose a new method to optimize the modularity based on Tabu search [34]. The algorithm
proceeds as follows: starting from an initial solution (a partition into groups of nodes of the
network), S Init, an iterative process that explores the search space begins, stepping from the
solution of the current iteration, S Iter, to one of its neighbors, S Neig. The neighborhood is
composed of the partitions that are obtained from the current solution by the application of a
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local operator called move. In our case, the move operator acts on one node at a time, moving
it from its current community to another selected at random, or creating a new one. Among the
solutions in the neighborhood, the best one is chosen to become the new current solution for the
next iteration of the algorithm.

In order to escape from local optima, a list of tabu moves is used. This tabu list stores and
forbids the most recently accepted moves and is updated as the algorithm proceeds, so that a
move just added to the list is removed from it after a certain number of iterations (Tabu Tenure)
have passed. However, tabu moves are allowed when they lead to an improved solution. Once a
solution is accepted, the node moved to obtain this solution is inserted into the tabu list, in order
to prevent the movement of the same node during the next Tabu Tenure iterations, unless this
move leads us to the best solution found until that moment. We used a logarithmic function on
the number of nodes as the number of idle iterations needed to stop the search.

function Tabu Modularity Optimization(Net: Network; S Init: Solution)
returns (S Best: Solution) is

const
Tabu Tenure: Natural := 5;

var
Tabu Moves: Array Of Natural; {counters of forbidden moves}
Max Idle: Natural; {maximum number of idle iterations}
Num Idle: Natural; {number of idle iterations}
S Iter: Solution; {solution of the current iteration}
S Neig: Solution; {solution in the neighborhood}
Node Best: Natural; {node with the best move}

begin
for Node := 1 to Number Of Nodes(Net) do {initialize the tabu moves}

Tabu Moves[Node] := 0;
end for;
Max Idle := Maximum Of Nonimprovements(Number Of Nodes(Net));
Num Idle := 0;
S Iter := S Init;
S Best := S Init;
while Num Idle < Max Idle do

Explore Neighborhood(Net, S Iter, S Best, Tabu Moves, S Neig, Node Best);
for Node := 1 to Number Of Nodes(Net) do {decrease the tabu moves}

Tabu Moves[Node] := Maximum(0, Tabu Moves[Node]-1);
end for;
Tabu Moves[Node Best] := Tabu Tenure;
S Iter := S Neig;
if Modularity(S Neig) > Modularity(S Best) then

S Best := S Neig;
Num Idle := 0;

else
Num Idle := Num Idle + 1;

end if;
end while;
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return S Best;
end Tabu Modularity Optimization;

procedure Explore Neighborhood(Net: in Network; S Iter, S Best: in Solution;
Tabu Moves: in out Array Of Natural;
S Neig: out Solution; Node Best: out Natural) is

var
S Move: Solution; {solution from the move of a node}

begin
Node Best := 0;
for Node := 1 to Number Of Nodes(Net) do

S Move := Solution From Move(Net, S Iter, Node);
if Modularity(S Move) > Modularity(S Best) then

Tabu Moves[Node] := 0;
end if;
if Tabu Moves[Node] = 0 and

(Node Best = 0 or else Modularity(S Move) > Modularity(S Neig)) then
Node Best := Node;
S Neig := S Move;

end if;
end for;

end Explore Neighborhood;

The main advantage of this algorithm is that it is a mixture of divisive and agglomerative
processes, avoiding the drawbacks of each strategy. Moreover, the iterative process can start
from any initial partition, which is adequate for the mesoscale determination, since the optimal
partitions for nearby values of the resistance are frequently similar. In terms of computational
cost, the tabu heuristic is equivalent to other stochastic optimization methods such as simulated
annealing or genetic algorithms.
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