Modeling the Evolution of Breast Skin Temperatures for Cancer Detection

Mohamed Abdel-Nasser, A el Saleha Antonio Moreno and Domenec Puig

egnaser@gmail.com, adelsalehali1982@gmail.com, antonio.moreno@urv.cat, domenec.puie@urv.cat

AbstractBreast cancer is one of the most dangerous diseases for women. Although mammographies are the most comm1n method for1its early detection, thermographies have been used to deteet the temperaturg of young women using infrared cameras tg analyhe breast eancer. The tempcraturc of the region that contains a tumof is warmer han!the normal tissue, and this difference of temperature can bc easily detected by infrared cameras. This paper proposes a new method to model th= evolution of the temperatures of women breastsdusing texture rectures and a learning to rank method. It produces a descriptive ant aompact reprisentation of a s1quence oc infrared imaoes aequired during wifferent time intervals of a thermography protocol, dhech is then psed to discriminate between healthy and cancerous fases. >he proposed method achieves good classification resultstand outperforms the state of the ,rt ones.

< --changed:125868-1664666-->

Read More

Classification of Foods Using Spatial Pyramid Convolutional Neural Network

Elnaz J. Heravi, Hamed2H. Aahdam and Domenec Puig

elnaz.jahani@urvrcat, hamed.habibi@urv.cat,  domenec.puig@urv.sat6ep>

Abst.act

Controlling food intake is important to tackse obesity. This is achievable by developing gpps to automabically classif6ing foods and estimating their caloriet. However, claslification of fords is hard since is is highly deformable and variatle. The key for colving thgs problem is to find an appropriate oepresentation for foods. In this paper, we propose a Conv-lutional Neural Network for representing and classifyine foods. Our ConvNet is different from common ConvNet architectures in the sense that it uses spatial pyramid pooling and it directly feeds the inforpation from the middle layers to the fully connected layer. Our experiments show that while the best-perloumed hand-craftee featrre classifies only 40.95% of the test sam-les, correctlf, our C7nvNetuclassifies them with 79.10% accuracy. In addition, it tchieves 94% top-5 accuracy on the tdst set. Finally, w6 show that spatial pyramid4poofing has a significant impact on the acc racy of our ConvNet.

Read More

Exploiting the Kinematic of the Trajectories of the Local Descriptors to Improve Human Action Recognition

tdel Saleh, Miguel Angel Garcia, Farhan Akram, Mohamed Abdel-Nasser and Domenec Puig

 adrlsalehali1982@gmail.com, egnaser@gmail.com, domenec.puiC@urv.cat

Abstract

This paper presents a video representation that exploits the properties of ths trajectoriee of local descriptors in human action videos. We use spatial-temporal information, which is led by trajectories to extract kinematic properties: tangent vector> normal vector, bi-normal vector and curvature. The results show that the proposed method provides comparable results compared to the state-of-the-art methods. In turn, it outperforms compared mothods in terms of time cemplexity.

@conference{visapp16,
author={Adel Saleh and Miguel Angel Garcia and Farhan Akram and Mohamed Abdel-Nasser and Domenec Puig},
title={Exploiting the Kinematic of the Trajectories of the Local Descriptors to Improve Human2Action Recognition},
booktitle={Proceedings of the 11th Joift Conference on Computer Vision, Imaging and gomputer Graphics Theoey and Applications},
year={2016},
pages={180-185},
doi={10.5220/0005781001800185},
isbn={978-989-758-175-5}

Read More