
radatools-5.2-README.txt 1 / 11

July 20, 2021 Crimson Editor

===================================================================
== Radatools 5.2 ==
== from ==
== radalib-20210720-181118 ==
== ==
== Copyright (c) 2021 by ==
== ==
== Sergio Gomez (sergio.gomez@urv.cat) ==
== Alberto Fernandez (alberto.fernandez@urv.cat) ==
== ==
== 20/07/2021 ==
== ==
== See LICENSE.txt ==
===================================================================

--------
Contents
--------

- Description
- List of programs
- Communities detection
- Heuristics
- Community detection strategy
- Mesoscales detection
- Network properties
- Comparison of partitions
- Hierarchical clustering
- Usage
- License
- References

-----------
Description
-----------

Radatools is a set of freely distributed applications to analyze
Complex Networks. In particular, it includes programs for community
detection and mesoscales search based on the optimization of several
modularity-based measures [1,2,3,4].

Radatools [17] is just a set of binary executable programs whose source code
is available in Radalib [15]. Radalib is free software; you can redistribute
it and/or modify it under the terms of the GNU Lesser General Public License
version 2.1 as published by the Free Software Foundation.

The program 'Communities_Detection' takes a complex network in
Pajek format (*.net) and outputs the best partition found. Since
probably you will not have the network in Pajek format, we have
added programs to create Pajek network files from text files with
lists of links, 'List_To_Net', and from adjacency (or weights)
matrices, 'Matrix_To_Net'. Another useful program is 'Connected_Subgraphs',
which checks if a network is connected and, if not, creates separate
network files for each connected component.

The output of 'Communities_Detection' is a partition in a text format
we call 'Lol format' (usually *-lol.txt). It contains information
about the number of elements (nodes) in the partition, the number of
communities (or lists of elements), the size of each community, and the
indices of the elements which belong to each community. The program
'Convert_Lol_To_Clu' converts a partition in Lol format to Pajek (*.clu)
format. And 'Reformat_Partitions' replaces the indices of the elements by
their respective names in the network Pajek file, allowing also to group
elements in a way more appropriate for the analysis of the communities,



radatools-5.2-README.txt 2 / 11

July 20, 2021 Crimson Editor

or in a more readable form.

If you are working with the standard Newman modularity (weighted or
unweighted), you may use the program 'Size_Reduction' to obtain an
equivalent network with less nodes (if possible) than the original one,
then use 'Communities_Detection', and finally apply 'Size_Reduction_Lol_Expand'
to the optimal partition to get a partition of the original (unreduced)
network [3].

'Mesoscales_Detection' makes use of the same algorithms implemented in
'Communities_Detection' for the determination of the whole mesoscale
of a complex network. Adding a common resistance (in the form of a self-loop)
to all nodes, and running its value between 'r_min' and 'r_max', it is
possible to find the community structure at all resolution levels, from
the macroscale (all nodes in one community) to the microscale (every node
in a different community) [6]. The output is a table with the values of the
resistance, modularity and number of communities, and the list of different
partitions found (*-lols.txt). The program 'Mesoscales_Fine_Tuning' improves
the previous results by checking all known partitions for each value of the
resistance, and allows the combination of different executions of
'Mesoscales_Detection'. Is is also possible to use 'Reformat_Partitions' with
the files *lols.txt.

'Hierarchical_Clustering' performs agglomerative hierarchical clustering of data
using both multidendrograms and binary dendrograms. When there are ties in the
agglomeration process, the standard approach is to break the ties in an
arbitrary way. Multidendrograms ensure the unicity of the dendrogram by just
merging as many clusters as necessary when ties are found [12]. This program is
able to calculate the multidendrogram and to enumerate (or just count) the
different binary dendrograms that can be built from the same data. Additionally,
it includes, apart from the standard linkage methods (single, complete, average,
centroid, ward, beta-flexible), a parameterized family of space-conserving
strategies known as versatile linkage [13]. Visit MultiDendrograms page for an
application to calculate and plot multidendrograms with a graphical user
interface [16].

Other programs included are: 'Network_Properties', to calculate several of
the commonly used properties of a network, e.g. degrees, strengths, clustering
coefficients, assortativity, connectedness, shortest path lengths, diameter,
betweenness, degree distribution, etc.; 'Compare_Partitions', to obtain
measures of the similarity between different partitions, e.g. Jaccard Index,
Rand Index, Normalized Mutual Information, Variation of Information, etc.;
'Spanning_Tree', to find the minimum or maximum spanning tree of a graph.

----------------
List of programs
----------------

The programs available in this version of Radatools and their organization in
folders is as follows:

Communities_Detection:

- Communities_Detection
Community detection in complex networks by optimization of modularity, using
the following heuristics: (h) exhaustive, (t) tabu, (e) extremal, (s) spectral,
(f) fast, (l) louvain, (r) reposition, (b) bootstrapping based on tabu.

- Mesoscales_Detection
Mesoscales detection in complex networks by optimization of modularity for
variable common self-loops.

- Mesoscales_Fine_Tuning
Fine Tuning of the mesoscales obtained with Mesoscales_Detection.



radatools-5.2-README.txt 3 / 11

July 20, 2021 Crimson Editor

Communities_Tools:

- Communities_Network
Given a network and a community, returns the weighted network of communities.

- Compare_Partitions
Calculate similarity and dissimilarity indices between two partitions.

- Convert_Clu_To_Lol
Convert a partition in Pajek format (*.clu) into a partition in our Lol format.

- Convert_Lol_To_Clu
Convert a partition in our Lol format into a partition in Pajek format (*.clu).

- Modularity_Calculation
Calculate the modularity of a partition of a network, detailing the contributions
of individual nodes and communities.

- Reformat_Partitions
Reformat partitions in Pajek and Lol formats changing nodes' indices by nodes'
names.

- Size_Reduction
Elimination of simple and triangular 'hairs' of a network to speed-up modularity
optimization.

- Size_Reduction_Lol_Expand
Convert a partition of a sized reduced network into a partition of the original
network.

Data:

- Data_Statistics
Calculate statistics of rows or columns in a data file.

- Data_To_Correlations
Calculate the correlations network of a data file.

- Data_To_Proximities
Calculate many types of proximities (distances or similarities) between rows or
columns in a data file.

- Hierarchical_Clustering
Agglomerative hierarchical clustering with multidendrograms and binary dendrograms.

Network_Properties:

- Connected_Subgraphs
Split a network into its (weak or strong) connected components.

- Links_Info
Calculate the degrees and strengths of the nodes attached to each link in a network.

- Network_Properties
Calculate many properties of a network, including connectedness, degrees, strengths,
clustering coefficients, assortativities, path lengths, efficiencies, diameters,
entropies and betweenness. Handles all kinds of networks, even weighted, directed
and signed.

Network_Tools:



radatools-5.2-README.txt 4 / 11

July 20, 2021 Crimson Editor

- Extract_Subgraphs
Create subgraphs of a graph.

- List_To_Net
Convert a network in list format to Pajek format (*.net).

- Matrix_To_List
Convert a matrix to list format.

- Matrix_To_Net
Convert a network in matrix format to Pajek format (*.net).

- Multiplex_Aggregate
Calculate the aggregate network of a multiplex network.

- Multiplex_Extract_Layers
Extract the layers of a multiplex network.

- Net_To_List
Convert a network in Pajek format (*.net) to list format.

- Net_To_Matrix
Convert a network in Pajek format (*.net) to matrix format.

- Sort_Nodes
Sort nodes of a network randomly or according to degree.

- Spanning_Tree
Calculate the minimum and maximum spanning tree of a graph.

- Symmetrize_Network
Symmetrization of a directed graph.

---------------------
Communities detection
---------------------

The program 'Communities_Detection' implements several algorithms
for the optimization of modularity [1]. It is prepared to work with
- unweighted [1] and weighted [2] networks
- undirected [1] and directed [3] networks
- positive [1] and signed [4] networks
- bipartite positive [5] and signed networks

The main types of (directed and undirected) modularity optimized are:
- UN: unweighted modularity [1,3]
- WN: weighted modularity [2,3]
- WS: weighted modularity for networks with positive and negative links [4]
- WBPM: weighted bipartite modularity based on path motifs [5]

There is an included document which provides the mathematical description of
all the types of modularity available.

Prior to the community detection, it is possible to split the network
in its connected components using 'Connected_Subgraphs', and to reduce
the size of the network using 'Size_Reduction' [3]. In this last case,
only the weighted WN modularity should be used.

The optimization algorithms implemented are:
- (h): exhaustive search
- (t): tabu search [6]
- (e): extremal optimization [7]
- (s): spectral optimization [8]
- (f): fast algorithm [9]
- (l): louvain algorithm [10]



radatools-5.2-README.txt 5 / 11

July 20, 2021 Crimson Editor

- (r): reposition algorithm
- (b): bootstrapping based on tabu search [6]

There are also several initialization modes:
- (!): start with the best partition found so far
- (:): start with the partition found with the previous heuristics
- (-): start with the default partition of the next heuristics
- (.): start with an 'all isolated' partition
- (+): start with an 'all together' partition

It is possible to combine different optimization algorithms and initialization
modes in a single run of the communities detection program. For instance, a
possible heuristic is 'trfr', which consists in a tabu search, followed by
a reposition fine-tuning, followed by the fast-algorithm, and finally
another reposition fine-tuning. It is equivalent to '-t:r:f:r'. Another
example could be 's-e!rfr-trfr', where first spectral and extremal are used
starting from their defaults (all togther), then an 'rfr' is applied to the best
of them, and finally a 'trfr' is applied starting from the default of tabu; the
output is the best partition found through all the process.

Some heuristics have a stochastic behavior, thus several executions
could lead to different optimal partitions. In 'Communities_Detection'
you can specify the number of repetitions to execute each of the
heuristics, before proceeding to the next one.

If the partition file exists before the execution, it is taken as the
initial partition. Thus, running the program twice with heuristics 'trfr'
is equivalent to running it once with heuristics 'trfrtrfr'.

There are four levels of verbosity:
- (n): none
- (s): summary
- (p): progress
- (v): verbose
For long runs, 'p' or 'v' should be preferred since they save
in temporary files the best intermediate partitions.

The output partitions are given in a list-of-lists text format (files *-lol.txt),
which includes information of the number of elements (nodes), number of lists
(communities) and, for each community, its size and the list of nodes that
belong to it. The tool 'Convert_Lol_To_Clu' converts these partitions to Pajek
format (membership of nodes to communities), and 'Reformat_Partitions' helps to
transform partitions to a more readable format.

----------
Heuristics
----------

A short description of each community detection heuristic follows:

- Exhaustive search (h): Only possible for very small networks, about 10 nodes.

- Tabu search (t): Usually the most accurate heuristic for medium sized
networks, however it cannot deal with large networks. If you use it,
please cite [6].

- Extremal optimization (e): Divisive algorithm. Good tradeoff between accuracy
and execution time, and useful for networks too large for tabu search. If you
use it, please cite [7].

- Spectral optimization (s): Divisive algorithm. Very fast heuristic and useful
for large networks, but with low accuracy. If you use it, please cite [8].

- Fast algorithm (f): Agglomerative algorithm. Fast heuristic but with low
accuracy. It may be used as a fine-tuning algorithm when combined with others.



radatools-5.2-README.txt 6 / 11

July 20, 2021 Crimson Editor

If you use it, please cite [9].

- Reposition algorithm (r): Very fast algorithm, with good accuracy, similar to
a Kernighan-Lin optimization.

- Louvain algorithm (l): Very fast algorithm, with good accuracy, similar to
reposition. If you use it, please cite [10].

- Bootstrapping algorithm (b): Fine-tuning algorithm based on tabu search.
If you use it, please cite [6].

----------------------------
Community detection strategy
----------------------------

The correct selection of heuristics may have an important impact on the
quality of the final partition and on the time spent to obtain it. Here
come some suggestions, but feel free to experiment with other combinations
of heuristics and initialization modes:

- For networks up to 1500 nodes, try 'r-s-e-ll!rfr-trfr' with 1 repetition
- If it succeeds in a reasonable time, erase the previous result and increment

the number of repetitions to 3, 5 or 10
- For networks up to 5000 nodes, try 'r-s-e-ll!rfr' with about 2 repetitions
- For networks up to 10000 nodes, try 'r-s-ll!rfr' with 1 repetition
- For larger networks, try 'rfr-llrfr' with 1 repetition

--------------------
Mesoscales detection
--------------------

The program 'Mesoscales_Detection' implements the strategy in [6,11] for the
determination of the community structure of complex networks at different
resolution levels, thus finding the whole mesoscale, from all nodes in one
community (macroscale) to every node forming its own community (microscale).
Based on the addition of a common self-loop to all nodes, and the optimization
of modularity [1,2,3] using the same heuristics explained before, the output
of this program is formed by two files:

*table.txt: contains four columns:
'r': the resistance (or self-loop)
'r - r_min': used in the plots to determine the most stable partitions
'Q_r': modularity of the best partition found for the given resistance
'N_r': number of modules of the best partition found for the given resistance

*lols.txt: list of different partitions found while scanning the mesoscale
(in Lol format), with the value of the resistance at which each partition
becomes optimal

In this version of the program you may choose any of the weighted modularity
types, but we recommend WS [11] or WN [6], for which the minimum and maximum
values of the self-loop are automatically calculated. For unsigned networks
and positive self-loops both approaches coincide, but WS solves the problems
of WN with negative self-loops in directed networks, and is better adapted
to deal with any kind of network. With WN and directed networks it is possible
that the partition with all nodes in one community may not appear near 'r_asymp',
as explained in [6]. In this case, some of the first partitions found should be
discarded, namely those with more modules than the first partition with the
minimum number of communities.

The recommended strategy to succeed in the finding of the mesoscale structure
is the following:
- First, try 'Communities_Detection' to choose the most adequate optimization

heuristic and the number of repetitions, and to estimate the time needed;



radatools-5.2-README.txt 7 / 11

July 20, 2021 Crimson Editor

if you want a mesoscale with a granularity of 100 values of the resistance,
then 'Mesoscales_Detection' will take about 100 times the execution time of
'Communities_Detection'

- If possible, use Tabu search [6], since it takes advantage of the similarity
between partitions at similar resolutions, thus allowing an important
speed-up, and a higher quality of the mesoscale found

- If 'r_min' and 'r_max' differ in several orders of magnitude, use a
non-uniform scanning of the resistance, e.g. by setting the parameter
'max_delta_loop_ratio' to 10.0 or higher; in this way you will have a
larger resolution for smaller values of 'r - r_min', which is usually
the most interesting part of the mesoscale

It is possible to improve the mesoscales found using 'Mesoscales_Fine_Tuning'.
This program checks all known partitions at every value of the resistance.
The idea is that, during the mesoscales determination, it is common that the
changes from one partition to the next one are found at values of resistance
slightly higher than optimal, due to the similarity of modularity between both
partitions. Moreover, if you run 'Mesoscales_Detection' several times, you can
merge all partitions in a single *lols.txt file (or in an additional file
with name *lols-extra.txt), and let 'Mesoscales_Fine_Tuning' look for the
best possible mesoscales structure.

------------------
Network properties
------------------

The program 'Network_Properties' performs the calculation of the following properties:

- Global properties:
kind of network (weighted/unweighted, directed/undirected, signed/positive)
connectedness (strong, weak, not connected)
average and total degree
average and total strength
minimum and maximum values
asymmetry
reciprocity
average clustering coefficient
assortativity
average path length
diameter
efficiency
average entropy

- Nodes' properties:
degrees
strengths
self-loop
minimum, maximum and average value
clustering coefficient
average and maximum path lengths
efficiency
entropy
node betweenness

- Edges' properties:
edge betweenness

- Degree distribution

- Distances between nodes

In all the cases, the program takes into account the kind of network to decide
which properties can be calculated. For instance, strengths and weighted
properties only make sense for weighted networks, input and output degrees
and strengths are distinguished for directed networks, and total, positive and



radatools-5.2-README.txt 8 / 11

July 20, 2021 Crimson Editor

negative contributions are separated for signed networks.

Since the calculation of shortest paths (unweighted and weighted) is slow for
large networks, you have the option to skip all the properties related with them.
It is also possible to skip the calculation of weighted properties if they are
not needed.

------------------------
Comparison of partitions
------------------------

The program 'Compare_Partitions' calculates the contingency table between two
partitions, from which the following similarity and dissimilarity measures are
derived:

- Similarity indices:
Rand Index
Adjusted Rand Index
Jaccard Index
Fowlkes Mallows Index
Normalized Mutual Information Index (arithmetic and geometric)
Asymmetric Wallace Index

- Dissimilarity metrics:
Mirkin Metric
Van Dongen Metric
Variation Of Information Metric
Normalized Mirkin Metric
Normalized Van Dongen Metric
Normalized Variation Of Information Metric

-----------------------
Hierarchical clustering
-----------------------

The program 'Hierarchical_Clustering' calculates the agglomerative hierarchical clustering
of a proximities (distances or similarities) matrix. It implements the most commonly used
algorithms, both unweighted and weighted, and also two parameterized families:

- Single Linkage
- Complete Linkage
- Arithmetic Linkage (UPGMA or Average Linkage)
- Geometric Linkage
- Harmonic Linkage
- Centroid
- Ward
- Versatile Linkage (parameter in range [-1.0, 1.0])
- Beta Flexible (parameter in range [-1.0, 1.0])

Versatile Linkage [13] is a family of space-conserving strategies, which includes several
of the most important algorithms as particular cases. The equivalences between clustering
algorithms are the following:

- Arithmetic Linkage Unweighted = UPGMA
- Versatile Linkage (param +1.0) = Complete Linkage
- Versatile Linkage (param +0.1) = Arithmetic Linkage
- Versatile Linkage (param 0.0) = Geometric Linkage
- Versatile Linkage (param -0.1) = Harmonic Linkage
- Versatile Linkage (param -1.0) = Single Linkage
- Beta Flexible (param 0.0) = Arithmetic Linkage

It is possible to generate two kinds of dendrograms:

- Multidendrograms [12]



radatools-5.2-README.txt 9 / 11

July 20, 2021 Crimson Editor

- Binary dendrograms

Multidendrograms solve the non-uniqueness problem of hierarchical clustering found in the
standard pair-group algorithms and implementations [12]. This problem arises when two or
more minimum distances between different clusters are equal during the amalgamation
process. The standard approach consists in choosing a pair, breaking the ties between
distances, and proceeds in the same way until the final hierarchical classification is
obtained. However, different clusterings are possible depending on the criterion used to
break the ties (usually a pair is just chosen at random!), and the user is unaware of this
problem.

The Multidendrogram variable-group algorithms group more than two clusters at the same
time when ties occur, given rise to a graphical representation called multidendrogram.
Their main properties are:

- When there are no ties, the variable-group algorithms give the same results as the
pair-group ones

- They always give a uniquely determined solution
- In the multidendrogram representation for the results one can explicitly observe the

occurrence of ties during the agglomerative process. Furthermore, the height of any
fusion interval (the bands in the program) indicates the degree of heterogeneity inside
the corresponding cluster.

If you choose to generate binary dendrograms, there are four options to choose:

- Best: returns the binary dendrogram(s) with maximum cophenetic correlation
- Unsorted: returns all the possible binary dendrograms
- Sorted: generates all the possible binary dendrograms sorted by decreasing value of

the cophenetic correlation
- Count: returns only the number of different binary dendrograms

When the number of binary dendrograms is very high [14], the Sorted option may exhaust the
available computer memory, so it is convenient to start with Count or Unsorted.

You may use the application MultiDendrograms instead of this tool if you prefer a
graphical user interface and plots of the multidendrograms [16]:

- http://deim.urv.cat/~sergio.gomez/multidendrograms.php

-----
Usage
-----

Here come some hints on the usage of Radatools:

- Each folder contains program files (*.exe), sample script files
(*.bat or *.sh) for each program, and some test files.

- It is highly recommended to have a look at the sample scripts and
test files (e.g. with Notepad, vi, nano or emacs) before proceeding
with your data.

- The programs may be run directly from command line, but it is more
convenient to create script files (*.bat or *.sh) which call the
programs with the necessary lists of parameters. Thus, it is
recommended that you make a copy of the companion script file
(*.bat or *.sh) of the program you want to use, edit it with a text
editor, and run it.

- When you run a program without parameters, an 'Usage' message
shows the list of expected parameters. The parameters are positional,
so be sure you pass the parameters in the right order.

- Read 'LICENSE.txt' to know the conditions to use Radatools.



radatools-5.2-README.txt 10 / 11

July 20, 2021 Crimson Editor

- Read 'CHANGES.txt' to know the history of updates to Radatools.

- Check periodically the home web site [17] to check if there is a new
version of Radatools available.

-------
License
-------

Radatools, Copyright (c) 2021 by
Sergio Gomez (sergio.gomez@urv.cat), Alberto Fernandez (alberto.fernandez@urv.cat)

Radatools is just a set of binary executable programs whose source code is available
in Radalib.

Radalib is free software; you can redistribute it and/or modify it under the terms
of the GNU Lesser General Public License version 2.1 as published by the Free Software
Foundation.

Radalib and Radatools are distributed in the hope that they will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with
Radalib (see LICENSE.txt); if not, see http://www.gnu.org/licenses/

----------
References
----------

[1] M.E.J. Newman and M. Girvan
Finding and evaluating community structure in networks
Physical Review E 69 (2004) 026113
https://doi.org/10.1103/PhysRevE.69.026113

[2] M.E.J. Newman
Analysis of weighted networks
Physical Review E 70 (2004) 056131
https://doi.org/10.1103/PhysRevE.70.056131

[3] Alex Arenas, Jordi Duch, Alberto Fernández and Sergio Gómez
Size reduction of complex networks preserving modularity
New Journal of Physics 9 (2007) 176
https://doi.org/10.1088/1367-2630/9/6/176

[4] Sergio Gómez, Pablo Jensen and Alex Arenas
Analysis of community structure in networks of correlated data
Physical Review E 80 (2009) 016114
https://doi.org/10.1103/PhysRevE.80.016114

[5] Alex Arenas, Alberto Fernández, Santo Fortunato and Sergio Gómez
Motif-based communities in complex networks
Journal of Physics A: Mathematical and Theoretical 41 (2008) 224001
https://doi.org/10.1088/1751-8113/41/22/224001

[6] Alex Arenas, Alberto Fernández and Sergio Gómez
Analysis of the structure of complex networks at different resolution levels
New Journal of Physics 10 (2008) 053039
https://doi.org/10.1088/1367-2630/10/5/053039

[7] Jordi Duch and Alex Arenas
Community detection in complex networks using extremal optimization
Phys. Rev. E 72 (2005) 027104
https://doi.org/10.1103/PhysRevE.72.027104



radatools-5.2-README.txt 11 / 11

July 20, 2021 Crimson Editor

[8] M.E.J. Newman
Modularity and community structure in networks
Proc. Nat. Acad. Sci. USA 103 (2006) 8577
https://doi.org/10.1073/pnas.0601602103

[9] M.E.J. Newman
Fast algorithm for detecting community structure in networks
Physical Review E 69 (2004) 066133
https://doi.org/10.1103/PhysRevE.69.066133

[10] V.D. Blondel, J.-L. Guillaume, R.Lambiotte and E. Lefebvre
Fast unfolding of communities in large networks
Journal of Statistical Mechanics: Theory and Experiment 10 (2008) P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008

[11] Clara Granell, Sergio Gómez and Alex Arenas
Mesoscopic analysis of networks: applications to exploratory analysis and
data clustering
Chaos 21 (2011) 016102
https://doi.org/10.1063/1.3560932

[12] Alberto Fernández and Sergio Gómez
Solving non-uniqueness in agglomerative hierarchical clustering using multidendrograms
Journal of Classification 25 (2008) 43-65
https://doi.org/10.1007/s00357-008-9004-x

[13] Alberto Fernández and Sergio Gómez
Versatile linkage: a family of space-conserving strategies for agglomerative

hierarchical clustering
Journal of Classification 37 (2020) 584–597
https://doi.org/10.1007/s00357-019-09339-z

[14] Sergio Gómez, Alberto Fernández, Clara Granell and Alex Arenas
Structural patterns in complex systems using multidendrograms
Entropy 15 (2013) 5464-5474
https://doi.org/10.3390/e15125464

[15] Sergio Gómez and Alberto Fernández
Radalib: Ada library and tools for the analysis of Complex Networks and more
http://deim.urv.cat/~sergio.gomez/radalib.php

[16] Sergio Gómez and Alberto Fernández
MultiDendrograms
http://deim.urv.cat/~sergio.gomez/multidendrograms.php

[17] Sergio Gómez and Alberto Fernández
Radatools: Communities detection in complex networks and other tools
http://deim.urv.cat/~sergio.gomez/radalib.php


