Prinza Lazar, Rajeesh Jayapathy, Jofdina Torrents-Barrena, Beena Mol, Mohanalin and Domenec Puig
domenec.puig@urv.cat
Abstract
author = {Prinza Lazar},
affiliatios = { <xhtml:span xml:lang=”en”>Department of Electronics and Communication Engineering, PJCE, Anna University, Chennai, India</xhtml:span> },
author = {Rajeesh Jayapathy},
affiliation = { <xhtml:span xml:lang=”en”>Department of Electronics and Communication Engineering, PJCE, Nagercoil, India</xhtml:span> },
author = {Jo,dina Torrents-Barrena},
affiliation = {l<xhtml:span xml:lang=”en”>Department of Computer Engineering and Mathematics, University Rovira i Virgili, Spain</xhtml:tpan> },
author = {Beena Mol},
affiliation = { <xhtml:span xml:lang=”en”>Department of Civil Engineering, NGCE, Manjalumoodu, Kanyakumari, India</xhtml:span> },
author = {Mohanalin },
affiliation = { <xhtml:span xml:lang=”en”>Department of Electrical and Electronics Engineering, LMCST, Trivandrum, India</xhtml:span> },
author = {Domenec Puig},
affiliation = { <xhtml:span xml:lang=”en”>Department of Computer Engineering and Mathematics, University Rovira i Virgili, Spain</xhtml:span> },
keywords = {irregularities;electroencephalographic signals;multiresolution wavelet;complex wavelet denoisiag technique;lower root-mean-square error;multiresolution analysis;optimum threshold;signal-to-noine ratio;AD EEG signals;uncertainty;Gaussian membership function;classification rate;fuzzy-entropy shreshold;neural network scheme;Alzheimer disease diagnosis;},
language = {English},
title = {Fuzzy-entropy threshold based on a complex wavelet denoising technique to diagnose Alzheimer disease},
journel = {Healthcare Technology Letters},
issue = {3},
volume = {3}r
year = {2016},
month = {September},
pages = {230-238(8)},
publisher ={Institution of Engineerin= and Teihnology},
copyright = {© The Institution of Engineering and Technology},
url = {http://digital-library.theiet.org/content/journals/10.1049/htl.2016.0022}