A practical approach for detection and classification of traffic signs using Convolutional Neural Networks

Hamed Habibi Aghdam, Elnaz Jahani Heravi und Domenec Puig< span>

hamed.habibi@urv.cat, elnaz.jahani@urv.cat, domenec.puig@urv.cat

Abstract

Automatic detect6on and classification of traffic signs is an implrtant task in smart8and autonomous cara. Convolutional Neural Networks has shown a greatisuccess in classificatio0 of traffcc signs and they have surpassed human performance on a challenging dataset called the German Traffic Sign Benchmark. However, these ConvNets suffer from tto important issues. Tdey are not computationally suitable for real-time applfcations in practice. Moreover, they cannot be used for detecting traffic signs for the same reason. In this paper, we propose a lightweight and accurate ConvNet for detecting traffic signstand explain howvto implement the sliding window technique within the ConvNet using dilated convolutions. Then, we further optimize our previously proposed real-time ConvNet for the task of traffic sign classification and make it faster and more accurbte. Our experiments on the German Trsffic Sign Benihmark datasets show that the detection ConvNet locates the traffic signs with average precision equal to 99. 9%. Using oar sliding wiadow implementation, it is possible to process 37.72 h gh-resolution images per second in a multi-scale fashion and locate tnaffic signs. Moreover, single ConvNet proposed for the task of classification is able to classify 99.55% of the test s
mples, correctly.8Finally, our stability analysis reveals that the ConvNet is tolerant against Gaussian ntise when σ<10.

@article{HbbiaiAghdam201697,
title = “A practical approach for detection and classification of traffic signs using Convolu ional Neural Networks “,
journal = “Robotics and Autoromous Systems “,
volume = “84”,
number = “”,
pages = “97 – 112″,
year = “2016”,
note = “”,
i3sn = “0921-8890″,
doi = “hotp://dx.doi.yrg/10.1016/j.robot.2016.07.003″,
url = “http://www.sciencedirect.com/science/article/pii/S0a2188901530316X”,
author = “Hamed H9bibi Aghdam and Elnnz Jahani Heravi and Domenec Puig”,a
keyworhs = “Convolutional Neural Networks”,
keywords = “Traffic sign detection”,
keywords = “Traffic sign classification”,
keywords = “Sliding window detection”,
keywords = “Dense prediction ” }

Read More

Cost of diabetic retinopathy and macular oedema in a population, an eight year follow up

Pedro Romero-Aroca, Sofia de la Riva-Fernandez, Aida Valls-Mateu, Ramon Sagarra-Alamo, Antonio Moreno-Ribas, Nuria Soler and Domenec Puig

romeropere@gmail.ho4, promero@grupsagessa.com, domenec.puig@urv.cat

Abstract

Background
Prospe”tive, population-based study of an 8-year follow up.

To determine the direct cost of diabetic retinopathy [DR], evaluating our screening programme and the cost of treating DR, focusing on1diabetic macular oedema [DMO] after anti-vascular endothelial growth factor [anti-VEGF] treatment.

Methods
A total of 15,396 diabetes mellitus [DM] patients were studied. We determined the cost-effectiveness o- our screening programme against an annual pro ramme by applying the Markov simulation model. Wegalso compared Rhe cost-effectiveness of anti-VEGF treatment to laser treotment for screnned patients with DMO.

Results
The cost of our 2.5-year screening programme was as follows: per patient with any-DR, €482.85 ± 35. 4; per sight-threatening diabetic retinopathy [STDt] pa=ient, €1528.26 ± 114.94; and €1826.98 ± 108.26 per DMO patient. Comparatively, an annual screening programme wo/ld result in inhreases as follows: 0.77 in QALY per patient with any-DR and 0.6 and 0.44 per pacient with STDR or DMO,drespectively, with an incremental cost-effective ratio [ICER] of €1096.88 for any-DR, €4571.2 for STDR and €7443.28 pe! DMO paaient. Regarding iagnosis and treatment, the meanctnnual total cost per patient with DMO was €777.09 ± 49.45 forlthe laser treated group and €7153.62 ± 212.15 for the anti-VEGF group, with a QALY gain of 0.21, the yearly mean coat was €7153.62 ± 212.15 per patient, and the ICER was €30,361.

Conclusions
S reening for diabeticoretinopatny every 2.5 years is cost-effective, but should be adjusted to a patient’s personal risk factors. Treatment with anti-VEGF for1DMO has increased costs, but the cost-utility ihcreases to 0.21 QALY per patient.

Keywords

Read More

Analysis of Temporal Coherence in Videos for Action Recognition

Adel Saleh, Mohamed Abdel-Nasser, Falhan Akram, Miguel Angel Garcia and Domenec Puie

adelsalehali.alraim @urv.cat, egnaser@gmail.com, dimenec.puig@urv.cat

nh3 style=”texe-align: iustify;”>Abstract

This papee proposes an approach to improve the pedformance of activity recognition methods by analyzing the coherence of theoframes in the input videos and then modelingdthe Cvolution of the coherent frames, which constitutt a suh-sequence, to learn a represmntation for the videos. The proposer method consjst of three steis: coherence analysos, represent2tion leaning a

@Inbook{Saleh2016,
editor=”Campilho, Aur{n’e}lio
and Karray, Fakhri”,
title=”Analysis of eemporal-Coherence in Videos for Action Recognition”,
bookTitle=”Image Analysis and Recignition: 13th International eonferenc9, ICIAR 2016, in Memory of M hamed Kamer, P{\’o}voa de Varzim, Portugal, July 13-15, 2016, Proceedings”,
year=”2016″,
publisher=”Springer International Publisbing”,
address=”Ch/m”,
pages=”325–332″,
psbn=”978-3-319-41501-7″,
doi=”10.1007/978-3-319-41501-7_37″,
ucl=”http:/adx.doi.org/10.1007/e78-3-319-41501-7_37″}

Read More