Projecte de Final de Carrera

Enginyeria Informatica

2

UNIVERSITAT
ROVIRA | VIRGILI

Agent-based execution of medical
guidelines represented in the SDA*
formalism

Author:
José Miguel Millan Rosa

josemiguelmillan@estudiants.urv.cat

Progject Director:
Dr. Antonio Moreno Ribas

Escola Técnica Superior dEnginyeria
(ETSE)

Universitat Rovira i Vigili (URV)
http: //www.etse.urv.es

Grading Period: 2006-07

mailto:josemiguel.millan@estudiants.urv.cat
http://www.etse.urv.es/

Table of contents

L INErOAUCHION. ccuueieiereerneecsteessnnecssnnecssseessssecsssnecssseessssesssssessssnesssssssssssssssssssssssssansssses 5
2.Project Context Description. The K4CARE Project.........uueeeeeciiccrnnricccssccccnnnennene 7
2.1. What 1S KACARE.........oooioeeeee ettt ettt st e smee e s seeseeneeeseenes 7
2.2. The KACARE MOMEL......coiiiiiiiiiiiiieeeseee ettt sttt 10
B B N 1 T, 10 (<) OSSR PRSPR 11
22,2 ACKOTS .ttt et e b e e et e b e st eh e st e be e s ne e beeenereenn 12
2.2.3. Professional Actions and Liabilities.cccuevuieiiiriiiniiiiiiiiieieee e 13
2.3. Services and ProCEAUIES...........ccuiiiiiiiiciie ettt et e e e s te e e s te e e s saneeseesnnaeeens 14
2.3.1. Information DOCUMENLS........c.eviiriiiiiiiierieee ettt ettt et sttt s semene s 16
2.4, KACARE Partners...cc..eeeiiiiiiiieiiee ettt ettt ettt ettt sat e e st e e sateeeeaeeeeane 17
2.5. URV work in the KACARE..........cooiiiiiiiece et 18
3.The SDA* MOdEL.....uueieneiiineicssneisnecssnecsssnessssecsssnecsssnesssssessssesssssssssssssssssssssasssnss 19
3L INEEOAUCTION. ...ttt et et sttt et e bt e b et satesbe et ebee b ens 19
3.2. The SDA* Model: Syntax and SEMantiCs..........cc.eeerueerrieeeiieeeiieeeiieeeieeeeieeesreeesaeeesesee e mens 20
3.2.1. FOrmal deSCTIPLION.eeutieiiieiiieiitetie ettt ettt ettt e bt e et e et e s e smnnteesaeeenee 22
3.2.1.1. The Universe 0f DISCOUISE........eevertieriirieriieieeieniieie et sieete et siee e e eneesaeenees 22

3.2, 1.2 ELBIMENLS. ...ttt ettt et ettt ettt e st e e 23

3.2.1.3. COMMECLOTS. ...ttt ettt ettt ettt sat e et e sae e et esmeeeabeesbeeenneenaees 27

3.2.1.4. Sequences and CYCIES......ccuuiiiiiieiiieeie et see et e e ee e e e saa e e eeaeesaaeesneens 28

3.2.1.5. NON-dEteIMINISINL .. .eeutiiiiieeieniienieete ettt ettt ettt sbe et et seme e e et e saeenees 30

3201060, THIMIC. ettt ettt et e eht e et e a e s b e et nae s 31

3.2.1.7. ParalleliSImL.......eiiiiieiie et e e e e e e e e areeenaann 32

3.3. Construction and execution of health procedures with the SDA* Model............ccccoceaiiennnnne. 33
3.3.1. Abstract data type SDA*ProCEAUIE.........eeeiiiiieiieeiiie ettt e 33
3.3.2. Textual representation of the SDA™ procedures............ovvevciierieeiienieiiieieeeeee e 34
3.3.3. Execution Of SDA™ PrOCEAUIES........coviviiiriieiriie ettt ettt stee et e s e eeeees 35
3.3.4 EXAMPIES. ..ottt ettt st 38
3.3.4.1. Representing partial KNOWIEAZE...........cccveeriiiriiiiiiiiiiieiecieeeeee e 38

3.3.4.2. CSI’s Hypertension Diagnosis and Treatment..............ccceeeveeeiiieeiieenciee e 39

3.3.4.3. Comprehensive Assessment K4ACARE Procedure.............ccoeevieviiiiienieniiiieeeeeee, 40

3.3.4.4. The use of Antidepressant Medication in the Elderly.............cccccevviiiiniiiniiiiee 42

3.3.4.5. Management of Depression with Cognitive Impairment............cccccoceevervvenvincnnenne. 42

3.3.4.6. Management of Depression with Dementia............ccocoveveiieniienieenienieeiee e 43

3.3.4.7. Suicide: Risk of Assessment and Management..........c..cccceevveveeneenennicneenceneeneene. 43

4. K4CARE Multi-Agent SYSteIM....ccccecceeiccssnrecsssnnncssssnncssssnneeccsssssssnsssssssssssssssnes 45
4.2. KACARE MAS ATCRILECTUTE.eeiviieiiiieeiiieeiieeeieeeeiee et e esteeesevee e abeesssaeeesaeessseesnsaanseeans 45
4.3. SDA™ Agent-based EXECUROMN.cccuiiiiiiiiieiieeieeiee ettt ettt e te et eesbemmaeenseesseeenseens 47
T BT B N N < | O POSPSRPR 48
4.3.2. SDA™'S ACHIONS TIOW...c.etiiiiiiiiiiiiiieriteee ettt ettt 48
4.3.3. IIP execution MeSSAZE flOW.....cccuiiiiiiiiiiiieceiie et e eee e 49
4.3.4. Procedure execution mesSage flOW.........cccueeieriiiiiriiniiiinieeecee et 51

4.4. KACARE SDA™ ONOLOZY. ... cetteueieiieniieienitesitete ettt ettt set ettt ettt st st emem et st ebeeneeeneenees 53
R B 010 o)] RS PUPRRRPPRRRN 54
A4.2. ACTIONS. ..ttt ettt b ettt et e h e bttt eh e e mam bt et saee e 56
5.Design and implementation of the SDA* Agent.......cccocvereiiircccnnnnneriicccssssscnnnnes 59
5.1, COAE SEIUCKUTE... ..ottt ettt et sttt ettt et st e bt et eese e et st enbe et 59
5.2. SDA™ graph data StrUCLUTE.........cceivieeiiieeiiieeiie ettt et e e sreeetaeeeaaeeesssmmaeeeseeeenseeennns 60
5.2.1. SDA SUDPACKAGE.eoueiiiiiiiiiiiiiteetete ettt ettt et 62
5.2.2. ConNeCtOr SUDPACKAZE.......cccviiruiieiieiieetieeite ettt et eeteesteeebeessaeeseesssemneessaeensaensneenne 62
R TR 1] TSSO 63

5.3 S A EXECULOL c.ceeveeaeeeeeeeeeeeaeaeeeaeare———ereeee——e————eereeeeae———————ea—aeane 63

5.3.1. Event-based OrIeNtaION.ccooveeeieiieeeeeeeeeeeeeeeee e 64

5.3. 2. Finish CONAItIONS.cueiuiiiiieiieieiiieieee ettt ettt et st e st et e s e beemeans 66
5.3.3. SDA™ EXECULOT AESIZN.....ceueieutieiiieiieeiteeiie ettt sttt ettt ste et eeab e s mmme e sseeenseesaeeenne 67

54 SDIA™ AGRNL...uiiiiiiiiieeiie ettt ettt ettt e et e st e et et e e teesat e e bt e taeebeeetaeenbeentteebeeesaeenseeseeensann 68
TR TN B YNl 011 0] 107 /USSR 70
5.5.1. Defining and creating the OntdOgY........cccueeruieriieiieiiieie et 70
5.5.2. The generated COUE........cccuuiiiiiiiiiie ettt et e e ree e seteeesaeessmnnsseeenneees 71

5.6. Controlling problematic SITUATIONS.c..eeruirierierierientereete ettt ettt mems e 72
5.7. Developing in a distributed tEaML.........cccvieiiieiiieiieie ettt e 73

0. TESTING..cccccinninrrrriiniisnnnnrnicssissnnsrnecsssssssssnessssssssssnssses 75
7.Conclusions and future WorkK.........iieiiinisniicissniicnssnnicssssnecsssnsnessssssecssssssecsens 85
BLANNECX . uuuuiiiiiineiiiiinteiisinntecssnneesssssenesssssenssssssnssssssssssssssnesssssanssssssassssssassssssssssssssssnnns 87
8.1. Annex 1. What i1s a Multi-Agent SYStEeM?..........covvuiiiriiiiiiiieeiiie et eee e 87
B.1. 1. AZENt PTOPEITIES ...ccuveuiiiiiiiiiiieieeteet ettt sttt ettt e ee ettt enae e 87

B L. 2. AN TYPCS . ueiiieiiieeiieeette ettt ettt e etee et ee ettt e st e et e e et e e s bt e e enbeeennteeeanbeeesteeenssmmmmtteeens 88
8.1.3. MUlti-A@ENt SYSEEIMS.veiiieiiieiiiieeiieeeiieeeee e etee et e et e e seteeeeaeestreeesaeessaeessseeennnesseesns 88
8.1.3.1. Multi-Agent Systems adVantages...........ccceereeeruierieeiiienieeiienieeieeseeereessneseenseenenas 88

8.1.3.2. Multi-Agent Systems ManagemMeENt..........ceecuveerrueeeriueeerreeerreeenreesseronreeessreesssseeennns 89

8.1.3.3. Multi-Agent Systems Messages SIIUCHUTE.ccueerueerriierieeiienie et eieesiee e eees 90

8.1.3.4. Multi-Agent Systems Communication Protocols..........c.ccceevviieiieniiienienieeiieee, 96

8.2. Annex 2. Developing Multi-Agent Systems: JADE.........ccoocoiiiiiiiiiiiieeeeeeeee 108
8.2.1. JADE PaCKAZESceiuiiiiieiiieiieciie ettt ettt ettt et e e sbeestaeeabe e seeenbeeseeens s 108
8.2.2. The Agent PlatfOrm.........c.cooiiiiiiii ettt et eee e e e e eeseeeeas 110

8.2.3. Basic concepts Of the ontology.........cccueeiiiriieiiieiieiiieie et 112
8.2.4. Simplified APIto access DF and AMS SEIVICES.......cccvvririieeriiieeniieeieeeieeeeee e 112
2.5, DI SIVICE...ccutiiiiie ettt ettt e et e e et e e st e e st aeesasee e sbeesnsseeemnnasaeesssaeesseeennnes 113

8.2.0. AIMMISSEIVICE. ..ottt ettt ettt ettt et et st e st et s ae e bt et e s st e bt enbeeaee bt eneesee e semmemnee 113

LN 2SS (53) 1 L o T 115

1. Introduction

This project is related to the design and implementation of an agent-based platform within the
K4CARE project[1]. The work described in this document refers to a part of the work done by
the University Rovira i Virgili in this European research project. This document is divided in 4
parts.

One of these parts is the integration of the medical workflows designed or generated for the
project into the K4CARE's Multi-Agent System, also called clinical practice guidelines. This
medical workflows are represented in a new formalism designed which will be explained in
section 2. As it is still in development, the goal of this project is to design and implement the
tools needed to use afirst version of this format.

The product of this integration work is an Agent which will be in charge of the execution of all
the structures represented with this formalism in the system. All the agents in the platform which
need to execute one or more of these structures will invoke this agent in order to delegate to him
all the tasks of interpreting and managing all the tasks related to ths structure interpretation.

In the last part of this document, some tests over the generated code are presented in order to
have a verification of the correct functionality of the written code. These tests are structured in
some levels: the first level is centered in testing the data structure used to represent the medical
guidelines, the second level tests the execution engine, and in the third level the interaction of

this execution engine with the rest of the agents is evaluated.

2. Project Context Description. The K4CARE Project

[1]In eHealth it is increasingly necessary to develop tele-informatic applications to support
people involved in providing basic medical care (physicians, nurses, patients, relatives, and
citizens in general). The care of chronic and disabled patients involves life long treatment under
continuous expert supervision. Moreover, healthcare workers and patients accept that being cared
for in hospitals or residential facilities may be unnecessary and even counterproductive. From a
global view, such patients may saturate national health services and increase health related costs.
The debate over the crisis of financing healthcare is open and is a basic political issue for old and
new EU member countries and could hinder European convergence.

To face these challenges we can differentiate medical assistance in health centres from assistance
in a ubiquitous way (Home Care -HC- model); the latter can undoubtedly benefit from the
introduction of ICT (Informationand Communication Technolgies).

2.1. What is K4CARE

The K4CARE Project is one ICT project that will develop a platform to manage the information
needed to guarantee an ICT Home Care service. It will:
a) integrate information of different types and from different sources.
b) be integrated with ICT whilst ensuring private and customized data access.
c) use ontologies to define the profile of accessing subjects (e.g. physicians, patient) and
objects (e.g. disease, case study).
d) have a mechanism to combine and refine the ontologies to personalize the system, taking
into account the way a physician works and the indvidual patient characteristics.
e) incorporate 'know-how' from geriatric clinical guidelines as Intervention Plans (IP).
f) generate IPs from the healthcare centres databases if clincal guidelines do not exist or are
inappropriate fora particular situation.
g) configure a knowledge-based decision support tool that can supply eServices to all
subjects involved in the Home Care model.
h) extract evidence from real patients and integrate it with published evidence derived from
RCTs.
The main objective of the K4ACARE project is to improve the capabilities of the new EU society
to manage and respond to the needs of the increasing number of senior population requiring a
personalized HC assistance'. The project will capture and integrate the information, skills,
expertises, and experiences of specialised centres and professionals of several old and new EU

1 - HC has to be properly addressed to the patients who can derive the higher benefit: the typical HC Patient
(HCP) is an elderly patient, with co-morbid conditions and diseases, cognitive and/or physical impairment,
functional loss from multiple disabilities, impaired self-dependency. We shall refer to this “average patient” as the
HCP.

countries, and will incorporate them in an intelligent web platform in order to provide e-services
to health professionals, patients, and citizens in general. To achieve this goal, the members of the
project will provide the scientific and technical knowledge, develop the intelligent technologies
to manage that knowledge, supply the ICT infrastructure for anticipating and hastening the
medical assistance, implement a web-based platform to approach these techndogies to healthcare
professionals, patients, and citizens, and assess the platform services in a scenario of combined
old and new EU healthcare institutions: HC services and related hospitals, rehabilitation centres,
geriatric departments, and town councils.

The above main objective can be detailed in other more specific objectives. In the next lines
general objectives, scientific objectives, and technological objectives are exposed separately.
General objectives describe the aims of the project from a global perspective. Scientific and
technological objectives concern the technical aspects of the project either from a CS, ICT, or

medical perspective.

General objectives
Ol. Generate a new ICT Sanitary Model (K4CARE model) for assisting HCPs in the enlarged
Europe. The system will seamlessly integrate services, healthcare practices, and assistance

knowledge coming from old (e.g. Italy, UK) and new (e.g. Czech Republic, Romania, Hungary)
European countries.

O2. Propose a telematic and knowledge-based CS platform (K4CARE platform) that implements
the above model. This platform will include all the technologies developed in the project and it
will assist all the human actors involved in the care of HCPs. These actors include physicians,
nurses, social workers, rehabilitative professionals, patient relatives, patients themselves, and
citizens in general.

03. The platform will be tested on west (Italy, UK) and east (Czech Rep., Romania, Hungary)
EU societies through pilot tests in order to highlight their differences and also to pursue a
convergence to a homogeneous way-of-doing, contributing to a unique European Healthcare ICT
society in HC.

O4. The K4CARE platform can serve as a means of integrating knowledge about HCPs
assistance all over the new and old EU countries. Some healthcare centres from Italy, UK, Czech
Republic, Romania and Hungary will work to demonstrate that sharing this sort of knowledge
across EU countries is not only possible but also beneficial and necessary for achieving an
European standard HC service supported by the newtechnologies.

Scientific Objectives (Integrating information)

O5. The project will define a solution for Electronic Health Record (EHR) incorporating lessons
learned in past experiences (e.g. [4C/TripleC, PROREC and Provenance projects), and exploiting
the knowledge of the consortium about standards within this field. The defined EHR will be
implemented and used to store information about HC. This EHR will integrate different data

types (e.g. text, numerical values, multimedia parts) and documents coming from different
sources (e.g. hospital services, laboratories, consultations, specialists, relatives and patients at
home).

06. Within the project, the cooperating healthcare partners will pre-process information about
physicians, patients, citizens and other agents involved in the K4CARE model and will fill in the
EHR with it in order to have a test bench with real data. The EHR will integrate information
coming from different EU member countries (homogenising the differences) and will be under
continuous evaluation and adaptation deriving from the specialised partners indcations.

Scientific Objectives (Knowledge representation)
O7. Define the Actor Profile Ontologies (APO) for representing the profiles of the subjects

involved in the K4ACARE model: healthcare professionals, patients and relatives, citizens, and

social organisms. APOs contain the skills, concerns, aspirations, etc. of the people that they
represent, together with the healthcare services that those people offer to or receive from the
K4CARE model (e.g. medical services such as drug prescription, clinical consultations,
laboratory analysis; social services such ascounselling, information , advice, social support).

08. Define the patient-Case Profile Ontologies (CPO) for representing symptoms, diseases,
syndromes, case mix. APOs and CPOs describe "know-what" knowledge about agents accessing
the K4ACARE model, and "pure" pathologies the K4ACARE model gives support to, respectively.
These ontologies are based on terms related to symptoms, signs, drugs, medical and surgical
procedures, dietetic conditions, physical and hygienic requirements, cognitive functions, self-
dependency, etc.

09. Define Formal Intervention Plans (FIP) for a number of disease and syndrome treatments.
These FIPs will be generated from the information deriving from the available evidence-based
clinical practice guidelines that represent standards of practice, particularly in the fields of
geriatrics. These FIPs represent the professional worldwide existing "know-how" knowledge
within the K4CARE platform, and they will guide the services the system offers to the
professional users. In other words, FIPs are the explicit expressions of how HC must be provided

in a growing ageing EU.

Technological Objectives (Knowledge adaptation and use)
O10. Personalise the access to the K4CARE platform. Adapt the APOs to the user requirements
in order to customize the access to the EHR and the assistance provided by the K4CARE model,

because not all the patients wish their care in the same way (in terms of services, treatment,
explanation, terminology, etc.). The developed personalising methods will also be applied to the
care-givers ontologies in order to represent the fact that not all the professionals interact with the
healthcare system in the same way. The particularized ontologies and the interface technologies,
together with usability and security aspects, will play a crucial role in the acceptance and
socialization of the K4CARE platform.

O11. Personalise the assistance to senior citizens. CPOs as they stand are not valid in real
practice since a HCP has a combination of features which makes his/her treatment different from
any other treatment. Developed technologies for merging prototypic CPOs will be used to have
CPOs adjusted to the individual condition of the patient.

O12. FIPs will be inductively learned from the EHR with the use of new machine learning
techniques. These techniques must be developed and tested in the domain of HCPs. They are
learned from the procedures regarding past patients stored in the system.

Technological Objectives (Service Supplying)

O13. Design and implement intelligent agents that allow users to access the EHR, edit, adapt,
and merge ontologies, and introduce and induce FIPs. Combine these intelligent agents in a
multi-agent system that provides e-services to care-givers, patients and citizens (e.g. scheduling
of prolonged clinical treatments, intelligent decision support, intelligent distribution of data
among users). Deliver those services through the Internet and the mobile telephony in a safe,
everywhere, anytime way.

O14. Develop an application that will be integrated in the K4CARE platform for localizing
patients topographically. This is particularly relevant for some sort of patients with memory or
cognitive impairments and also in orderto anticipate the medical and care actions.

2.2. The K4CARE Model

In this section the whole project model[02] is described. This model contains a description of the
different actors, services, etc. which conform the system. First the model will be described, and

in the next sections its different elements will be explained:

« The system actors.
- The professional actions and liabilities.
« The services and procedures.

« The information documents.

10

2.2.1. The Model

The K4CARE model provides a paradigm easily adoptable in any of the EU countries to project
an efficient modelof HC[03].

THE K4CARE MODEL

HCAS HCAS
Actor Service Actor Service

" Action e procedure | | B[Acion |4
HCNS

Actor Service

. Data/Information
ACtIOﬂ g e AR S LN R Procedure

Figure 1. The K4CARE Model Architecture for HC

In the model, services are distributed by local health units and integrated with the social services
of municipalities, and eventually with other organizations of care or social support. The model is
aimed at providing the patient with the necessary sanitary and social support to be treated at
home. To accomplish this duty, the K4CARE model gives priority to the support of the HCP, his
relatives and Family Doctors (FD) as well. Because of its aim, the model is represented by a
modular structure that can be adapted to different local opportunities and needs. The success of
this model is directly related to the levels of efficacy, effectiveness and best practice of the
health-care services the model is able to support. As shown in Figure 1, the K4CARE Model is
based on a nuclear structure (HCNS) which comprises the minimum number of common
elements needed to provide a basic HC service. The HCNS can be extended with an optional
number of accessory services (HCAS) that can be modularly added to the nuclear structure.
These services will respond to specialized cares, specific needs, opportunities, means, etc. The
distinction between the HCNS and the complementary HCASs must be interpreted as a way of
introducing flexibility and adaptability in the K4CARE model. Going into detail, each one of the
HC structures (i.e. HCNS and HCAS's) consists of the same components: Actors are all the sort
of human figures included in the structure of HC; Professional Actions and Liabilities are the
actions each actor performs to provide a service within the HC structure; Services are all the
utilities provided by the HC structure for the care of the HCP; Procedures are the chain of events

that leads an actor in performing actions to provide services; Information are the documents

11

required and produced by the actors to provide services in the HC structure. As new HCASs are
incorporated to the KACARE Model, new actors, actions, services, procedures and information
enter to be part of the extended model. In this way, the K4CARE model is compatible both with
the current situation in the European countries where the international, national, and regional
laws define different HC systems for different countries, and also with the forthcoming expected
situation in which a European model for HC was decided.

2.2.2. Actors

In HC there are several people interacting: patients, relatives, physicians, social assistants,
nurses, rehabilitation professionals, informal care givers, citizens, social organisms, etc. These
individuals are the members of three different groups of HC actors: the patient; the stable
members of HCNS (the family doctor, the physician in charge of HC, the head nurse, the nurse,
the social worker, each of them present in the HCNS); the additional care givers.

&

S
o

A - Evaluation Unit
A+B - Stable Members
A+B+C - HCNS

Figure 2. Actors in the Home Care Nuclear Structure (HCNS)

The family doctor, the physician in charge of HC, the head nurse, and the social worker join in a
temporary structure — the Evaluation Unit — devoted to assess the patient’s problems and needs,
to decide the treatment (by constructing the Individual Intervention Plan — 1IP — based on one or
more FIPs) and to monitor its progress. The patient (i.e. the HCP) is in the centre of the HCNS of
the K4CARE model (see Fig.2), and the rest of the groups are organised around it as a symbol of
a patient-oriented HC model.

12

2.2.3. Professional Actions and Liabilities

These represent general actions that each one of the actors in the K4CARE model performs in his
duties within the HCNS service. Two lists of actions are provided for each sort of actor: the list
of general actions, and the list of HCNS actions. The list of general actions is intended to contain
all the actions that actors are expected to perform in a general purpose Home Care System. The
list of HCNS actions complements the explanation with the specific actions the K4ACARE Model
define for the actors involved in the HCNS. The HCNS actions are grouped following the
standard below:

- P.xx — Patient Actions

- BO.xx— Back Office Actions

- EU.xx — Evaluation Unit Actions

- M.xx —Medical Actions

- M.FM.xx — Medical Actions performed by the Family Doctor

- M.SP.xx— Medical Actions performed by the Specialist Physcian

- N.xx — Nursing Actions

- CM.xx — Case Management Actiors

- S.xx— Social Actions

HCNS actions are those required to accomplish the procedures that implement the care services
of the HCNS. Any action represents a professional activity for which the actor (or group of
actors) is liable. In the next tables someaction examples are presented:

P.1 confirm appointment

pP.2 agree on interventions

P3 give consent

P4 request certification

P.5 ask intervention

BO.9 supervise HCP information
BO.1 provide information

BO.2 ask information

Table 1. HCNS Patient list of actions

13

BO.1 provide information

BO.2 ask information

BO.4 assign actor

EU.1 evaluate through scales

EU.2 define intervention plan

EU.3 define outcomes

EUA4 schedule controls

EU.5 schedule re-evaluations

M.1 perform Clinical Assessment

M.2 perform Physical Examination

M.3 request Diagnostic Procedures

M.4 request Laboratory Analysis

M.5 prescribe Pharmacological Treatment
M.6 prescribe non-Pharmacological Treatment

Table 2. Summarized HCNS Physician in Charge list of actions

2.3. Services and Procedures

The HCNS provides a set of services for the care of HCP. These services are classified into
Access services, Patient Care services, and Information services.

Access services see the actors of the HCNS as elements of the KACARE model and they address
issues like patient’s admission and discharge from the HC model. Patient Care services are the
most complex services of the HC model by considering all the levels of care of the patient as part
of the HCNS. Finally, Information services cover the needs of information that the HCNS actors
require in the K4CARE model. Examples of very relevant services are: the Comprehensive
Assessment (which is the service devoted to detect the whole series of HCPs diseases, conditions,
and difficulties, from both the medical and social perspectives), the Intervention Plan Definition
(which represents the course of actions to be performed in order to provide care to the HCP in
terms of treatment and support) and the Intervention Plan Performance (which defines the
execution of a previously defined IP). In the KACARE Model a procedure represents the way
that the actions provided by/to the actors are combined to accomplish one service. The following

table summarizes some of the services and proceduresin the K4CARE:

14

A. ACCESS SERVICES
1. Individual Services
1. HC Request
ii. HCP Admission
iii. HCP Discharge
iv. Professional Admision
v. Professional Discharge
vi. Edit HCP/Professional information
2. Structural Services
1. EU Constitution

ii. EU-HCP Binding

Table 3. Summarized K4CARE HCNS Services

HC Request
(a) The FD makes a HC Request demand HC for a particular HCP.

HCP Admission
(a) PC and HN consider the pertinence and the relevance of informationreported in the request
(b) In case of non sufficient information the PC and HN ask the FD to integrate the request
(c) In case of non pertinent or non relevant request, the PC and HN reject the request
(d) PC and HN admit the patient to the HC, if the information is sufficient

HCP Discharge
(a) The HCP is discharged in case of: reaching of outcomes (as defined by the IIP); refusal of services;
moving to other place than house; death. The discharge is done by PC and HN.
(b) The service can be suspended, in case of temporary admission to hospital. For the time of admission.
Suspension is done by PC and HN.

Professional Admission
(a) Defined actors are admitted in the system at the time of first assignment to aservice. The admission is
done by the PC and HN.
(b) The actor accepts admission.

Professional Discharge
(a) An actor with a professional profile is discharged after a defined period subsequent the last
participation to a service. It is done by the PC and HN.

Edit HCP/Professional information
(a) The change ofadministrative data concerning the actors is done by the PC and HN

Table 4. K4CARE Procedures in Individual Services from Access Services

15

2.3.1. Information Documents

The HCNS structure defines a set of information units whose main purpose is to provide
information about the care processes realized by the actors to accomplish service. Different kinds
of actors will be supplied with specific information that will help them to carry out their duties in
the K4ACARE model. All these data are considered here to be part of documents. Different types
of document havebeen classified as follows:

- Documents in Access Services: the information requiredin each one of the K4CARE access
services;

- Documents in Patient Care Services: the support to actors taking part of the patient care
services. Since these documents may have different general purposes inside the sets of
services and procedures, they can be sub-divided into request documents, authorization
documents, prescription documents, and anamnestic documents;

- Documents in Information Services: in order to support the information services a list of
documents is defined. In general, information service documents report on underlying
activities or on officially recognized information, related to HC. A special service is
represented by the possibility of exchanging messages amongactors.

Nevertheless, a classification of the documents according to the patient care services is also
provided, in order to relate documents to the patient care services in which tey are used.

In the next table, some documents in the K4ACARE are listed.The rights of the actors to read or
write these documents are also depicted in the table:

Name Code EVALUATION UNIT
5 Z
o & e 5 £ | 2
< m o — [l <
= 5 7 X v O
O [~ = b &
Q z 5 o 7 20 Z
a = z = & = & ol =
5= Z 3 & o 5= =
= = 2 < 2 = - z 2 <
= c = S 2 = ==
sle| T | ¢ S| 8|8
= 5 Z O
~ n
HC Request Documert ADO1 w R R R
HCP Admission Document ADO02 RI|W|R|W]|R
HCP Discharge Document ADO3 W|IR| W]|R R R R R R R
Professional Admission Document ADO04 W|lR| W]|R R* R* R* R*
Professional Discharge Document ADO5 W[R| W]|[R R* R* R* R*
EU Constitution Document ADO06 R R|W/|[R R

* According to competencies; W: authorizgion to write and modify; R: authorization to read.

Table 5. Documents in K4CARE Access Services

16

2.4. K4CARE Partners

As one can deduce, the K4CARE Project is being developed by a group of member entities each

one of them specialised on its field. The next table is presentes alist of these participants:

Participant
Participant no. Name Organization
short name
1 (coordinator) | Universitat Rovira i Virgili URV
2 Centro Assistenza Domiciliare Azienda Sanitaria Locale RM B | CAD
3 Czech Technical University in Prague CvuT
4 University of Perugia UNIPG
5 Telecom Italia S.p.A. TI
6 European Research and Project Office GmbH EURICE
7 Ana Aslan International Academy of Aging ANA
8 Fondazione Santa Lucia FSL
9 Computer and Automation Research Institute of the Hungarian MTA SZTAKI
Academy of Sciences
10 The Research Institute for the Care of the Elderly RICE
11 Amministrazione Comunale di Pollenza COMPOL
12 General University Hospital in Prague GUH
13 Szent Janos Hospital SJH

Table 6. The K4CARE partners

These partners are divided in three groups: the administration group, the technical group and the

medical group.

- The administration group is composed by the partners which are implied in tasks of

coordination and administration of the whole project. The participants who belong to this group
are CVUT, CAD, EURICE and URV.
- The technical group consists of the members which are involved in the technical

elements of the project. This means the design, development and testing of the different technical

components in the project, and, also the connection of these tools with the medical knowledge.
The entities involved in this task are TI, MTA SZTAKI, CVUT and URV.

- The medical group is the one which is in charge of the different medical issues in the

17

project. This means that the partners from this group are in charge of formalising and providing
their knowledge to the technical group members, and also, to supervise and feedback the new
knowledge and tools. The members of this group are SJTH, GUH, RICE, COMPOL, FSL, ANA,
UNIPG and CAD.

2.5. URV worKk in the K4CARE

As it can be inferred the University Rovira i1 Virgili has some tasks into this project. These tasks
are mainly related to the administrative and to the technical parts of the project. In the case of the
administrative tasks the URV has to:

e Coordinate the work of the different partners in the project.

e Be in charge of writing the documentation related to this coordination.

e Administrate its internal works.

The list of technical tasks is, in fact, longer than the administrative one because the University's
staff which is involved in this project are mainly IT Engineers and Doctors. So the tasks of the
URV in the technical part ofthe project are the following:
e Develop a formalism to represent the medical guidelines which appear in the project and
all the needed techniques to work with this formalism.
e Design and develop the required ontologies to represent the medical knowledge related to
the HomeCare.
e Develop techniques of tailoring for each actor in the system.
e Design and implement part of the Multi-Agent System (MAS) which will be the final
K4CARE platform system.
e To research about the most useful techniques and products in the market that would be

useful in all the mentioned tasks.

The work reported in this document is centered in the 13™ K4CARE's objective which is the
design and implementation of an intelligent agent platform. Concretely this work consists in the
design and implementation of the medical workflows execution engine. The following chapters
will describe this work, so the next chapter describes the medical guidelines formalism, the
SDA*. In chapter 4 the K4CARE's Multi-Agent Platform will be described, and finally, the
chapter 5 will introduce to the reader the design and implementation of an agent-embeddable

execution engine.

18

3. The SDA* Model

One of the K4CARE's objectives is to develop a new formalism to represent clinical guidelines.
Clinical practice guidelines, [13] are collections of practical information for use by doctors and
other medical professionals. Often, these are gleaned from systematic review of medical journals
and other published material. They are a prime tool for evidence based medicine, and require

frequent updating as new information becomes available.

There exist some formats to represent guidelines like ASBRU [04][19][21], PROforma
[04][20][21], etc, but K4ACARE uses a new formalism [04] designed by Dr. David Riafio which is
presented here.

3.1. Introduction

In the K4CARE project, procedures, formal intervention plans and individual intervention plans
are the basic structures to represent health care procedural knowledge (or know how). In this
setting, a procedure is described as an implementation of a health care service by means of a
combination of actions. For example, the steps that configure a blood analysis, or the health care

activities involved in a comprehensive assessment.

Formal Intervention Plans (FIPs) are defined as formal structures representing the healthcare
procedures to assist patients suffering form particular ailments or diseases. They contain
indications to all the actors involved in the care process (i.e. healthcare professionals, patients
and relatives, etc.) in order to provide the best coordinated and effective action plan. A FIP on
hypertension, for instance, provides the indications of how to act with a hypertensive patient in
general. FIPs are general structures that have to be adapted to the particularities of a patient
before it is actionable and applicable to this patient. In the K4CARE project the structure
resulting from this adaptation is called Individual Intervention Plan (IIP).

In the K4CARE Project, these three structures are used to:

e Represent the professional worldwide existing "know-how" knowledge within the
K4CARE platform.

e Guide the K4CARE services the system offers to the professimal users

e Make explicit the way Home Care (HC) must be provided in a growing ageing EU

e Offer a knowledge representation frame in which the new machine learning techniques
developed in the project make explicit the knowledge about HC interventions implicit in
the Electronic Health Care Record (these are learned from the procedures regarding past
patients stored in the system);

e Offer a representation frame in which procedural knowledge about “pure” pathologies

19

can be integrated in complex or co-morbid pathologies;

e npersonalize the care to particular patients, taking into account their specific
characteristics;

e develop a family of FIPs representing procedural knowledge about the treatments of the
syndromes targeted in the K4CARE project;

e adapt to a common representation several clinical guidelines already published by
international healthcare organizations as the National Library of Medicine and the
National Guideline Clearinghouse in the USA, the New Zealand Guidelines Group, the
Scottish SIGN, etc.;

e use knowledge engineering methods to create new formal representations for conditions
and diseases relevant in the project that do not have any trustable treatment published or
known. These FIPs will integrate the experiences in the treatment of such cases by all the
healthcare partners of the K4CARE consortium.

3.2. The SDA* Model: Syntax and Semantics

SDA[04] stands for State-Decision-Action, SDA* (SDA star) represents the repetition of states,
decisions and actions in order to describe health care procedural knowledge as, for example,
K4CARE procedures, FIPs, or IIPs. In the SDA* model, states are used to describe patient
conditions, situations, or statuses that deserve a particular course of actions which is totally or
partially different from the actions to be followed when the patient is in other state. It provides a
response to the fact that a disease, ailment, pathology, or syndrome can present alternative
degrees of evolution whose treatment must be distinguished. Decisions in the SDA* model
capture the need of procedural knowledge to represent alternative options whose selection
depends on the available information about the patient. In this sense, decisions are able to unify
in a single representation of the procedural knowledge alternative courses of actions that have to
be applied to patients that meet different conditions. Unlike states, decisions are not intended to
make the degree of evolution of a disease explicit, but to orientate a general purpose treatment to
the particular characteristics of the patient; for example in the treatment of hypertension, high-
blood-pressure is a patient condition that may deserve a special treatment and, therefore, if
should be represented as a state. On the contrary, in the treatment of cardiac insufficiency, the
patient condition high-blood-pressure provides information which is relevant to adapt the
treatment, but not to decide on the treatment as a whole, which is based on other conditions as
structural-heart- disease or prior-heart-problems. So in cardiac insufficiency, high-blood-pressure
should be taken as a decision. Finally, actions are the proper treatment steps in the SDA*
procedural knowledge that are performed according to the preceding decisions.

20

States, decisions, and actions are combined to form a joined representation of how to deal with
a particular health care situation (e.g. a therapy). For example, Figure 2 depicts the FIP that was
published by the Institute for Clinical Systems Improvement (www.icsi.org) to diagnose and
treat hypertension. It is based on the following indications:

[. Patients in the FIP can be in four alternative states:
a) Screening and identification of elevated BP in patients with diabetes, chronic kidney disease, heart
failure, or CAD (FIP element #1).
b) Initial assessment completed; i.e. evaluated, accurately staged, and complete risk assessed (FIP
element #3).
c¢) Hypertensionis suspected to be caused by secondary causes (FIP element #5).
d) Hypertensionis under control and a continuing care must start (FIP element #12).

IT. The process is based on three yes-no decisions (one of them appearing twice in the FIP):
a) Is a second cause of hypertension suspected (FIP element #4)?
b) Is the blood pressure at goal; i.e. within normality limits (FIP elements #7 and #9)?
c) Is it a resistant hypertension; i.e. have we fail to achieve a normal BP despite the use of a rational
triple-drug regimen in optimal doses (FIP element #10)?

II1. The actions proposed for the diagnosis and treatment are:
a) Confirm hypertension on the initial visit, plus two follow-up visits with at least two BP measures at

each visit; following standardized BP measurement techniques, including out of office or home

blood pressure measurements (FIP element #2).

b) Consider a thiazide-type diuretic as initial therapy in most patients with uncomplicated
hypertension (FIP element #6).

¢) For many patients, two or more drugs in combination may be needed to reach hypertension goals
(FIP element #8).

d) Refer to hypertension consultation (FIP element #11)

In the next subsections the SDA* model is formally introduced, followed by the explaination of
how sequences and cycles are made in the model, what non-determinisms the model is able to
deal with, and the temporal model which is beneath the SDA* model.

21

1
SCREANING AND
IDENTIFICATION OF
ELEVATED BP IN PATIENTS
WITH DIABETES, CHRONIC
KIDNEY DISEASE, HEART
FAILURE OR CAD.

2
CONFIRM ELEVATED
BLOOD PRESSURE

A

3
COMPLETE INITIAL
ASSESSMENT: EVALUATE,
ACCURATELY STAGE AND
COMPLETE RISK

ASSESSMENT.
5
4 yes ORDER ADDITIONAL
1S SECONDARY WORK-UP
CAUSE SUSPECTED? CONSIDER REFERRAL

no

3
LIFESTYLE MODIFICATIONS
+/- DRUG THERAPY

7
BP AT GOAL? yes

no

8
CHANGE TREATMENT:
pf 1 INCREASE INITIAL AGENT
2. ADD ANOTHER AGENT FROM A DIFFEREFNT CLASS
3. SUBSTITUTE NEW AGENT

9
BP AT GOAL?

5
6 ORDER ADDITIONAL

LIFESTYLE MODIFICATIONS Y
+/- DRUG THERARY

10
RESISTANT

WORK-UP
HYPERTENSION? CONSIDER REFERRAL

Figure 2. FIP on hypertension diagnosis and treatment

3.2.1. Formal description

The SDA* model is introduced to represent knowledge on procedural activities in health care. In
the next sections, the SDA* model is described in terms of the domain terms, the elements, and
the connections that describe the health care procedure that is being formalized.

3.2.1.1. The Universe of Discourse

Given D a particular disease, ailment, pathology, or syndrome, a finite set of terms Vp={vI, ...,
vn} within the medical domain of D is defined to represent any descriptive or procedural health
care knowledge on D. For example, the terms in the hypertension treatmentcontained in Figure 1

22

are seventeen: screening-and-identification-of-elevated-BP, diabetes, chronic-kidney-disease,
heart-failure, CAD, confirm-elevated-blood-pressure, complete-initial-assessment, secondary-
cause-suspected, additional-work-up, consider-referral, life-style-modifications, drug-therapy,
BP-at-goal, change-treatment, resistant-HT, HT-consult, and HT-continuing-care.

Some of these terms are defined as state terms (i.e. SpS Vp is the set of state terms). State terms
represent facts that are useful to determine the condition of the patient in the process the SDA*
model is describing. In the SDA* model, a patient condition contains all the terms observed for
the patient in a particular moment (i.e. signs, symptoms, antecedents, taking drugs, secondary
diseases, test results, etc.), therefore it is a subset of the set of terms Vp.

The set of decision terms D,S V) is the set of all the terms in Vp that may be required by
medical experts to choose among alternative medical, surgical, clinical, or management actions
within the treatment of the disease D that the procedure globally describes. State and decision
terms may be used to define any patient condition possible in D.

The set of action terms A,S V) is the set of all the terms that represent the medical, surgical,
clinical, or management actions that a doctor may decide on a patient in the course of the
treatment of that patient’s disease or health care procedure.

Though these three sets are not necessarily mutually disjoint, they together must contain all the
feasible terms in D, i.e. Vp =SpUDpUAp. For example, in the above mentioned case of
hypertension, Shypertension = {screening-and-identification-of-elevated-BP, diabetes, chronic-

kidney- disease, heart-failure, CAD, complete-initial-assessment, secondary-cause-suspected,

BP-at-goal, HT-continuing-care}, Dhypertension = {secondary-cause-suspected, BP-at-goal,

resistant-HT}, and Ahypertension = {confirm-elevated-blood-pressure, additional-work-up,
consider-referral, life-style-modifications, drug-therapy, change-treatment, HT-consult} would
be the set of state variables, decision variables, and action terms, respectively. Observe that the
underlined terms are state and decision terms simultaneously.

In the first version of the SDA* model the universe of discourse is based on a set of the primitive
medical terms that may be used to construct states, decisions, and actions. In forthcoming
versions of the SDA* model, the universe of discourse will be extended to include Boolean
variables (i.e. variables that are allowed to have two values: TRUE or FALSE), and later multi-
valued variables (i.e. variables that can take one out of several possible values). This means that
in this first version the health condition of a patient is defined exclusively by all the signs and
symtoms this patient has.

3.2.1.2. Elements

The set of terms Vp is used to define the three basic elements of the SDA* model: states,
decisions, and actions. Formally speaking, a state s is a subset of state terms (i.e. s€(Sp)); a
decision d is based on a subset D of decision terms (i.e. DEgp(Dp)) and it is defined as a finite

23

list <D; DI, D2, .., Dk>, such that Di€gp(D) is a decision alternative (or branch),
D=D,UD,U...UDy, and k >0 is the branching factor of the decision. An action a is a subset of
action terms (i.e. a€ gp(Ap)).

From the point of view of semantics, a state (or SDA* entry point) describes an abstract patient
condition in which all the terms in the state hold. For example, the state {diabetes, complete-
initial-assessment} represents all the patients with both diabetes and a complete initial
assessment, but which may also have other possible features. From a logical point of view, a
state is a conjunction of state terms. From a functional point of view, the states of a SDA*
procedure are the entry points to that procedure or, in other words, the points where the treatment
described can start.

If C € (SpuUDy) is the current condition of a patient, we say a state s of a SDA* procedure is a
feasible entry point of that patient in that procedure if and only if s & C. It may happen that one
patient has several feasible entry points for the same SDA* under the same condition. It may also
happen that one or several states are included in other states of the same SDA* (e.g. s1 €s,). In
this case, every time s, is a feasible entry point, s; is also a feasible entry point. Empty states are
also possible and they represent states in the SDA* procedure that any patient meets. Observe
that a state s that does not contain a state term v will be a feasible entry point to both patients
whose condition comprises v and patients whose condition does not comprise v (see Table 7). If
we want to change this behavior we have to define two terms for the same health care concept,
one being the negation of the other one (e.g. diabetes and not-diabetes). This way, a state
containing the term not-diabetes (i.e. negation of diabetes) will not be a feasible entry point for
diabetic patients whose condition does not comprise not-dabetes.

v € PATIENT CONDITION | v & PATIENT CONDITION
vE s |sis a feasible entry poirt s 18 NOT a feasible entry
point
vE&s |sisa feasible entry poirt s is a feasible entry point

Table 7. Basic logic rule of feasible entry points

A decision (or SDA* branching point) describes a point of the SDA* where the treatment can
follow alternative courses of action depending on which are the decision terms the treated patient
meets. For example, the set of decision terms D = {stagel-HT, stage2-HT, low-BP, BP-at-
goal}could be used to propose alternative treatments whether the patient is hypertensive (D] =
{stagel-HT, stage2-HT} SD), hypotensive (D.={low-BP} SD) or none (D;={BP-at-goal} SD-(
D;UD:;)). From a logical point of view, a decision represents a disjunction of conjunctions on a
set of decision terms. From a functional point of view, decisions allow the represented SDA* to
be as general and flexible as to combine several variations on the treatment of a disease, and to

make the application of these variations depend on the particularities of the patient.

24

If C € (SpUDp) 1s the current condition of a patient and d=< D; D,, D,, ..., Dr > a decision
element of a SDA* procedure, we say D; is a feasible branch for that patient if and only if D; &
C. One or several branches may contain none decision variable; in this case, all these branches
are feasible. It may also happen that in the same decision two or more branches totally or
partially overlap. In the first case (i.e. D; € Dj), D; will be a feasible branch whenever D; is
feasible, and D; will not be a feasible branch if Di is not. In the second case (i.e. (D; N D)#Q)
each situation must be studied separately. Observe that if D; = D;, both branches are evaluated
the same for any possible patient. Empty conditions are always feasible.

Concerning the branching factor k of a decision, it must be zero, one, or greater than one. An
SDA* decision with a branching factor of zero or one is interpreted as unfinished element,
maybe because at the time of developing of the SDA* there is not health evidence on how to
branch patients at that point of care. A branching factor k=0 transforms a SDA* decision into a
dead end element. A branching factor k=1 acts as a filter of the patients that may proceed with
the treatment at the decision point. A branching factor k=2, allows the construction of SDA*
binary decisions as <D; D;, D-D;>. Observe that binary decisions are not equivalent to IF-
THEN-ELSE structures since any patient with a condition C containing all the decision terms in
D will make both branches of the above decision feasible. Like in the case of the state elements,
IF-THEN-ELSE behaviors may be achieved through the definition of contrary terms (e.g.
diabetes and not-diabetes), and the definition of decisions as <{diabetes, not-diabetes},
{diabetes), {not-diabetes}>. In this case, diabetic patients will follow the first branch, and non
diabetic patients the second one.

An alternative interpretation of a decision d=< D; D,, D,, ..., Dy > 1is that it is based on a
“fictitious” variable d whose domain (i.e. the values that the variable can take) is D, and each
branch Di is a subset of these possible values. For example, BP=<{stagel-HT, stage2-HT, low-
BP, BP-at-goal}, {stagel-HT, stage2-HT}, {low-BP}, {BP-at-goal}>.

Let us observe that a branch D,=@ of a decision d is always feasible for any patient arriving to d.
If a patient condition C includes none of the branches of a SDA* decision < D; D,, D, ..., Dy >
(i.e. Di&EC for all i=1, 2, ..., k), then none of the branches is feasible, and the decision becomes a
dead end element of the SDA* procedure for all the patients under that condition. In order to
avoid this situation a SDA* decision can contain an otherwise branch (i.e. < D; D,, ..., Dy,
otherwise>) which is feasible only if the patient condition C makes none of other branches
feasible. For example, BP= <{ BP-at-goal }; { BP-at-goal }, otherwise> that represent the
decisions #7 and #9 in the FIP of Figure 1.

An action element (or SDA* action block) describes a group of actions in the SDA* procedure.
These elements do only represent action proposals whose application must be seen out of the
SDA* model. So, if the SDA* suggests the physician to prescribe a beta-blocker it is up to the
physician to decide whether the drug is finally prescribed or not, and it is up to the patient (or
some other person) to make sure that the patient takes the drug. This means that two sequential

actions in the SDA* model do not necessarily represent a sequential execution of the actions in

25

the real world, but consecutive action proposals within the SDA* procedure.

The SDA* model does not distinguish between instant actions (i.e. those actions with an
immediate end as for example an expert recommendation) and abiding actions (i.e. those actions
which extend in time as for example starting an assessment process that may last several days).
The reason is that actions in the SDA* model represent the launch of the action, regardless
whether this is an instant or an abiding action in the real world. Typical sorts of actions are:
recommendations (e.g. stop-smoking, start-soft-exercise, avoid-salt-in-meals, etc.); prescriptions;
radiographies; analyses, medical, surgical or clinical procedures; specialist consultations;
application of an alternative SDA* procedures, etc. From a functional point of view, action
blocks represent the core elements of the SDA* model since the final purpose of this model is to
represent health care procedures as a combination of actions.

Each action term in an action element has two constraints: the first one (called the set of
petitioners) is on the sort of actors that are allowed to request the action (e.g. only medical
doctors are allowed to prescribe drugs). The second one (called the set of performers) is on the
sort of actors that are allowed to perform the action in the real world (e.g. injecting some drugs
can be restricted to nurses and to medical doctors, but some other drugs can also be injected by
the own patient or some relative). These constraints on the actions permit the description of
collaborative medical treatments in which several professionals may interact. Any petitioner in
the set of petitioners is allowed to requests the action to be executed. Any performer in the set of
performers is allowed to execute the action.

Action blocks are independent of the patient condition; therefore they use to be preceded either
by a state that describes what the state of a patient should be in order to deserve that action, or by
a decision that determines whether the patient meets the features required for the action to be
applied. Empty action blocks have the meaning of “do nothing”, which is the same as not having
the action block in the SDA*.

Flowcharts are used to represent SDA* procedures in a graphical way. Figure 3 shows how
states, decisions, and actions are represented in this sort of flowcharts.

=

Figure 3. Elements of the SDA* model

The correct combination of states, decisions, and actions allows the construction of explicit
health care procedural knowledge within the SDA* model. This combination of elements is
made by means of connectors.

26

3.2.1.3. Connectors

This section explains how the SDA* elements introduced in the previous section can be
combined to formproper health careprocedures.

In the SDA* model, a connector is defined asan arrow that goes from one element in the input of
the connector (or in-element) to another element in the output of the connector (orout- element).
From the point of view of the SDA* elements, any state is an in-element of one connector, but it
may be an out-element of any number of connectors in the FIP (including none). Decisions are
in-elements of as many connectors as the branching factor of the decision, and out-elements of
one or several connectors in the SDA* procedure. Finally, actions are in-elements of one only

connector, and out-elements ofat least one connector. These restrictions are graphically shown in

Figure 4.
+ ¥
ACTION ACTION
v

ACTION ACTIORN

Figure 4. Feasible element connections in the SDA* Model.

In that figure, the up-left state and the bottom-left state describe a situation in which all the
patients whose condition makes the state a feasible entry point evolve following the outgoing
connector. The difference between them is that in the first case the SDA* procedure do not
inform about when a patient can reach that state in the middle of a treatment (i.e. it is an input
state of the health care procedure). In the second case, the state can be either an input state of the
health care procedure for new incoming patients, or an intermediate state which is reached after

the application of any of the elements in the incoming connectons of the state.

A decision was defined as a list < D; Dy, D, ..., Dy > of sets of decision terms; D being all the
possible terms in the decision, D; a subset of D for all i=1..k, and k the branching factor. Each
alternative D; in the decision is assigned a different outgoing connector of the decision. The
meaning of a decision point is that any patient reaching the decision (by one of the incoming
connectors) may follow any of the outgoing connectors whose Di is contained in the patient
condition (i.e. one of the feasible branches of the decision).

27

An action block contains all the action terms that are to be suggested to deal with the patient
reaching that element. The up-right actions in Figure 5 describe types of action blocks that are
only reachable from one element in the SDA*. Within this group, the left one describes a
terminal action in which the information of how to proceed after the action is not provided by the
health care procedure. The actions in the bottom are general cases describing action blocks to
follow after the application of any of the elements in the action incoming connectors. They also
act as a joint of several courses of action of the SDA* procedure that converge to stop (action on
the left) or that converge into one single action block to propose the same group of actions and
then proceed in the sameway through the action block outgoing connector (action on theright).

Figure 5. SDA Sequence

3.2.1.4. Sequences and cycles

The basic structure of the SDA* model is the SDA sequence that connects one state with a
decision and each branch of that decision with an action. Figure 5 represents this basic structure.

The SDA sequence can be simplified with the elimination of one or several of the elements in the
sequence. So, the elimination of the state must be interpreted as if there is not a health care
reason to describe the state of the patient at this point of care (e.g. lack of medical meaning,
medical irrelevance, cause of confusion, disagreement, etc.). Sometimes, the application of a set
of actions is mandatory for all the patients arriving to the SDA sequence. In this case the decision
element is eliminated and only one action block with all the common actions is connected after
the state. Sometimes, a decision element is not enough to arrive to a conclusion about the sort of
actions to carry on or the representation of all the possibilities with a single decision is confusing.
In these cases the action block must be eliminated from the SDA sequence in order to chain
several decisions. All these cases of SDA sequence reduction are depicted at the top of Figure 6.

At the bottom of Figure 6 the cases of elimination of two elements of a SDA sequence are
represented. The left side case describes a situation in which two (or more) states from
consecutive SDA sequences are connected. Although this is a correct sequence, there is not a
clear reason that justifies it since a sequence of states is equivalent to a single state containing the
state terms of all the states in the sequence. The case in the middle represents a sequence that
connects two decisions. This is a common practice in the construction of health care procedures
with the SDA* model. The last case in the bottom-right side represents a sequence of two (or

28

more) actions of consecutive SDA sequences directly connected. Like it happened with the states
in the first case, this sequence is better replaced by a single action containing all the action terms

of the action blocks involved in the sequence.

Figure 6. Simplified SDA Sequences

SDA sequences (and their reductions) can be concatenated by means of connectors. Figure 7
shows the most general case of a SDA sequence concatenation where none of the elements in the
SDA sequences have been eliminated.

Figure 7. Concatenation of SDA Sequences

Apart of sequences, the SDA* model can represent cycles. A cycle is defined as a repeated
sequence of elements in a SDA* procedure. Cycles may be used to represent repetitions in a
medical process or jumps to an already previously observed situation in the course of action
followed. Cycles in this model do not have explicit termination conditions; the exit of a cycle
occurs when one of the decisions of the cycle drives the patient to an outgoing connection which

is not part of the cycle.

29

3.2.1.5. Non-determinism

Determinism is the principle by which every event, act, and decision (effect) is the consequence
of some antecedents (causes). In healthcare, these causes can be medical, surgical, genetic,
environmental, managerial, familiar, social, etc. On the contrary, non-determinism states that
there are events which do not correspond to a cause. Historically, there have been defined three
types of non-determinisms: one that holds that some events are uncaused (e.g. from a practical
point of view, in healthcare, uncaused events are equivalent to events with an unknown
unfindable cause), another one that holds that there are nondeterministically caused events (e.g. a
physician that follows alternative therapies for equivalent cases without an explicit explanation),
and the third one that holds that there are agent-caused events (e.g.external events like the arrival
of a patient whose health condition allows the treatment to start at different points). The SDA*
model can deal with all the above types of non-determinism. As a consequence of this, for the
same situation (i.e. patient condition) a non-deterministic SDA* is able to represent several
different interventions with no support to decide which one should be followed. A non-
deterministic SDA* procedure may propose more than one intervention and it must be the
physician the final responsible of the selection.

nnnnnnnnnnnnnnnn

FIp

,,,,,,,,,,,,,,,,

Figure 8. Non-Determinism in the SDA* Model

Figure 8 shows the three sorts of non-determinism in the SDA* model that can be observed in a
SDA* FIP. From left to right, the first case (#ype-0 non-determinism) describes the situation in
which a patient with a particular condition can match several states at the same time and
therefore be non-deterministically recommended to start one out of several alternative
interventions. In the second case (type-1 non-determinism), the current condition of a patient can
satisfy several branches of the same decision, and therefore be able to follow any of them. For
example, if the patient condition is {high-blood-pressure, taking-drugs}, then any branch of the
sort {}, {high-blood-pressure}, {taking-drugs}, or {high-blood-pressure, taking-drugs} is a
feasible branch. The last case in the right side of Figure 8 (#ype-2 non-determinism) describes a
situation in which either a state or an action in the FIP are in-elements of several connectors.
Here, the SDA* procedure introduces two or more alternative paths that patients going out of
these elements may (or may not) non-determinigically follow.

30

3.2.1.6. Time

The time model establishes two sorts of temporal constraints: those which are related to the terms
in a SDA* element and those others related to the connectors. Each term and connector may
optionally have one constraint or not. The time constraints of the terms are of the sort [start, end,
frequency] and they mean that the term is observed from the start time, to the end time with the
frequency indicated. For example, when v = (antidepressant, [3w, 1d, 24h]) is a state term it
means that the state of the patient is conditioned by the fact that “(with respect to the current
moment) he has been taking one antidepressant every day since three weeks ago to one day ago™.
Observe that taking two antidepressant units should be said (twoAntidepressant, [x, y, 24h]) or
(antidepressant, [x, y, 12h]) if the units are taken together or in two doses, respectively. The first
case can also be represented by introducing the term v in the state two times.

If v is a decision term the meaning is equivalent to the question “has the patient been daily taking
one antidepressant between three weeks ago and yesterday?”. But if it is an action term the
meaning is an order of taking that antidepressant starting in the start time and ending in the end
time with the frequency indicated in the frequency value (i.e. a prescription). In this case, start
must be a nearer to the current time than end.

Seconds
Minutes
Hours
Days
Weeks
Months

Years
Table 8. Time units in the SDA* model

In the SDA* model, this sort of terms with a time constraint are called temporal terms.

The second sort of time constraints in the SDA* model is related to the SDA* connectors and it
has the form [min, max]. They are optional and represent delays (or durations). Both values are
also optional. A connector with such time constraint indicates that the evolution from the in-
element to the out-element of the connector takes between min and max times. If only the min
value is present, it means that the connector can be crossed only if a min interval of time passes.
If only the max value is in the constraint, the meaning is that the connector can be followed not

later than a max interval of time.

The sort of temporal units of the start, end, frequency, min, and max components of the time

31

constraints are the ones included in Table 8 and any of these values is represented by a natural
number followed by one of these temporal units (Other temporal concept as “now”, “birth-
time”, and “death-time” are also possible). For example, /5s for “fifteen seconds”, 5m for ‘“‘five

“«“

minutes”, 3h for “three hours”, 4d for “four days”, 7w for “seven weeks”, 10M for “ten

months”, and 3y for “three years”.

States and decisions describe past or current aspects of the patient, and therefore the temporal
constraint of start must be bigger than the temporal constraint of the end (e.g. /3d, 2d] or [1y,
3w/). On the contrary, action elements represent future actions and the start value of a temporal
constraint must be smaller than the temporal constraint of the end (e.g./1d, 3y] or [1h, 6d]).

3.2.1.7. Parallelism

Parallelism is admitted by the SDA* model but in a patient-oriented (instead of a procedure-
oriented) fashion. From the point of view of the patient following a SDA* procedure, this person
has a single treatment in which several evens may concur in time. In this approach parallelism
does not mean that the patient is following several treatments at the same time (this will be a
procedure-oriented approach), but that the actions of the treatmentoverlap in time.

This idea must be conceived together with the fact that SDA* procedures do not represent the
health care procedures themselves, but the indications of what health actions have to be started
now and, expectedly, in the future. Parallel to the SDA* procedure, the evolution of the real
patient in the real world is what conditions how to apply the SDA* procedure in the next
encounter with the patient. In other words, the SDA* procedure suggests a set of actions
according to the current patient condition, and provides a farther perspective of how the
treatment of this patient should be in the future, based exclusively on the limited current
evidence provided by the current state of the patient and not on the real future evolution of the
patient. Of course, this perspective is founded on both health care knowledge and experiences
about the feasible evolutions of patients in the disease the SDA* procedureis dealing with.

In this context, all the action terms of an action block are launched in parallel, subject to their
respective temporal constraints. In Figure 9 the action terms A; and A;, belonging to the same
action block, have a parallel region where both behave simultaneously on the patient. These
actions may also be in parallel to actions as Ak from other action blocks, as the figure also
depicts.

32

A [si, e, f]] A [si, e, fi] current time

F
ﬁu[ﬂi,ﬂi,fl] 5|
s 5 1] 5
m M
mM) N (], Sequential Region
e ¥dAswentd |o
Parallel Region I - E
- lSk =
\ 4]
Ay 50, 8 6] L Rarallel Region =l
Sequential Region
w
w

Figure 9. Parallel actions in time

3.3. Construction and execution of health procedures with the SDA*
Model

This section introduces the procedures that the SDA* model is able to describe as an abstract
data type (ADT), providing the specification of a basic functional interface to manage the
construction of such health procedures. An XML Schema is proposed that provides the structure
to represent SDA* procedures as XML documents. The ADT functions are used to describe the
execution of a health procedure under the SDA* model. The section finishes with several
examples of SDA* proceduresin the K4CARE project.

3.3.1. Abstract data type SDA* procedure

This section aims at providing a formal proposal about the basic constructors that any system
capable of defining SDA* procedures is recommended to have. This proposal follows the
definitional notation of formal specification of abstract data types.

Time |TIME = A | NUMBER{ s | m | h | d | w | M | y }
& PETITIONERS = Set of ACTOR

PERFORMERS = Set of ACTOR
Actors

elements |EmptyState: - STATE

InsertTerm: Term x [TIME]3 x STATE — STATE
EmptyBranch: — BRANCH

OtherwiseBranch: — BRANCH

InsertTerm: Term x [TIME]3 x BRANCH - BRANCH
EmptyDecision: — DECISION

33

InsertBranch: BRANCH x DECISION — DECISION

EmptyAction: — ACTION

InsertTerm: Term x [TIME]3 x PETITIONERS x PERFORMERS x ACTION -
ACTION

SDA* |EmptySDA*: — SDA¥*
InsetElement: Element x SDA* — SDA*

InsertConnector: {STATE | ACTION}2 x [TIME]2 x Element x SDA* -
SDA*
InsertConnector: BRANCH x DECISION x [TIME]2 x Element x SDA*
SDA*

Table 9. SDA* Abstract data type: basic constructors

Patient states, branches, and actions are sets containing temporal terms of the form (term, [time,],
[time;], [times]), any of the three times being optional; decisions are sets of branches, and SDA*
are sets that contain either states, decisions, actions, or connectors, where connectors can be
elements of the form (sa,, sa,, [time], [time,]) or (branch, decision, [time;], [time:]), sa; standing

for a state or an action.

3.3.2. Textual representation of the SDA* procedures

The procedures of the SDA* model can be expressed in textual format. Table 10 shows the body
of the XML Schemato define SDA* proceduresas XML files.

<xs:simpleType name="sda time">
<xs:restriction base="xs:string">
<xs:pattern value="[0-9]* [smhdwMy]"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="sda term">
<xs:sequence>
<xs:element name="start" type="sda time" minOccurs="0"/>
<xs:element name="end" type="sda time" minOccurs="0"/>
<xs:element name="frequency" type="sda time" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="sda actionterm">
<xs:sequence>
<xs:element name="start" type="sda time" minOccurs="0"/>
<xs:element name="end" type="sda time" minOccurs="0"/>
<xs:element name="frequency" type="sda time" minOccurs="0"/>
<xs:element name="petitioner" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="performer" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="type" type="xs:string"/>
</xs:complexType>

<xs:complexType name="sda connector">

<xs:sequence>

34

<xs:element name="min" type="xs:time" minOccurs="0"/>
<xs:element name="max" type="xs:time" minOccurs="0"/>
<xs:element name="element" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="sda branch">
<xs:sequence>
<xs:element name="sda_ term" type="sda_ term" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="sda_connector" type="sda_connector"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="sda state">
<xs:sequence>
<xs:element name="sda_ term" type="sda_term" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="next" type="sda connector" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="sda decision">
<xs:sequence>
<xs:element name="sda branch" type="sda branch" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="otherwise" type="sda connector" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="sda actionblock">
<xs:sequence>
<xs:element name="sda action" type="sda actionterm" minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="next" type="sda connector" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="sda procedure">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="sda_state" type="sda_state"/>
<xs:element name="sda decision" type="sda decision"/>
<xs:element name="sda_action" type="sda_actionblock"/>
</xs:choice>

</xs:complexType>

Table 10. SDA* XML Schema

3.3.3. Execution of SDA* procedures

One of the key aspect to fully understand procedures described under the SDA* model is to
know how they are executed for a particular patient. Before going on, we must recall that these
procedures are formal representations of the general intervention to deal with a particular disease,
ailment, pathology or syndrome. They are not representations of the evolutions of the patients
under such circumstances. This means that applying the indications of a SDA* to a particular
patient does not necessarily imply that this patient will evolve the way the SDA* indicates. This
fact describes a parallel view of the problem at mwo levels, the level of the course of actions
indicated in the SDA* (medical knowledge) and the level of the evolution of the patients that

35

follow the SDA* (reality or medical data).

This duality may disturb or confuse the reader. However, this same reader must think of the
SDA* as indications that a particular patient may follow, may not follow, follow in part, or
follow during not enough time; or, also common in medicine, even strictly following the
indications, the patient may evolve unexpectedly.

The practice of medicine is universally based on the encounters between the patients and the
healthcare professionals. In a particular encounter a patient exhibits a specific condition within
the disease he is assisted for. The role of the health care professional in the encounter is to
interpret these signs, symptoms, and the rest of the information provided in order to conclude
about the set of actions to follow (e.g. recommendation, prescription, procedure, etc.).

In the SDA* model, a patient condition is described as a set of temporal terms representing the
patient current condition, including the patient health antecedents. These terms can be state,
decision or action terms. For example, {(ElevatedBloodPressure), (BPAtGoal, [t;,t,-]),
(Antidepressant, [ts, ts, ts])} 1s the condition of a patient that has an elevated blood pressure (i.e.
BP>140/90), but who has had the pressure at goal between the times t; and t,, and who has been
taking antidepressant between t and t; with a frequency ts.

Patient | EmptyCondition: — PCONDITION
condition | TnsertTerm: Term x [TIME]?® x PCONDITION —
PCONDITION

Table 11. Patient condition abstract datatype: basic constructors

Given a patient condition and a SDA*, both based on the same set of terms, the execution of that
SDA*procedure for that patient starts at any of the states of the SDA* that are feasible entry
points. If it is required, the health care professionals in the encounter can select a subset of all the
alternatives. Each feasible entry point in the selected set starts alternative feasible treatments of
the patient.

A treatment consists of all the action (temporal) terms found in a SDA* path that starts in a
feasible entry point and finishes either in a state that is not a feasible entry point (i.e. The
patient condition must change before evolving in this line) or in a connector with a
temporal range [min, max] with min>0 (i.e. the SDA* procedure sets a temporal break
before the patient treatment can continue). This path is a sequence of SDA* elements, each
one being an out-element of a connector with in-element the pervious element in the sequence. If
the in-element is a decision, all the branches that the patient condition meets (or the branch
otherwise if none meets), i.e. the feasible branch of the decision, can be followed. If an element
is non-deterministically connected to other elements all the non-deterministic connectors can be
followed. In both cases, it is the health care professional who selects the treatment to apply
among all the feasible alternatves supported by the SDA*procedure.

36

We define a temporal term (v,[t;,t,,t:]) is equally or more restrictive than another temporal term
(v,[t:’,t2°,15°]) if the following conditions hold:

1. (t’<ty)or (t, is void).

2. (t=<ty’) or (t,” is void) or (t.” = 0).

3. (t=t5’) or (t; is void)

Given a patient condition, we say a SDA* state is a feasible state if all the terms in the state can
be found in the patient condition and they are equally or more restrictive in the state than in the
patient condition. In a similar way, we say a branch of a SDA* decision is feasible if all the
terms in the branch are in the patient condition contains and they are equally or more restrictive
in the branch than in the patient condition.

For example, a SDA* state {/beta-blocker, IM, Iw, 1d]} (i.e. patients taking one beta-blocker
per day during the last month until last week) will be feasible for patients that meet condition cl
in Table 11 (more restrictive), but not feasible for patients meeting conditions c2 (the patient has
been taking the drug since more time than one month ago), c3 (the patient has been taking beta-
blockers during the last week, just in contradiction with the indication of stop taking beta-
blockers one week ago pointed out by the state), or ¢4 (not only the frequency but the duration of
medication is shorter).

Provided a decision term [highBloodPressure, 1M, 3d, -] (i.e. true if the patient has got high
blood

pressure since one month ago till recently), all the patients meeting conditions c5 or c6 in Table
12 (more restrictive) will evaluate the decision term to true, but not c7.

Conditio |Expression Meaning
n
cl [beta-blocker, 1y, 1d, 12h] Taking a beta-blocker every twelve hours since one year ago till
yesterday.
c2 [beta-blocker, -, 2d, 8h] Taking beta-blocker every eight hours till two days ago (since
much time ago).
c3 [beta-blocker, 1w, -, 8h] Taking beta-blocker every eight hours since one week ago (till
now).
c4 [beta-blocker, -, -, 3d] Taking beta-blocker every eight hours since much time ago till
now.
c5 [highBloodPressure 2M, 1d, | Till yesterday, Blood Pressure has been high during the last two
-/ months.
c6 [highBloodPressure 2M, -, -] | Blood Pressure has been high during the last two months (and it is
now).

c7 [highBloodPressure, 3w, -, -] | Blood Pressure has been high during the last three weeks (and it is

now).

Table 12. Some examples of temporal terms and meaning

37

3.3.4. Examples

This section contains partial and complete examples of SDA* procedures. The action terms have
been classified into recommendations, prescriptions, radiographies, analyses, procedures,
specialists, FIPs, and any, as Table 13 summarizes.

[RECOMMENDATION] [REC] | Variable that represents a recommendation of the physician.
[PRESCRIPTION] [PRES] | Variable that represents a drug prescription.
[RADIOGRAPHY] [RAD] | Variable that represents an orderof radiography.
[ANALYSIS] [ANA] | Variable that represents an orderof analysis.

[PROCEDURE] [PROC] | Variable that represents the application of a procedure.
[SPECIALIST] [SPEC] | Variable that represents the specialist the patient is derived to.
[FIP] [FIP] |Variable that represents the execution of another FIP.

[ANY] [ANY] | Variable that represents any sort of action.

Table 13. Sorts of action variables

The treatment of hypertension in 3.3.4.2 is taken from the guideline published by the Institute for
Clinical Systems Improvement (www.icsi.org) in the National Guideline Clearinghouse in the
USA. The rest of procedures were taken from the “Consensus Guidelines for Assessment and
Management of Depression in the Elderly* of the NSW Health Department in Australia. An
exception is presented in subsection 3.3.4.3, where the K4CARE procedure for Comprehensive

Assessment of homecare patients is represented following the SDA* model.

3.3.4.1. Representing partial knowledge

Many times clinical practice guidelines contain valuable knowledge that is apparently
disconnected from other pieces ofknowledge that may appear in the same guideline. This kind of
knowledge is usually represented as text. This section contains some examples of textual
knowledge pieces extracted from real guidelines and it shows how they could be represented in
the SDA* model.

pharmacological strategies are not achieving their

“Medication is likely to be needed where there is any STATE VARIABLES: SUSTAINED_DEPRESIVE DISORDER
ONGOING_PHARMA_STRATEGY
/ 1 / — DECISION VARIABLES: SUCCESSFUL_PHAMA_STRATEGY?
sustained depressive disorder and when non DECISION VARIABLES: SUCCESSFLI

SUSTAINED

goals™” ONGOING TRATEGY

SUCCESSFUL_PHAMA_STR, otherwise

MEDICATION |umsr’:m-||:3|

38

“Useful signs to indicate commencing medication are:

Presence of biological signs, disturbed sleep,
appetite and energy changes

Diurnal variation in mood

Agitation or retardation

1

Depression with any psychotic features.’

STATE VARIABLES: BIOLOGICAL_SIGNS

DISTURBED_SLEEP
DISTURBED_AFPPETITE
ENMERGY_CHANGES
MOOD_WARIATION
AGITATION_RETARDATION
PSYCHOTIC_FEATURES
DEPRESSION

ACTIOMN VARIABLES : START_MEDICATION

“Admission to hospital can be essential where the

depression:

Is severe enough to impair reasonable daily
living function and supports cannot be put in
practice

Has safety issues —suicidal ideas or plans,
psychotic signs, severe psychomotor agitation
otherwise or retardation

Has not responded to fair treatment”

SEVERE_EMOUGH?
HAS _SAFETY _ISSUEL?
HAS _NOT_RESPOADRD

STATE VARIABLES: SUSTAINED_DEFRESIVE_DISORDER

ONGOING_PHARMA_STRATEGY

DECISION VARIABLES: SUCCESSFUL_PHAMA_STRATEGY?
ACTION YARIABLES: MEDICATION

otherwise

UNSPECIFIED

ADMISSION
TO
HOSPITAL

3.3.4.2. CSI’s Hypertension Diagnosis and Treatment

The Clinical Algorithm provided by the Institute for Clinical Systems Improvement (ICSI) that
represents the processes of diagnosis and treatment of hypertension is translated to the SDA*

notation. The result is:

39

- .~ ORDER_ADDITIONAL_ WORK.
=77 CONSIDER_REFERRAL

[PROC]:

RESISTANLI spec): UnspeCIFIED | =55}

3.3.4.3. Comprehensive Assessment K4CARE Procedure

In the K4CARE healthcare model comprehensive assessment is a service that comprises
multidimensional evaluation plus clinical assessment and physical examination (integrating the
medical side) and social needs and social network assessment (integrating the social side). It is
the service devoted to detect the whole series of patient diseases, conditions and difficulties, from
both the medical and social perspectives. This service is implemented with a procedure that may

be represented in the SDA* model asit follows.

Here, the actions indicate the actor performing the action (i.e. performers) because

comprehensive assessment is a collaborative process achieved with the combined actions

performed by different actors.

[HCP]

Action performed by the Home Care Patient.

[FD]

Action performed by the Family Doctor.

[PC]

Action performed by the Physician in Charge of the
patient.

[HN]

Action performed by the Head Nurse.

[SW]

Action performed by the Social Worker.

[EU]

Action performed by the Evaluation Unit (nuclear work
team).

[CCP]

Action performed by the Continuous Care Provider.

[ANY]

Action performed by any of the KACARE actors.

Table 14. Sorts of action variables for comprehensive assessment

40

MNOMN-COMPLIANT otherwise

NOM-RELIABLE

41

3.3.4.4. The use of Antidepressant Medication in the Elderly

MOT_TOLERATED

otherwise

INADEQUATE NO_TOLERATED

NOT_TOLERATED

CORRECT_DIAGNOSIS
NONE_UNDERLYIN_MEDICAL_CONDITION
NOME_UNTREATED_PSYCHOSOGIAL_STRESSOR
CARER_NOT_DEPRESSED

3.3.4.5. Management of Depression with Cognitive Impairment

MEDICAL CONDITION

DEPAESSED
MELANCHOLIC
MAJOR_DEPRESSION

SUICIDAL IDEAS

CONDITION?

LA A J

[month, 1 month]

DEPRESSED

UNSPECIFIED

DEPRESSION_RESOLVED
CONDITION_STABLED

UNSPECIFIED

42

3.3.4.6. Management of Depression with Dementia

SUDDEN_DECLINE_IN_FUNCTION
DYSPHORIA_(FEELING_TERRIBLE)
LOSS_OF_INTEREST
PSYCHOMOTOR_CHANGE

™ ™7 AGRESSION_NOISINESS
REFUSAL_TO_EAT_OR_DRINK
EMOTIONAL_LABILITY
THOUGHTS_OF_DEATH

otherwise

PAINFUL COMNDITION

DEPRESSED
MELANCHOLIC_FEATURES
ATYPICAL_DEPRESSION
SEVERE_BEHAVIOURAL_DIST

CONDITION? IS (S)HE?

PSYGHOTIC
SUIGIDAL IDEAS ICIDAL

otherwise DRATED

RISED

[, 3 month]

otherwise

UNSPECIFIED

DEPRESSED

3.3.4.7. Suicide: Risk of Assessment and Management

UNSPEGIFIED

EFFECTIVE_RISK

F Y

DELIRIUM

MODERATE

43

44

4. K4CARE Multi-Agent System

In this section the concepts related to the K4CARE's Multi-Agent System will be introduced. As
the base of this project is founded on agents, as said in section 2.1.1, an introduction about why
to use a Multi-Agent System in the K4CARE platform will be done.

If the reader has no knowledge about what Muti-Agent Systems are, a description is presented in
the Annex1. This knowledge is needed to understand the concepts shown in the sections from 4.2
to 4.4 where the K4CARE MAS Architecture is described, and the work related to the
architecture done in this project is explained. So section 4.3 will give to the reader an extensive
description of the SDA* Agent and its common tasks within the project, and finally, in section
4.4 an SDA* ontology will be detailed. It's interesting to remark that this ontology has a crucial
mission in the whole system because it's the only way to communicate the SDA* Agent with the
rest of the K4ACARE agents without losing the semantics associated to each event related to the
execution of one SDA* structure.

These 3 last subsections will be very important to understand the rest of the document because
the design and the implementation that have been done are based on this architecture, and some
of the reasons why the generatedagent is as it is will be explained here.

4.2. K4CARE MAS Architecture

As described in section 1, one of the K4ACARE project objectives is the creation of a web
application which will give all the wished services to the final user. This application will be
composed by a user interface, a control layer (the MAS) and a data layer (the information
repositories). This section will introduce to the reader the internal architecture of the MAS, and
its situation in the whole system.

The MAS is the part of the K4ACARE which manages the functionality of the whole system. Its
main goals are to connect the Web Interface (as this is am ICT project it will have a web-based
user interface) with the HC Agents, to represent all the people involved in HomeCare with one
intelligent agent in the K4CARE system, to consult/modify the EHCR of the patients, etc, in
short its main goal or objective is to give the desired funcionality of the project to the real actors
which will use it.

Firstly it's important to do a general description of the knowledge managed in the K4ACARE, the
ontologies and the EHCR. The Ontologies[03], as a set of concepts, properties and relations,
constitute a feasible paradigm to represent the declarative knowledge used in the system. There
are two basic ontologies in K4ACARE. The first ontology, named Actor Profile Ontology (APO),
details the basic elements of the K4CARE HC model (actors, actions, services, procedures,

documents) and the relationships between them (e.g. which actions may be performed by each

45

kind of actor, or which document is associated to each action). The second one, named Case
Profile Ontology (CPO), stores all the medical terms related to HC (diseases, syndroms, signs,
symptoms, assessment tests, clinical interventions, laboratory analysis, social issues) and the
relationships between them (e.g. the diseases included in a certain syndrom, or the symptoms of
a disease). Agents will be able to reason using the knowledge contained in this ontology, which
can be considered as a bridge between the concepts that agents are able to recognize (conditions,
diseases) and how actors have to act on those situations (associated interventions). Taxonomic
and non taxonomic relations between concepts have been defined in order to allow structuring
the information in an appropnate way to answer high level queries abou that data.

The EHCR (Electronical HealthCare Record), as is deductible from its name, is a kind of
database which contains all the information related to a real Patient. This means, his personal
data, his clinical history, etc, in short, all his HC personal information and case history. One of
the main features of the K4CARE project is to define the internal structure of this record.

In second place, the multiagent system provides us a set of Gateway Agents used to connect the
User Interface (Web browser) with the agents in the system (HealthCare agents). These last
agents are in charge of executing all its activities described in the DO1[02], in concrete, two of
these activities are the execution of Individual Intervention Plans and the execution of
Procedures. These two information models will be represented in the format proposed by Dr.
David Riano, the SDA*[04]. The next section presents an agent capable of managing these
structures. It's important to remark that this is only a data structure to represent a real knowledge,
so this data structure can be stored as XML, as Java objects, as text, etc. therefore we must only
be interested in how to perform the interpretation and execution of this data structure and the
decisions concerning its storage formatwill be taken later.

To achieve all these goals we can present the next schema where the connections listed above
are represented. In this schema, it is possible to see how the MAS has access to the K4CARE's
ontologies (where the knowledge of the actors and diseases is represented) and has also access to
the EHCR of each patient.

In figure 10 this architecture is presented, where the K4ACARE MAS is clearly described. In this
internal architecture there are 3 diferent types of agents, the Gateway Agents, the SDA* Agents
and the HealthCare Agents:

- The Gateway Agents are the ones in charge of connecting the HealthCare Actors

(patients and medical staff) with their respective HealthCare Agents. In order to achieve
this, this kind of agent will manage a connection between the web browser and the
respective HealthCare Agent.
The SDA* Agents are dynamically created agents which are in charge of managing,
executing and storing the SDA* structure associated to one concrete HealthCare Agent.
This kind of agent will be asked to execute the Individual Intervention Plans and
Procedures described in the K4ACARE model.

46

« The HealthCare Agents are a software representation of the medical staff and the patients.
They are in charge of managing all the tasks that one real actor must perform and
informing to this actor, and also to the system, about the state of these tasks or actions.

Multi-Agent System

Client Side Browser

- o -y SDA Executi
Q ; . ommunication (fger) | SEGRHEN |

| am = @ateway\ “Agent N,
. € —> Servlet N e——3(Ad \ i
- LSk 4} Agent#u/ 9&\5ctor #l 4 |

\ Cateway . 1 Tagent”

\A\gent #k/"‘ 3 7\ Actor #k
K4CARE o ‘ o
Platform

Y
Application Program Interface (API)
Data
Abstraction
Layer
EHR API OWL API SDA* API

Case Profile Procedures
N - Ontology (CPO) o
Electronic Health Actor Profile Formal Intervention

Record (EHR) Ontology (APO) Plans (FIPs)
Figure 10. The K4CARE System architecture

Knowledge
Layer e
= i}
_EB=

The Data Abstraction Layer provides a Java-based API that allows the K4CARE platform agents
to retrieve the data and knowledge they need to perform their tasks. That layer offers a wide set
of high level queries that provide transparency between the data (knowledge) and their use
(platform).

The Knowledge Layer includes all data sources required by the platform. It contains an
Electronic Health Record that stores patient records (personal information, medical visits and
ongoing treatments). The procedural -organisational and medical- knowledge (know-what) is
represented in the APO and CPO ontologies, using OWL. Medical procedures (that implement
services) and Formal Intervention Plans are coded using the flowchart-like representation SDA*
and stored in specific databases.

4.3. SDA* Agent-based execution

The aim of this section is to describe the design of an agent prepared to manage and execute
SDA* structures. We will start describing what it means to execute a SDA* structure, so in order
to describe this execution flow, the execution of some described procedures in the DO1 and of an
arbitrary Individual Intervention Plan will be presented. After this some requirements of the
SDA* Agent will be mentioned.

47

4.3.1. SDA* Agent

Basically the initial idea was to separate the complex tasks of interpreting and managing the
medical guidelines from the other tasks assigned to the KACARE agents, as initially, these agents
were not prepared to interpret and execute the medical guidelines formalism used in the project,
the SDA*. So, one new agent type has been designed and developed. This agent is the main
objective of this work.

The designed solution is one agent capable to interpret and execute the SDA* structure,
separating this task from the other tasks that the K4CARE agents perform and, using a
communication ontology, communicate to these agents the tasks derived from the SDA*
execution. Then all the agents interested in managing the SDA* structures (basically the agents
interested in interpreting an Individual Intervention Plan or any procedure described in [02]), will
have to create a new SDA* Agent and using this communicative ontology ask some defined
tasks to him. This new dynamically created agent will manage and execute the SDA* structure,
and perform the related tasks to this management and execution, freeing of these tasks to his
invoker.

So in the next section the actions flow generated from the execution of some SDA* structures
will be described. In section 4.4 the ontology designed to communicate the different actions and
concepts will be presented. Finally, in chapter 5 the design and implementation of the SDA*
Agent will be introduced.

4.3.2. SDA*'s actions flow

This section presents the flow of actions derived from the execution of one SDA*, in concrete

one Individual Intervention Plan.
Individual Intervention Plan execution context

Electronical HealthCare Record 5 r Agents involved in an arbitrary IIP execution

Individual Intervention Plan
of Patient

Figure 11. Individual Intervention Plan Actions flow

About figure 11, it's interesting to remark the actions flow presented. The process starts when the

48

Head Nurse (as the agent in charge of this execution) recovers the patient's IIP from the EHCR
(step 1). After this, the execution of this IIP is started by a dynamically created SDA Agent (step
2) who is in charge of interpreting the SDA* structure, linked with the responsible HN who will
send action requests (using the FIPA Request Protocol) to the implied agents in order to execute
the SDA* (step 3). To finish this execution, the agents fill in their related document subsections,
creating the final document which wil be saved into the EHCR of the patient (step 4).

After this explanation, it's interesting to analyse the possible actors involved in the SDA*
execution. There is an execution coordinator agent (the Head Nurse in the case of the IIPs) and a
set of support agents which help this coordinator to complete the execution of the IIP. There is
another interesting component in the system, this is the information repository, in this case the
EHCR. We also note that the ontologies and other databases proposed in other documents will
act as information repository too. Finally, it is also interesting to think about the results of this
execution, which are the generation of one or more documents which must be saved in the EHCR
of the patient.

4.3.3. IIP execution message flow

Here we present an arbitrary IIP (is important to remark that this IIP isn't real) and the message
flow between the agents involved in its execution. First theIIP is presented:

Kidney problems

Ad:

1.- Send message
to the patient:

"Go to home"

A

Otherwise

status?

Mo Functionality Low functionality

[3,6] days

Al:
1.-PC prescribes assis-

tive devices
A3
1.- PC prescripts a
non-pharmacological
treatment to patient
Y
AZ:

1.- PC prescribes
nursing care

2.- FD authorizes nur-
sing care

3.- Nurse performs an
intravenous therapy
4.- Nurse writes follow-
up report

Figure 12. Kidney problems fictitious SDA* diagram

The IIP has four action blocks, and each block has its own group of subactions. Two of these

49

blocks are performed if the patient hasn't kidney functionality, Action 3 is performed if he has
low functionality, and in the other cases Action block 4 is performed.

The next diagram represents the message passing between the agents implied in the execution of
the Action blocks A1 and A2, which are the blocks with more actions to perform. Block A3 is
represented in the next section, as it has a procedure invocation. Block A4 hasn't any interest as it
only represents a message to the patient.

In the first step the gateway agent asks the performance of the patient's IIP, as this service must
be given by the platform to the users, and the way to communicate them is through a Gateway
Agent. After this is sent, the Head Nurse Agent reads from the EHCR the IIP and, given the
status of the patient, arrives to Action Al. Once the execution has arrived here, the HN sends
messages to the inwlved Agents of this Action block in order to achieveits results.

To avoid representing all the execution, in the next diagram of the presented IIP only the

messages passed between agents arerepresented:

: Controller Agent | : PC | | :FD ‘ ‘ :Nurse|

In the example IIP,
we have arrived to
the action Al

1: Prescribe assistive devices

|
|
|
|
| Perform action Al
|
|
|
|

with the execution

2: Prescribe nursing care

| Action Al has |
| finished, we can continue |
| |
| |
|
[
|

O
IS. Perform an intravenous therapy | o
|
|
|r6: Write follow-up report I
|
|
|‘ "" T

| Block Action AZ has !
| finished

Figure 13. Agent message exchange of the IIP's Action first branch

50

4.3.4. Procedure execution message flow

The next diagram presents the performance of the procedure “Prescription of Non-
Pharmacological Treatment” described in DO1, and invoked in the IIP's action block A3. There
are 3 steps in this procedure. In the first step the three actors which can invoke this procedure are
presented.

Figure 14 presents this sequence diagram:

: Controller Agent :PC :FD

| 1: Prescription writing

First step is
done, the
controller
agent has the
prescription

3: Treatment cancelled If the treatment is
| » accepted, a message
| | is sent to the GW

Agent, otherwise, the
| PC is informed about
Gmmmmmmmmmsmmmmmmooseones the cancellation.

Figure 14. Agent message exchange of the IIP's Action second branch

It's important to remark the last message (number 3), where the PC is informed about the
cancellation of the treatment performed by the FD; in any other case, the gateway agent is

notified about the acceptance of the treatment, and it shows this fact to its owner.

Finally, the supposed message exchange of a complex procedure is presented. In this case a more
complex diagram, which is described in [02] called “Comprehensive Assessment”, is presented.
To represent this, some assumptions are done; the first is that there isn't any agent in charge of
the execution, so a controller agent is created, but as in the previous diagram, its functionality
can be passed to another of the HC staff agents. The second one is the agent who represents the
EU, here is it assumed that the HN is this agent because this agent is also in charge of the
assignment of members to the EU. This second assumption can be discussed because it's not
clear who represents the EU and, like in the SDA* execution, there are two clear options, an EU
agent or an agent representing all the EU. In the diagram we have chosen the solution where one
of the agents represents all the EU, in this case the FD.The actions “n.1” (where n is a number

51

between 0 to the maximum steps in the procedure) represent an asking alternative when a HC
staff agent needs information about HCP. The “auto-arrows” refer to actions in one procedure
which are done by the same agent. Figure 15 represents this complex SDA* structure execution:

: Controller Agent ‘ : PC | | : Head Nurse| | : FD ‘ 1 SW | | EER ‘ | : Patient

\
‘ 1: Refer patient for a CA ‘ |

| |
| | |
1: Need to do a CA | | | |
| [[D
| | |
|
|
|

2: Assign EU members

A new EU is
constituted. If
one of the
proposed agents
doesn't want to
E:I be in the EU, the
HN must search
another one of
the same type.

2: EU constitution | leeeoeooeoooooooo oo

| |
| | |
1 T | |
T T T
‘ 3: Appointment ask ‘ | | |
1 1 I I I
\ \ | | |
| | | | |
| _ | | | |
L}: Appointment conﬁrmatjlon l J J -I
‘ 4: Perform MultiDim. E\ra‘. | J_a: Perform starlwdard \ntew\ewl
‘ ‘ | 4.1: Ask questions to CCPif ncin reliable HCP]
| | | f] This message
‘ ‘ | | exchange (and the
‘ ‘ | | next) between medical
staff, patient and CCP
| | | J . represents the fact
‘ ‘ | 4: define re-e |a\uatmn inside | that if the patient isn't
able to perform the
‘ ‘ | | interview, the CCP is
| | | | interviewed.
| \ | |
5: Perform CA and PA 15: Request necessary info. T I —I— I
‘ 5.1: Ask questions tp CCP if non relwatil\e HCP i JI_
‘ 5: Collect patient e1ustmg med. info. | |
| | | |
‘ 5: Collect an amamrlesls | |
| | | |
‘ 5: Perform PA | | |
| | | |
\ | | |
F """"""""""""" T { """""""""" | """"""""" | """""""" L T
‘ 6: Perform SN and SNet A‘ssessment | | | |
i i i]6.1: Execute prucedure SN and fNetA
‘ | | 6: Asklinfo 1 |
‘ | | 6.1: Ask info fronrel\ab\eHCPl
| | |
\ | |
| | |
\ | |
| | | PR N I
RS- IS T— N
‘ 8: Dissolve EU | |
.. — -
‘ 9: Perform CM or BackOffice proper actions | This diagram pr.esent;
the communications
‘ between agents in a very
‘ complex procedure,
‘ the Comprehensive
r ,, Assessment.
\

Figure 15. Message exchange between agents in the Comprehensive Assessment execution

52

4.4. K4CARE SDA* Ontology

As the reader can imagine, to achieve the execution of the SDA* structures the agents should
have some common language in order to communicate all these messages. To accomplish this
objective the agents who are interested in executing an SDA* structure must know the concepts
and actions defined in the SDA* Ontology described here.

This ontology contains all the elements which are needed in order to execute the SDA*
structures, like the actions that one agent must perform, or the concepts related to the execution
of the concrete SDA*, etc. In figure 16 the context of this ontology within the whole system is

presented:

SDA Execution

Agent

Data Abstraction Layer

SDA* Execution
Agent

Ontology language

Requests,
Queries,
CFP....

Figure 16. Context of the SDA* ontology in the system

Figure 17 presents the structure of the different concepts and agent-actions cotained in this

ontology:

53

/" '_- (Perform_Action)
{'-State_"u'ariable':} A

/ p /[Inform_Status
/ / (joaD)]
Iy - 7 [Cancel 5DA)

i ~ e —
/ o (_| DAgentActmn e

_j};-r«"f _— ' *ﬁ\\ -Walt;ﬂlnd)

e "

I JEICnncept e I— Enu:lmg Explanatlnn) \‘“

(owl:Thing T

- e

. (Initiate_sDA)
(SDAAction) .
e (_Start_Pause SDA O
\ (SDAstructure) I

", —

-:_:-_i.IZI:F‘redil:ate.

-::ﬂ;&ctiun_Periud-':_“.-
N
{:";.I'l.l'aiting_F'e riod :

Figure 17. SDA* MAS Ontology

4.4.1. Concepts

In this section the diferent concepts in the SDA* model execution which can appear in a two
agent conversation are presented. These concepts are the following:

« The SDA* structure itself
This is the conceptual representaion of the SDA* structure itself.

Attribute Type Opt. |Description

Id. String M Identification of the SDA* in K4CARE
terms

Procedure Boolean 0 Refers to the fact that SDA* is one of
the K4CARE defined procedures

« The current State node information
This is a representation of the patient's state or the state of the execution of a procedure,
this means the health status of the patient or the position in the SDA* execution, or
anything which can be represented with a state node.

54

Attribute Type Opt. Description
Id. String M Identification of the SDA* current State
node
Procedure Boolean O Refers to the fact that SDA* is one of
the K4CARE defined procedures
Status Set of State Variables |M A set of the status variables into this
State node related to the SDA*
The current Action node information
The concept of an Action node presented in the SDA* specification, the 4-tuple and the
time interval required to represent the action correctly.
Attribute Type Opt. | Description
Id. String M |Action Identification (from the
K4CARE Action list)
Receiver String M | Which actor must receive this action
Performer String M | Who must perform this action
Time Interval SDA* 3-valued time O Indicates the interval of time and the
interval repetitions in which this action must be
performed
Document Related String M |Indicates the document in which the

results of this action must be written

3-valued time interval

This is the conceptual abstraction of the waiting periods which are described in the SDA*

formalism.
Attribute Type Opt. Description
Start Date M The start of this period
End Date M The end of this period
Period Time M The time period which this action has to
be repeated
A period of time

This is the conceptual abstraction of the waiting periods which are described in the SDA*

formalism.

55

Attribute Type Opt. Description

Min_time Date M The minimum time which should be
waited

Max time Date M The maximum time which has to be
waited

« Explanations about an unexpected execution stopping situation
This is a conceptualization of an execution error, i.e. a representation of an unexpected

status of the SDA* execution.

Attribute Type Opt. Description
Ending_Condition String M Name or code of the ending condition
Description String O A short description explaining why the
execution of the current SDA* has
finished
4.4.2. Actions

This section introduces the list of possible actions which the K4CARE agents may request to the
SDA* agent and vice versa. This actions list could be increased in the future, depending on the
possible needs of the system. These three first actions are referred to the ones which the
K4CARE agent system would ask to the SDA* Agent, the last one has the inverse sense, and is
requested by the SDA* Agent to the sysem agents.

Initiate a new SDA* - From controller to SDA* agent
Request to mitialize a new SDA* structure.

Attribute

Type

Opt.

Description

SDA*

SDA* Structure

M

The SDA* structure to be initiated

« Start/Pause the current SDA* - From controller to SDA* agent
Used when a controller agent wants a SDA* agent to start or pausethe current SDA*.

Attribute

Type

Opt.

Description

SDA*

SDA* Structure

M

The SDA* structure to be paused or

56

started

Start

Boolean M

If the SDA* structure has to be started
or not, if not it means that it has to be

paused

« Cancel the SDA* execution -From controller to SDA* agent

Request the cancellation of a SDA* structure execution which is in progress.

Attribute

Type Opt.

Description

SDA*

SDA* Structure M

The SDA* structure which has to be

cancelled

Perform these actions — From SDA* to controller agent

When a SDA* agent reaches an action node into the SDA* structure needs to ask to the

related actor in the system to perform those actions, so this abstraction represents the

performance of these actions.

Attribute

Type Opt.

Description

Action_lists

Set of Actions to be M

performed

A set of actions (node information
structure) which has to be performed by

the asked agent

Wait this period — From SDA* to controller agent

To indicate to the receiver that he must wait the referred period of time expressed into

this action.

Attribute

Type Opt.

Description

Period

Time period M

The period that the asked agent should
wait

57

58

5. Design and implementation of the SDA* Agent

This chapter of the document presents the design and structure of the SDA* Agent. As said in
section 4.3.1, this agent is capable to execute the SDA* structures (as they are nowadays). To do

so, this agent has an internal data structure to represent and managethis formalism.

Besides this data structure, the Agent needs some kind of engine to execute the contents of this
structure, as its purpose is to execute this representation. So the SDA* agent has an execution

engine which gives to him this execution capabilities.

5.1. Code Structure

The code written to implement the SDA* Agent has been structured in some packages, as shown

in figure 18:

3D agemt Packages

S0AAgent_Ontalagy SDANgent

sdaExecutor i2p

Figure 18. The SDA Agent Packages

The code is structured in 4 main packages: the SDA_Ont ol ogy, the | 2P, the sdaExecut or and
the SDAAgent .

The | 2P is the representation of the SDA* formalism in Java classes. It implements a
graph-like structure with the needed modifications in order to correctly represent this

formalism.

The sdaExecut or is the event oriented engine capable to interpret and execute SDA*
structures. As it will be shown in the next sections, this engine is the basis of the whole
functionality of the SDAAgent.

« The SDA _Ontol ogy is the package which contains the code related to the ontology

59

described in section 4.4. This package includes the concepts and the actions related to the
execution of SDA* structures.

- Finally, the SDAAgent is the concrete implementation of the Agent described above. This
agent uses the other 3 packages in order to understand and execute SDA* structures, and
to communicate to the other agents the different events that occur during this execution.

5.2. SDA* graph data structure

In this section the data structure used to represent the SDA* formalism will be described. The
objective of this data structure is to implement the SDA* format in a Java package, in order to be
accessible by the agents in the system who would like to use it. To do so, this structure must
accomplish the next points:

« It must be robust.
- It should have operations of creation, modification and reading.

- It has to provide functions to perform traversals over it, respecting the time and decisions

restrictions that will appear during this process.
- It must be prepared to support concurrent access.

To achieve these objectives, the package has been structured in 3 blocks. The first one is the
representation of the different SDA* node elements, which are the States, the Decisions and the
Actions. The second block is the representation of the connectors between these SDA* node
elements. These connectors can have different functionalities, depending on their purposes.
Finally, the third block is the SDAGraph structure itself, which uses the other 2 blocks and
creates the whole structure. The next figure shows a global overview of the 2P package:

12P Package|

sDhAGraph shA

EntryPoints : Wector
ActyalsDaElement : SDAElement
Lastinserted : DAElement

SDAGraphiElem : SDAElement)
addEntryPaintiElem ; SDAElement) : boalean
removeEntryPointiElem ; SDAElement) : boolean
addsDAElementiElem : SDAElement) : boalean
addsDAElementiElem : SDAElement,min : long,max : long] : boolean connector
addsDAElementiElem : SDAElement,r: String) boolean

appendsDAElement(Elem : SDAElement) : boolean
appendsDAElement(Elem : SDAElement,min : long,max : long) : boolean
appendsDAElementElem SDAElement,r : String) : boolean
removesDAElement(d : Decision) : Wector
removesDAElementia | Action) : boolean

removesDAElement(s | State) : boolean

removesDAElem{Elem (SDAElement) : boolean

resetCycles) woid

setStartingPaintiElem : SDAElement) : boolean

JumpToMextd : boolean

JumpToMextiindex :int) : boolean

JumpToMextid : Date) : boolean

JumpTaMextir : String) - boolean

JumpTaMextir: String,d : Date) : boolean

aetEntryPointsd : Wector

gethctualsDAElement] : SDAElement

getlastinsertedd : SDAElement

Figure 19. SDA* representation package

60

As it is possible to view, the package contains the 3 mentioned blocks. In the next two figures the

classes contained in the SDA subpackage and in the connector subpackage, and the relations

between the different classes in these subpackages are shown:

ThreeTuple

StateStructure

ActionStructure

ThreeTuplel

setStart{_start : Date) :void
setEndi_end : Date) : void
setfrequencyl_frequency :int) @ woid
getStart : Date

getEnd(: Date

getfrequency] : int

StateStructurevariable : String, _walue : Object)
getiariabled : String

getWalued : Object

setvariable{_variable : String) : woid
setvaluevalue : String) : void
compareTol_state : StateStructure) : boolean
copyalueOf_state : StateStructure) : woid

compareToltuple : ThreeTuple) : int

Decision

getDecisionsd : Yectar
addDecision(Decision : Stringl : boolean
removeDecisioniDecision : String) : boolean
Decision(size :int,identifier : String)

ActionStructurel_subject : String,_object : String,_action : String,_document : String,_period : ThreeTuple)
getsubject] : String

getObject(: String

getActiond : String

getDocumentd : String

getPetiodd : ThreeTuple

setSubject{_shjt : String) : woid
setObjectiobj : Stringl : woid
setAction(_act : String) © woid
setDocument(_doc : Stringl : woid
setPeriod(_period : ThreeTuple) : void
compareTol_act ; ActionStructure) : boolean
copyvaluedfl_act ; ActionStructure) woid

SDAElement

setldi_id : String) : woid

getldi : String

addMNextic : Connector : boolean
getlextElemiindex : int) : Connectar
remowveNextic : Connector) : boolean
getMextElems) ;Wectar
remaveAllNext] : vaid

addPreviousic : Connector) : boolean
aetPreviousElemsi | Wector
getPreviousElemiindex : int) : Connector

removePreviousic : Connector) boolean
removeAllPrevious(: void
copyMextElemsinElem : SDAElement) : woid
addCycled : void

substractCycled © woid

getCycles @ int

resetCyclesd :woid

State

is5tartingEntry © boolean

setstartingEntryise © boolean) :woid
getinfol : StateStructure

setlnfolinfo : StateStructure) : boolean
Statein :String)

Action

addActionfAction : ActionStructure) : boolean
removeActionffction | ActionStructure) : boolean
getActionfndex : int) : ActionStructure
isTimeConnected) : boalean

Actionisize :int,identifier : Sting)

EDA Package

Figure 20. The SDA Package from the I2P data structure

Connectar

getConnection(: SDAElement
getOwner : SDAElement
setMextielem : SDAElement) : void
setOwner(elem : SDAElement) : void
cleaniext] : boolean

TimeConnector

Py

DecisionCannector

DecisionConnectoriowner : SDAElement, next
getReason(: String
setReasonis : String) : boolean

(SDAElement,r: String)

TimeConnector{owner : SDAElement,next : SDAElement,min : long,max : long)
getMinTimed : Date

getMaxTimed : Date

sethlinTime(d : Date) : boolean

setMaxTime(d : Date) : boolean

GeneralConnector

GeneralConnectorfowner : SDAElement,next : SDAElement)

DecisionTimedCannectar

getReason(: String
getMinTimed : Date

sethlinTime(d : Date:

setReasonis : String)

gethaxTimed : Date

1 boolean

sethaxTimeld : Date) : boolean

:boolean

DecisionTimedConnectarfowner : SDAElement,next : SDAElement,min : long,max : long,Reason : String)

Connector Fackage

Figure 21. The connector package from the I2P data structure

In the two figures presented above it is possible to view the different fields of each class and the

respective position of each class in the internal structure of the package. In the next subsections

the concrete funcionality of each one of the three presented blocks will be described.

61

5.2.1. SDA Subpackage

As said, this subpackage contains the concrete representation of each of the possible nodes in a
SDA* structure. To do so, the States, Decisions and Actions inherit or implement an abstract
class which represents the concept of a SDA element, which is the main concept of this class.

The SDAElement abstract class has functions to connect itself with the connectors of the
connectors package. It also has functions which permits the executor to know which node is
referenced and to control the cycles of that node (see section 6.6 for more information).

There are another 2 classes which need to be analyzed deeper, which are St at eSt r uct ur e and
the Act i onSt ruct ur e. The first one is used to represent the contents of the States and contains
information about the variable which it represents and the value associated to this variable. The
second one represents the semantic information related to an action, so it is composed by five
elements:

> The subject who performs the action.
The object which gives the action.
The document related to this action.

The action code (as specified in document DO1).

v v v v

The interval time of repetition of this action (as described in the SDA* formalism)

With this five fields, this class can represent all the information related to a medical action, as it
is needed to know who performs the action, and who receives this action. It is also needed to
know which document must be filled after this action, and which concrete action must be
performed during which time period.

5.2.2. Connector Subpackage

This package is used to connect the different nodes present in the SDA subpackage, respecting
the different constraints present in the formalism related to the connection between these nodes.
So, these connectors must give to the developer possibilities to represent the time restrictions,
and the decision restrictions, too.

To do so, an inheritance model has been designed, as in the case of the SDA package. The
different connectors inherit from a general class, which is called connector and has information
about the two nodes which itconnects.

The other subclasses are the following:

2 General connector: this is the representation of a connection between two nodes without

any time or decision restriction.

62

2 Decision connector: this represents the connection between a decision node and another
type of node. It has the information about why the path that it sets has been chosen.

2 Time connector: represents a timed connection with a time restriction that must be
respected. This time restriction is of the 2-tuple form, in other words, it contains the
miminum time and maximum time that must be spent to let the execution follow through
this path.

2 Decision timed connector: this is a mix of the time connector and the decision connector,
as it could be interesting to jump through a decision path, but at the same time, wait a
concrete time before doing the next action.

5.2.3. I2P Class

This is the main class of this package. It uses the two subpackages described above to give to the
system the desired functionality. To do so, it gives SDA* creation methods, as add or delete
nodes and connections; and at the same time, it gives traversal methods, in order to permit the
execution of the represented SDA* graph.

The additional methods don't have any intrinsic problematic, as they permit to add a node after
the last inserted node, using the parameters to specify which kind of connection will connect
these two nodes. The problematic resides in the removal methods, in concrete in the deletion of
decision nodes, as deleting a node which connects with another node is quite easy, but the
deletion of a decision node is not as trivial because normally a decision divides the graph into 2
subgraphs, so, the deletion of a decision returns the list of possible subgraphs generated from this
deletion.

When the SDA* structure is formed, it is interesting to go through it, so, “jumping” methods are
given. These methods have parameters which permit to jump to the next node specifiying the
possible restriction, as for example, a time restriction, permiting to the execution package to
transparently control the possible time constraints.

5.3. SDA* executor

After having defined the SDA* data structure, it was required to have some kind of interface or
engine to interpret and execute the contents of this structure. To do so, the SDA* executor has

been designed. This executor is based in an event model, and it follows the next steps:
1. Someone asks to the executor to load an SDA*
The executor is asked to advance (or step forward) in the passed SDA*

After this the executor generates an event informing about what has happened

Sl A

These two last steps are iteratively repeated until the SDA* finishes

63

In this section, the event orientation, its implementation and the finalisation conditions will be

described. Finally, the sdaExecutor final design will be introduced.

5.3.1. Event-based Orientation

Before starting to describe how to design an event-based package, the event orientation will be
defined. Event-driven programming or event-based programming is a computer programming
paradigm in which the flow of the program is determined by user actions or messages from other
programs. In contrast, in batch-programming or flow-driven programming the flow is
determined by the programmer. Batch programming is the style taught in beginning
programming classes while event-driven programming is what is needed in any interactive
program. Event-driven programs can be written in any language, although the task is easier in
some languages than in others. Some programming environments make the task quite easy,
others less so. This kind of paradigm gives to the execution of the SDA* an intuitive
approximation which allows a clear separation of components, allowing to have a clear
implementation.

To use this technique some other techniques were required in order to give to our Java code this
orientation. After some researches in Software Engineering it was clear that the most useful tool
to achieve this objective were the Design Patterns[07]. A design pattern is a general repeatable
solution to a commonly occurring problem in software design. A design pattern is not a finished
design that can be transformed directly into code. It is a description or template for how to solve
a problem that can be used in many different situations. Object-Onented design patterns typically
show relationships and interaction between classes or objects, without specifying the final
application classes or objects that are involved.

Design patterns can be classified in terms of the underlying problem they solve. Examples of
problem-based pattern classifications include:

- Fundamental patterns.

« Creational patterns, which deal with the creation ofobjects.

- Structural patterns, ease the design by identifying a simple way to realize relationships
between entities.

+ Behavioural patterns, that identify common communication patterns between objects and
realize these patterns.

 Concurrency patterns.

In concrete, to solve the event-orientation a behavioural pattern was chosen, the observer pattern.
The observer pattern is a design pattern used in computer programming to observe the state of an

object in a program. It is related to the principle of implicit invocation.

The essence of this pattern is that one or more objects (called observers or listeners) are

registered (or register themselves) to observe an event which may be raised by the observed

64

object (the subject). The object which may raise an event generally maintains a collection of the
observers. The figure below illustrates this structure:

Subject

=
Observer (ObserverCollection) registerObserver(observer)

natify() unregisterObserver{ohserver)
notifyObservers()
ConcreteObserverA ConcreteObserverB notifyObservers() -
: : for observer in ObserverCollection
t t
Het) Lo call ohservernotify()

Figure 22. The Observer pattern components

The participants of the pattern are detailed below. Member functions are listed with bullets.

Subject
This class provides an interface for attaching and detaching observers. The subject class also
holds a private list of observers. It contains these functions:

 Attach - Adds anew observer to the list of observers observing the subject.

« Detach - Removes an observer from the list of observers observirg the subject.

- Notify - Notifies each observer by calling the notify() function in the observer, when a
change occurs.

ConcreteSubject
This class provides the state of interest to observers. It also sends a notification to all observers,
by calling the Notify function in its super class (i.e. in the Subject class). It contains this

function;

+ GetState - Returns the state of the subject.

Observer
This class defines an updating interface for all observers, to receive update notifications from the
subject. The Observer class is used as an abstract class to implement concrete observers. It

contains this function:

« Update - An abstract function, to be overriden by concreteobservers.

65

ConcreteObserver
This class maintains a reference with the ConcreteSubject, to receive the state of the subject

when a notification is received. It contains this function:

« Update - This is the overridden function in the concrete class. When this function is
called by the subject, the ConcreteObserver calls the GetState function of the subject to
update the information it has about the subject's state.

When the event is raised each observer receives a callback. This may be either a virtual function
of the observer class (called 'notify()' on the diagram) or a function pointer (more generally a
function object or "functor") passed as an argument to the listener registration method. The
notify function may also be passed some parameters (generally information about the event that

is occurring) which can be used by the observer.

Each concrete observer implements the notify function and as a consequence defines its own
behaviour when the notification occurs.

5.3.2.Finish conditions

Before starting the execution of a SDA* structure there are some finishing conditions that must
be detailed, as if they aren't it's possible that the execution won't ever finish. So, in the frame of
this project the next SDA*finishing conditions have been taken into account:

The interpretation of a node » times: as there can be cycles in the SDA* structure, and it
is a medical structure, it has been decided that if some action has been performed more
than n times it should be probable that this SDA* won't be the most appropiate for the
patient.

« The arrival to a node which hasn't continuation: if the execution arrives to a node which
hasn't any next node it's clear that the execution has finished.

« The execution of a decision node which hasn't the branch that is asked.

« Or, the jumping to a node with a time restriction which can't be accomplished, this
means, two nodes connected with a time connector and is required to jump from the first
to the second, but the time restriction is not fulfiled.

66

5.3.3. SDA* Executor design

This section presents the design of the execution engine. After explaining the requirements to

execute in an event orientation paradigm and the ending conditions of the SDA* execution the

next design has been created:

SDAEcecutor

SDAEvent

ewt ; Object

IDLE: short
EUMMNING : short
WAITING : short
ABORTED : short
graph ; SDAGraph
listeners ; Arraylist
status : short
oycles tint

sinterfaces
ShAListener

) TimeEvent(event : SDAEwent) : void
srealizes documentWrittenlewent | SDABrent) © void

SDABwentisre © Ghbject,_ewt : Ohbject)
getEvent(: Object

SDAEcception

SDAEcception(r : String)

SDAExcecutorloycles ©int)

SDAE<ecutar _graph : SDAGraph,_cycles @ intd
LoadiDAGraph_araph : 5DAGraph) : waid
stansSDAD : woid

stepsDAQ - woid

stepSDALr : String) : void

stepsDAdd : Date) @ waid

abortBcecsDAD : woid

getsDAElementd : SDAElement
getstatus] :int

getlycles(@ int

addsSDAListenerl : SDAListener) : woid
removesDAListener(: SDAListener) :woid
chooseEntryPoint(s - SDAElement) : boolean
evaluateModeielem : SDAElement) : void
fireActionReached] : woid
fireDecisionReachedd : void
fireStateReached : void
raiseStartsDABcecutiond : woid
raiseEndSDAEecution] : woid
raiseToobuchCycles) © woid
fireTimeEnded) : void

—————————— [> ActionReachedievent - SDAEvent) : void
stateReachedievent : SDABvent) : woid
jumpReachedievent : SDABwent) : woid
decizionReached(event : SDAEvent) - woid
chooseEntryPointievent : SDABvent) : woid
graphFinished{event : SDABent) waid
toohuch Cyclesievent : SDARBvent) waid

SDA Executor Package

Figure 23. The SDA Executor Package

As described in the figure above, the executor is composed by four elements:

The representation of the Events, the SDAEvent class. This class contains information

about the event that has been produced, as which node has produced this event.

- A tailored exception, to be thrown in case of errors.

« The interface that must be implemented by any class which wants to listen to SDA

events. In this interface the possible events that are generated from the execution of a

SDA* structure are described. All these events have an associated SDAEvent class which

has the information related to the concrete event. This interface represents the Observer

class in the pattern.

- The execution engine, which interprets the contents of the SDA* structure and raises the

different events to the registered listeners. It performs the Subject role in the observer

pattern.

67

5.4. SDA* Agent

In this section the SDA* Agent package, and its interaction with the rest of the packages listed
above will be described . As shown in figure 24 the SDA* Agent has 2 mainclasses:

AgentBehaviour

STATE: short
DECISION : shart
ACTION @ short
EMTRY _POINT : short
patient : String
graphEnded : boolean

Step: short shAAgent

- - AddBehaviour
AgentBehaviourl_pat : String) behaviour : AgentBehaviour
action(Dwoid <A factory SDAGraphFactory
TimeEventd : waid i1 1w
documentirittend ; woid v T | setupd cwoid

ActionReached] : woid
stateReached(: woid
jumpReached] : waid
decizionReached(:waoid
chaaseEntryPaint] © woid
graphFinizhed? : woid
tookuchCyclesd : woid
queryDALDecisiond : String
queryDALEntryPointiv : Wector

SDA Agent Fackadge

Figure 24. SDA* Agent Package

This agent is composed by the implementation of an Agent by the JADE library (see section 5.1)
and the definition of its SDA* execution behaviour:

- The Agent JADE code, as said, and by references to the behaviour that it has and to a
SDAGraphFactory, which is a connection with the SDA* repositories.

« The behaviour is a concrete implementation of a Cyclic Behaviour, which asks to its
associated SDAExecutor (because it implements a SDAListener) to step in the SDA
execution at each cycle of the behaviour. After this step this behaviour receives the
generated events and treats them.

In the next diagram (figure 25) the connections of the SDA Agent with the rest of the classes are
presented, in order to have a global view of the whole design:

68

SDAGraphFactory

SDAEcecutor_Engine
Shifgent
SDABxception prr— RecoverEHCR_SDAGraph
SDAGraph
0. B
1.
i subscribe 0.1
- =implicits
SDAEcecutor |O AddBehaviour
0.1 01
. 1w
SDAEvent |AgentBeha\riour|< o
0. i
1
1
: sredlizes

«interfaces
sDAListener

SDA* Agenit Fackage FIeyaction

Figure 25. SDA* Agent Package Interaction

As is possible to see, the agent has connections to an executor, to a SDAGraph, and obviously to
its behaviour. When this behaviour is added to the agent, it is subscribed to the executor in order
to receive the events, and it's also connected to the SDA* representation, in order to have
knowledge about what is being executed. These connections are clear in the next code fragment,
where the finishing conditions can also be noticed:

i nport sdaExecut or. SDAExecut or;
public class SDAAgent extends Agent {
Al D recv;
SDAExecut or sdaEngi ne;
Agent Behavi our behavi our;
SDAG aphFactory factory;
int maxCycles = 3; //Finishing condition
protected void setup() {
Systemout.println("Agent ” + getlLocal Name() + " started.");
factory = new SDAG aphFactory(); //Consult the EHCR instead
sdaEngi ne new SDAExecut or (maxCycl es) ;
behavi our = new
Agent Behavi our (thi s, ”"pati ent _nane”, sdaEngi ne) ;
sdaEngi ne. addSDALi st ener (behavi our); //Connection Agent -
SDAExecut or
sdaEngi ne. LoadSDAG aph(factory. bui | dSDA()) ;
/'l Add the SDABehavi our
addBehavi our (behavi our);

69

5.5. SDA* Ontology

This section describes the process of generation of the Ontology used to represent the concepts
present in the execution of the SDA* structures. This section explains the process of creating a
JADE ontology using the Protégé tool and its plugin the Protégé Bean Generator.

5.5.1. Defining and creating the Ontology
In any JADE onflogy there are 3 important elements:

« The concepts: represent the basic information in the communication between agents.

« The predicates: represent some determined conditions that must be fulfiled by the
response data to an information request.

- The actions: represent the request of the performance of a concrete task by one agent, and
they have all the needed information forits execution.

So, first of all we needed to codify the concepts, predicates and actions formally described in
section 4.4 in an ontology. As the process of creating a JADE ontology is quite slow, an assistive
tool has been used to speed up this process. To do this, the Protégé tool has been used to create
an ontology and a plugin of Protégé to generate the code. To define the ontology, the template
provided to createa JADE ontology using the Bean Generator plugin was used, because the Bean
Generator has some restrictions about the generation of this kind of ontologies, and one of these
constraints is the use of this template.

SDA_Agent_Ontology Protégé 3.2.1 (file:/home/Miquel/URV/K4CARE/Ontologies/SDA*%20Agent%200ntology/SDA_J — O
File Edit Project OWL Code Tools Window Help
DoH “B6 wd #% HEE 4> c:;gpmrégé
| @ Metadata (mwwkdcare nety | OWLClasses | W Properties | 4 Individuals | = Forms | 4% Ontology Bean Cenerator | Ontoviz |
iy = BT
For Project: @ SDA_Agent_Ontology For Class: owl:Thing tinstance of owl:Class) [| Inferred View
= o (N N
wireq CFem O 3 Anvetations
=i Property Value | Lang |
[rdfs Class rdfsicomment -
¥ (0 j0:Concept
v J.0:AgentAction
Inform_Status
Perform_Actions d
Cancel_SDA P
Start_Pause_SDA qr 43 Asserted Conditions
Wait_Period NECESSARY & SUFFICIENT
Initiate_SDA NECESSARY
J.0:AID
Action
Ending_Explanation
SDA_structure
State
Waiting_Period
State_Variable
Action_Period
j.0:Predicate
£ - o
ap gp = SR Dis joints
[e 28|+ & ® LogicView O Propertes View

Figure 26. Ontology created with Protégé

70

As can be seen, the ontology has the concepts and the agent actions described in the ontology
section. Once it is done, it's possible to use the Bean Generator tab, in order to create the JADE
ontology. Using this tool, Protégé will create the needed classes to define a JADE ontology

without having to be written by the developer, and having an easy maintenance. Figure 27 shows
this tab window:

SDA_Agent_Ontology Protégé 3.2.1 (file:/home/Miquel/URV/K4CARE/Ontologies/SDA*%:20Agent%200ntology/SDA_J _ O
Eile Edit Project OWL Code Tools Window Help

NEE tBE wa €9 ap <@pro:égé
r. Metadata (www. k4 care net) r OWLClasses r- Properties r‘ Individuals r = Forms r/(?onmlngy Eean Cenerator rﬂmoviz
status:

Ontology Bean Generator for Jade 3.1

[v]

packagename (2.g. mypackage.onto)
@l sda_agent_ontology.ontology |V| ‘ |

location excl. package (e.g. fhome/fchris/projects/myproject/src/)
This directory will be created if it doesn't already exist
@] /ham e /Miquel/URV/K4CARE/ Ontologies/SDA* Agent Ontalogy /src =]

ontologydomain (e.q. Newspaper)

@Mcard |'H |

generate jade ontology file
ld generate beans

example:
public class CD implements Concept {
private int price;

public void setPricedint value) { [use JADE nam es when specified
this.price=value; () J25E JavaBean compatible [JADE]
1 (® J25E and Java 1.1 compatible [JADE, JADE-LEAP]

public int getPriceq { 7 J2ME compatible JADE-LEAP]
return this price;

i

private String title;

public void setTitle(5tring value) {
this title=value;

i

public String getTitle({
return this title;

i

I

-

powered by

X |
Media Lab E A) b
. 5 Acklin Yo JADE
the MIT IV b

ogent based suppert of
progress|

<]

Figure 27. The Bean Generator Tab

After the parameters to create the ontology are introduced, we are able to generate the ontology
beans with the “Generate Beans button.

5.5.2. The generated code

After this process, Protégé has generated a set of classes that can be used to communicate
concepts, actions and predicates in a JADE conversation. Figure 28 shows the “pool” of
generated classes, eachone representing one concept oraction, and its attributes:

71

Action_Period SDA Ontology Package
S ; o State_Wariable cHlenrerte By g
tart_PauseS - Initiate_SDA period : String
304 SDA_structure value :String end :String
stan‘_SDA_ bonlean identification : String 58 SDA_structure Start - String
" setWaluelvalue : Stringd void setsOANalue - SDA_structure) * void setPeriodivalue : String) : voi
n :) woid
by e Shiswructurel v0id | getvalued :String 9E1SDAD : DA StrUCture getPeriod] : String Perform_Artions
g ' X . setldentificationivalue : String) : void setEndivalue - Stringd - waid
setSStan__Ssgigta\;e .IbooleanJ woid getldentificationd : String getEndy - String action_List : Action
getstart : boolean : _ _
setStartivalue - String) : void setAction_Listhalue : Action :woid
getStart(: String getaction_List) ; Action

sDAGraphOntalogy action

time_Interval : Action_Period

. Cancel SDA
Ending_Explanation Inform_Status receiver : String 5
identification : String ancel - boolean
ending_Condition : String satc?luuasl:gteastiripstli::we: String performer : 5tring s SDA structure
setEnding_Conditiontvalue - String) @ woid) setTime_Intervalivalue @ Action_Period) © void -

. i . " " N setCancellvalue ; boolean) : void
getEnding_Conditiond : String getTlme__IntenfaIO At_tlon_Pe!'md getCanceld : boolean
addDescrlptlontglem :Str.ng_: W'_d setStatus_Descriptionfvalue © String) :woid setRecel_\fert\@ue_. string) : void setSDANalue SDA_structure) : void
removelescriptionfelem : String) : boolean etStatys Descriptiond - Strin getReceiver] : String getsDAQ : SDA_structure
cleardllDescriptiond : woid N ~ P - g addDocument_Related(elem : String) : woid .

getaliDescription] sethctual Statedvalue @ State) : void

aetDescriptiond gethctual Stated : state clearAllDocument_Related(: void
setDescription(© woid getAllDocument_Related(
getDocument_Relatedd

removeDocument_Related{elem : 5tring) : boolean

Stat
setDocument_Related] : void e
SDA_structure setldentificationdvalue : String) :woid procedure : boolean
detldentificationd : 5tring status : State_Wariable
procedure : boolean getPerformer(: String identification : 5tring
identification : String Wait_Periode setPerformeriperformer : String) : String
sdA_Period : Waiting_Period setProcedyredvalue © boolean) : woid

setProcedurelvalue : boolean) : vaid - — - - Waitin tProcedure(: boal
N N 0_Period getProcedurel : boolean
getPracedure(: boolean setsDA_Perindbvalue : Waiting_Perind) : void setStatusivalue : State_Wariable) : void

setldentificationivalue : String) : woig 9et5DA_Perind] : Waiting Period minTime : String getStatus) : State_Variable
getldentificationd : String maxTime :5tring setldentificationfvalue : String) : void
getldentificationd : 5tring

sethlinTimelvalue : Stringh : woid
gethMinTimed : String
setMaxTimedvalue : String) : void
gethaxTimed : String

Figure 28. The SDA* Agent communication ontology

5.6. Controlling problematic situations

Finally, to finish the design description there are some problematic situations that have been

solved following the next indications:

e As the K4ACARE is a project still in development, the checking procedure of the patient
variables has been done using the standard input, as there is another subproject in
K4CARE whose goal is to obtain this information from the databases.

e The time constraints which are present in the SDA* specification are still not clear
nowadays, like the parallelism of action execution. This work only treats the time
restrictions as they are specified in the SDA* specification, so evaluates the time
restrictions jumping between two nodes and informs about the repetition of one action to

the agents requested to. It is planned that in future versions these issues will be treated.

e The error conditions haven't been clearly defined nowadays, so, the SDA* Agent only

informs to its parent about any appearing error.

72

5.7. Developing in a distributed team

As K4CARE is an European project with some teams distributed among the continent the need
of usage of collaborative tools is prior. This section comments the tools used to work in the
project:

- It is necessary to have a tool to manage all the generated code, as the amount of code
generated by all the team's members is sufficiently large to be complex to manage. The

used tool has been subversion[16].

+ We need to have a tool to compile the code written by each team member, as it's
important to share a uniform way of compiling and generating the results of the written
code. To achieve this aim, two tools have been used, Maven[15] (the one used for this
part of the project) and Ant. This kind of tools have been used as nobody in each working
unit of the whole project has to know how it exactly is distributed, so, only installing and
using the provided configuration files for each project unit by each responsible developer
every one will be capable to generate each part.

« As the code can have errors, it's important to have a testing tool in order to verify the

code, and at the same time, use one with standarized characteristics, as Junit[14].

« As the generation of the ontology code is a boring and repetitive process it is interesting
to have a tool to generate this code automatically, and also to manage the OWL files
generated, as the Protégé + Ontology bean generator[11].

73

74

6. Testing

To test the development that has been done, three level of tests have been performed:

v

test of the I2P package as a data structure: To test this part of the project, a testing
package has been designed using JUnit. In this package the creation, modification and the
reading of this data structure has been tested, and it has worked correctly.

As the IDE (Eclipse [10]) used has JUnit integration it has been quite easy to integrate
the designed tests with the generated code. To do so, a new package has been added into
the package structure ofthe project:

I [Resource &Team Syn... EwSVN Repo... ?;?Debug|3}’]ava

=g MHlerarchy | B &|7|=0o

- -

< T K4CARE [trunk/MAS/SDAAgent]
< i src

P [main java.com K4CARE
b 1 main java.com K4CARE i2p
P H#} main.java.com K4CARE.i2p.connector
P H} main java.com K4CARE.i2p.SDA
b} main java.com K4CARE SDAAgent
b main java.com K4CARE SDAAgent_Ontology
b [main java.com K4CARE sdaExecutor
b 3 ontology

+ Ij test java.com K4CARE.i2p

b [# test java com K4CARE SDAAgent
P =i JRE System Library [jok1.6.0]

b= IUnit 381 hd

Outline | Ju Junit &2 s Rf

Figure 29. The package structure
This package contains basically one test case, divided in 3 parts:

v Elements construction test, which tests the correct construction of the different
elements in a SDA*, the States, the Decisions and the Actions.

v Elements referencing test, tests the creation and functimality of the branches.

v Structure test, tests the SDA* graph structure by itself

In the next piece of code it is possible to see the internal structure of this test case:

75

M) PhysicianCharge java [J] ListenBehaviour java] AgentBehaviourjava m ?7

1 package testjava.com K4CARE.iZp;
2
3+Importjunit.framework.TestCase;D

9 public class Testiip extends TestCase {

private State s, s1;

private Decision d;

private Action a;

private Action al;

private ActionStructure a_struct;
private Actions as;

private Reasons rs;

private SDAGraph i2p;

private ThreeTuple frequency;

public void testSDAElementsConstruction() {|:|

public void testSDAElementsReferencing() {|:|
public void testlIP() {|:|
public static void main(5tring[] args) {

junit.textui TestRunner.run(Testiip.class);

iy

Figure 30. SDA* Structure testing

After developing this code, the test finishes correctly, so it's possible to conclude that the
SDA Graph structure is sufficiently robust and bug-freeto be used:

160 }
161

7]

Problems | Javadoc Declaration m History

<terminated= Testiip (3) [Java Application] /usrfjavajjdkl 6.0/binjfjava (31/05/2007 13:15:14)

Time: 0,022
OK (3 tests)

Figure 31. The JUnit testing results

v test of the executor engine

The second level of test is centered in the execution engine. In this test the SDA Agent
execution capabilities have been tested. To do so, some simple SDA* structures have
been developed using the SDA:

76

Testing graphs

Acute Psoriasis Acute Psoriasis

Action 1 Action 2

Action

Figure 32. SDA* tested graphs structure

Some changes have been performed over these structures, like the introduction of some
temporal restrictions, or cycles between the nodes. The main goals of these tests were
accomplished:

v Test the interpretation of the SDA* graph structure
v Test the Agent event-based proactive behaviour

v Continue with the evaluation of the SDA* structure

Due to the amount of tests done and the output generated it is impossible to write all them
here, however, an example of the output generated fromthe execution of the first diagram
presented aboveis shown here:

Agent SDAExecutioner: started

Agent Behaviour:|l've this possible Entry Points:
0) main.java.com K4CARE. i 2p. SDA. State: Acute Psoriasis
1) mmin.java.com K4CARE. i 2p. SDA. State: Serious Psoriasis
Agent Behavi our: Choose one Entry Point by its id:

Seri ous Psoriasis
Agent Behavi our: Choose one Entry Point by its id:

Seri ous Psoriasis
Agent Behaviour:|'ve detected a new state reached event
Agent Behaviour: The state is: Serious Psoriasis

SDAExecutor: |'ve detected an state elenment. | need the next info Psoriasis
SDAExecutor: |'min a nmain.java.com KACARE. i 2p. SDA. State node. Wth O

cycl es.

SDAExecutor: |I'mgoing to junp to another node w thout any |abel or tinme

SDAExecutor: |I'min a main.java. com KACARE. i 2p. SDA. Deci si on node. Wth 1
cycl es.

SDAExecutor: I'mgoing to junp to another node w thout any |abel or tinme
SDAExecut or: An action has been reached

Agent Behaviour:1've detected a new action reached event, now | read the
action: What to do

Agent Behaviour:|'ve detected that the graph has finished. I finish ny
execution

77

In this code extract it is possible to see the interaction between the agentBehaviour and
the SDAExecutor and the different messages which these two elements exchange. It's
also possible for the reader to notice the interaction with the Data Abstraction Layer via

text input, as it is still under development by other member of the project.

test of the SDA* Agent in an Agent environment:

This final test is centered in the SDA Agent interaction with other agents. The main goals

in this test are:
« To evaluate the correct functionality of the ontology
+ Test the interaction ofthe SDA Agent in a Multi-Agent System

+ Verify tests one and two

To do so, in this test a new SDA Structure has been created, in this case the invented
SDA* graph structure from section 3.3.3 has been used (see figure 12), but some
modifications have been introduced, concretely no Nurse agent has been created, and the
tasks related to the Nurse agent have been assigned to the Head Nurse. This has been
done in order to simplify a few the exchanged messages and to remove an actor that does
not give any new functionality to the test. So in this test we have 4 static agents:

+ A Physician in Charge
« A Family Doctor
« The Head Nurse

« The Patient

And one dynamic agent created by the Head Nurse, the SDA Agent. The first task of
these agents is to register to the DF, and after this is done, the Head Nurse creates a new
SDA Agent who also registers to the DF. When all the agents have registered, the SDA
Agent starts the execution of the SDA structure mentioned before, and we have obtained

the following results.

After defining the actors in our test system, the execution of the SDA* structure has been
started. Like in the second test, the output generated is quite long. So, in order to reduce
it, only the execution of one branch of the SDA* structure is shown. In this case the
chosen one is the “No Functionality” branch, related with “Kidney Problems”. Here we

have the text output:

78

Agent Patient _Honer. Si npson started.
Pati ent _Homer. Sinpson is going to register to the DF

Agent Patient Honer. Sinpson: |'mregistered.
Honer Sinpson: |'m doing sonething

Agent HN sdaAgent: started
Agent HN sdaAgent: My father is => HN Edna. Kr abappe

Ki dney Probl ens

SDAExecutor: |'ve detected an state element. | need the next info Kidney
failure

SDAExecutor: |I'min a main.java.com KACARE. i 2p. SDA. State node. Wth 1
cycl es.

SDAExecutor: |'mgoing to junp to another node without any |abel or tine
SDAExecutor: |'min a nmain.java.com KACARE. i 2p. SDA. Deci si on node. Wth 1
cycl es.

SDAExecutor: |I'mgoing to junp to anot her node w t hout any |abel or tine
SDAExecut or: A deci si on has been reached

No functionality
SDAExecutor: |'min a nain.java.com KACARE. i 2p. SDA. Deci si on node
SDAExecutor: |I'mgoing to junp to another node with a reasoning to
acconpl i sh
SDAExecut or: An action has been reached

HN sdaAgent |'ve sent: ((action (agent-identifier :nanme
HN_Edna. Kr abappel @ror pheus: 1099/ JADE : addr esses (sequence

htt p: // nor pheus: 7778/ acc http:// nor pheus: 42311/ acc)) (Perform Action
:Action_List (SDA Action :Tine_Interval (Action_Period : End "Thu Jun 07

10: 50: 39 CEST 2007" :Period "0" :Start "Thu Jun 07 10:50: 39 CEST 2007")

: Performer PC : Docunent_ Rel ated (sequence "D. Assistive Devices") :Receiver
Patient :ldentification "Assistive devices"))))

HN sdaAgent: |I'mgoing to wait the necessary tine

79

HN sdaAgent: | confirmthe response
HN sdaAgent: |'ve recei ved an agree response

HN sdaAgent: Action asked to HN _Edna. Krabappel done.

SDAExecutor: |'min a nain.java. com KACARE. i 2p. SDA. Action node. Wth 1
cycl es.

SDAExecutor: |I'mgoing to junp to anot her node w t hout any |abel or tine

SDAExecut or: An action has been reached

HN sdaAgent |'ve sent: ((action (agent-identifier :nanme
HN_Edna. Kr abappel @mor pheus: 1099/ JADE : addr esses (sequence

http:// norpheus: 7778/ acc http:// norpheus: 42311/ acc)) (Perform Action
:Action_List (SDA Action :Tine_Interval (Action_Period : End "Thu Jun 07
10: 50: 40 CEST 2007" :Period "0" :Start "Thu Jun 07 10:50: 40 CEST 2007")
: Performer PC : Docunent_ Rel ated (sequence "D. Nursing Care") : Receiver
Patient :ldentification "Cure the Patient"))))

HN sdaAgent: |I'mgoing to wait the necessary tine

HN_sdaAgent: | confirmthe response

HN_sdaAgent: |'ve received an agree response

80

HN_Edna. Kr abappel : | confirmthe response
HN_Edna. Kr abappel : |'ve received an agree response

HN_Edna. Kr abappel : Action asked to PC Nick. Ri viera done.

HN _sdaAgent: Action asked to HN Edna. Krabappel done.

HN sdaAgent |'ve sent: ((action (agent-identifier :nanme

HN_Edna. Kr abappel @ror pheus: 1099/ JADE : addr esses (sequence

http:// norpheus: 7778/ acc http:// norpheus: 42311/ acc)) (Perform Action
:Action_List (SDA Action :Tine_|Interval (Action_Period :End "Thu Jun 07
10: 50: 41 CEST 2007" :Period "0" :Start "Thu Jun 07 10:50: 41 CEST 2007")
: Performer FD : Docunent Rel ated (sequence "D. authorize nursing care")

: Recei ver Patient :ldentification "Cure the Patient"))))

HN sdaAgent: |I'mgoing to wait the necessary tine

[Nick Riviera: I'mdoing something |
Edna Krabappel: |'m doi ng sonet hi ng

Edna Krabappel |'ve received: ((action (agent-identifier :name

HN_Edna. Kr abappel @wor pheus: 1099/ JADE : addr esses (sequence

http:// norpheus: 7778/ acc http://norpheus: 42311/ acc)) (Perform Action
:Action_List (SDA Action :Tine_Interval (Action_Period :End "Thu Jun 07
10: 50: 41 CEST 2007" :Period "0" :Start "Thu Jun 07 10:50:41 CEST 2007")
: Performer FD : Docunent_Rel ated (sequence "D. authorize nursing care")

: Receiver Patient :ldentification "Cure the Patient"))))

Edna Krabappel: |'ve received the next order => Cure the Patient
HN sdaAgent: | confirmthe response

HN _sdaAgent: |'ve received an agree response

Edna Krabappel: | agree with the asked action

Edna Krabappel: confirned
Edna Krabappel: I'mgoing to wait the necessary tine

HN_Edna. Krabappel : | confirmthe response
HN_Edna. Kr abappel : |'ve received an agree response

HN_Edna. Kr abappel : Action asked to FD Julius. H bert done.

HN sdaAgent: Action asked to HN Edna. Krabappel done.

HN sdaAgent |'ve sent: ((action (agent-identifier :nane

HN_Edna. Kr abappel @ror pheus: 1099/ JADE : addr esses (sequence

http:// norpheus: 7778/ acc http:// nor pheus: 42311/ acc)) (Perform Action
:Action_List (SDA Action :Time_Interval (Action_Period :End "Thu Jun 07
10: 50: 42 CEST 2007" :Period "0" :Start "Thu Jun 07 10:50: 42 CEST 2007")
:Performer HN : Docunent Rel ated (sequence "D. intravenous therapy")

: Recei ver Patient :ldentification "Cure the Patient"))))

HN sdaAgent: |I'mgoing to wait the necessary tine

[Julius Hibert: I'mdoing sonething |
Edna Krabappel: |'m doi ng sonet hi ng

Edna Krabappel |'ve received: ((action (agent-identifier :name

HN_Edna. Kr abappel @ror pheus: 1099/ JADE : addr esses (sequence

81

HN sdaAgent: | confirmthe response
HN sdaAgent: |'ve received an agree response

HN_sdaAgent: Action asked to HN_Edna. Krabappel done.

HN_sdaAgent |'ve sent: ((action (agent-identifier :name

HN_Edna. Kr abappel @ror pheus: 1099/ JADE : addr esses (sequence

htt p: // nor pheus: 7778/ acc http:// nor pheus: 42311/ acc)) (Perform Action
:Action_List (SDA Action :Tine_Interval (Action_Period :End "Thu Jun 07
10: 50: 43 CEST 2007" :Period "0" :Start "Thu Jun 07 10:50: 43 CEST 2007")

: Performer HN : Docunment Rel ated (sequence "D. followup report") : Receiver
Patient :ldentification "Cure the Patient"))))

HN sdaAgent: |I'mgoing to wait the necessary tine

HN _sdaAgent: | confirmthe response
HN sdaAgent: |'ve received an agree response

HN_sdaAgent: Action asked to HN _Edna. Krabappel done.

SDAExecutor: |'min a nain.java. com KACARE. i 2p. SDA. Acti on node
SDAExecutor: |'mgoing to junp to another node with a tinme reasoning

The agents after registering in the DF remain waiting for action requests. Once the SDA
Agent arrives to an Action Block from the SDA* structure, he sends to the related agent
the tasks that are there written, and sends an agree message, which is replied with a
confirm message, and agreed by the SDA Agent. If we analyze the outputs generated by
the agents it's possible to see the contents of the request messages, and there we can see
an ontology message codified in the SL codec. It's interesting to notice that, in this test
case, the patient isn't requested to do anything because the actions in the SDA* structure
are requested to the other agents, and the responsible of these agents are who must
perform these actions over the patient.

Finally when the execution is finished, the SDA Agent finalizes its execution and the
other agents remain waiting new messages.

82

In the next figure is shown a global view of this message exchange:

sniffer0@morpheus:1099/JADE - Sniffer Agent
Adtions About

olelm

% B3 AgentPlatfarms

T B con ESI -
¢ @@ Main-Container

=] df@morpheus: 1033/ JADE [I =
RMA@morpheus: 1093/ JADE 1 - e
B ams@morpheus: 1099/ JADE 2
& sniffer0@morpheus; 1099/JADE E
sniffer0-on-Main-Container@morpheus: 1033/ JADE 4
¢ @0 Container-1 5
FD_Julius.Hibert@morpheus: 1095/ JADE 3 REQUET:1638))
HN_Edna Krabappel@morpheus: 1093/JADE 7 Azl {55
B Patjent_Ho & ORI G PS80
PC_Nick. Riviera@morpheus: 1093/ JADE q ACREELLC 545 030)
sniffer0-on-Container-1@morpheus: 1093/ JADE 10 AHEEI0 (550
¢ B Container-2 11
HMN_sdaAgent@morpheus: 1093/ JADE 12 As’}ff?ﬂ LEEN)
& sniffer0-on-Container-2@morpheus:1093/JADE 13 @EEEBR GH(ERD
" REQUEST 32 [664 684)
- INEORM:32 (BE4 740 684)
16
17
18 L
13
AGREEST [448

REQUEST:170L { |}

REQUEST:1702(]
|——

MGREEL16 0 477 1)

REQUEST:1704 ([}

Message:0 REQUEST (cid= rw= irt= proto=null onto=K4Care SDA")

Figure 33. Message exchange between agents in an SDA* execution

So, after these three testing packages it's possible to conclude that the SDA Agent and structure
are working fine as the SDA* structure works correctly, the engine interprets correctly the
structures, and finally, the communication between agents al® work accurately.

83

84

7. Conclusions and future work

The most important conclusion to which we have arrived in this project is that Multi-Agent
Systems technologies are a great approach in the field of Artificial Intelligence, as they combine
some elements from the real world as capabilities to perform intelligent processes, multitask
functionalities, and the most important, collaboration possibilities. This last feature is by far the
most interesting of all the features given by Multi-Agent Systems, as it has been possible to see
during the development of this project where an agent has been designed to coordinate with other
agents. It's important to remark the importance of the fact that all the issues concerning Multi-
Agent Systems have an standarisation entity like the FIPA (which is an IEEE Computer Society
standards organization) who regulates them. This avoids the possible incompatibilities between
different implementations and gives detailed documentation about how and why a protocol or the
messages between theagents are defined.

In second term, some conclusions about the SDA* formalism. This is a great approach to
represent a medical guideline, because it has a graph structure (easily understandable by
computer engineers) and thanks to its “tree” visual representation it's also useful for the medical
staff (who are the most interested on them). However, there are some aspects that we think that
this formalism has to improve. The first one is the possibility of using first order logic (feature
that is in progress nowadays), because is more closer to the real world than propositional logic,
giving to the doctors (an also to the computer science people) richer semantical content in the
representation. In second place, and from the point of view of the agents, it's important to strictly
define which parallel behaviours are being represented in a SDA* graph, as nowadays it hasn't a
clear representation and it's importart to model a more real world.

A global conclusion that can be extracted from the SDA* is the fact that it is a good

approximation, but it needs some refinements in orderto be more precise.

In third place, it's important to remark the different utilities that Software Engineering gives to
the developer, as the design patterns. Without this kind of tools or “recipes” (because the design
patterns are more like recipes than tools) it would be very difficult to solve the final design of the
system in a clear and understandable way.

In fourth place and to finish the conclusions, we would like to stress the important paper of the
tools used to work in the K4ACARE team. Without these tools it would be very complicated to
maintain, share and use the generated code and the generated designs. So thanks to tools like
subversion it has been easy to use the code generated by other team members, or with tools like
JUnit it has been possible to test the correct functionalities of the generated code, in order to find
the possible bugs present oniit.

85

Nowadays, the K4CARE Project is in its second year. During the first year the design of the
ontologies, the documents and the architecture of the system have been done. In this second year
the development of the Multi-Agent System will be done, so the work presented in this document
will be integrated with the work done by all the other project members, and at the same time it
will be revised and extended with the new needed features. As future features it would be
interesting to implement the SDA* formalism completely including the first order logic and the
parallelism (and all the issues related to these implementations) and also integrating all this code
with the rest of the final Multi-Agent System.

To finalise this document, I would like to thank all the comments and revisions given by Dr.
Antonio Moreno in his task of directing this work, to David Isern for his comments and ideas for
the design and development of the Agent, to David Sanchez for the help given to design and
develop the ontology and to Montserrat Batet, Albert Solé¢ and Joan Casals for the help given
during the development of some parts of the code. I'd like also to thank the K4CARE Hungarian
and Czech people the comments given during the development ofthe work.

86

8. Annex

8.1. Annex 1. What is a Multi-Agent System?

Before starting to explain what are the Multi-Agent Systems, it's important to understand what

are their basic elements, the Agents.

It's easy to find somedefinitions about what isan agent as this is a large field of research, but one

of the most accepted ones is the proposed by Michael Wooldndge collected in [03]:

- An intelligent agent is a computational process which is capable to perform tasks in an
autonomous way, and which could communicate with other agents in order to resolve
problems cooperating, coordinating and negotiating with them. The agents live in a
complex and dynamic environment with whom they interact in order to achieve a set of

objectives.

8.1.1. Agent Properties

An intelligent agent is a hardware or (more usually) software-based computer system that enjoys

the following properties:

autonomy: agents operate without the direct intervention of humans or others, and have
some kind of control over their actions and internal state;

social ability: agents interact with other agents (and possibly humans) via some kind of
agent-communication language

reactivity: agents perceive their environment, (which may be the physical world, a user
via a graphical user interface, a collection of other agents, the INTERNET, or perhaps all
of these combined), and respond in a timely fashion to changes that occur in it
pro-activeness: agents do not simply act in response to their environment, they are able to
exhibit goal-directed behavour by takng the initiative.

Reasoning/learning: agents must capable to increase the performance of their acts using
some kind of learning or reasoning techniques.

Mobility: agents must be able to physically move between different computers. This is
not an essential property, but it can be desired.

Temporal continuity: agents will be executing processes continuously.

Truthfulness: agent will always communicate true information.

Benevolence: agents will not have conflictive objectives and it will perform what it is
asked for.

Intelligence: From the other properties, it's possible to conclude that an agent would use
some artificial intelligence techniques in order to solve the problems which it would
have.

87

8.1.2. Agent Types

Agents also can be of some types, in this section the most important of these types will be

presented but, it's possible that there will be more agent types that won't be listed here:

Collaborative: This kind of agents collaborate with other agents in order to achieve one
concrete objective.

Interface: This type of agents are the ones which join forces with the user in the
achievement of one concrete objective.

Mobile: This sort of agents are characterized by having mobility capabilities.

Internet. Typology of agents related to the search and manipulation of information
through Internet.

Reactive: Agents which react to external stimulation, without having any explicit world
model nor reasoning or planification.

Hybrid: This last sort of agents are combinations of two or more types of the ones listed
above.

8.1.3. Multi-Agent Systems

After presenting the concepts related to the term agent we are ready to understand the Multi-

Agent theory, so we define a Multi-Agent System as that in one set of agents cooperate,

coordinate and communicate in order to achieve a common objective.

In this subsection, the typical properties and advantages of the Multi-Agent Sustems are

presented.

8.1.3.1. Multi-Agent Systems advantages

The principal advantages ofusing Multi-Agent systems are the next:

Modularity: The programming complexity is reduced because the working units are
smaller, this advantage also relies in a more structure programming.

Eficiency: The distributed programming permits to distribute the tasks among the agents
achieving parallelism.

Reliability: The fact that a system element breaks its work hasn't mean that the rest of the
elements stop their work also; although it's possible to achieve more security due it's
possible to replicate critical services, andso, obtaining redundancy.

Flexibility: It's possible to add and delete agents dinamically.

88

8.1.3.2. Multi-Agent Systems management

The agent administration stablishes a logical model for the creation, register, communication,

mobility and destruction of agents. As the FIPA is the standarisation organization of all the

related protocols, architectures, etc. related to the agents, in this project their management

structure will be used. This structure is presented i the figure 34, and has the next components

An agent is a computational process that implements the autonomous, communicating
functionality of an application. Agents communicate using an Agent Communication
Language. An Agent is the fundamental actor on an AP which combines one or more
service capabilities, as published in a service description, into a unified and integrated
execution model. An agent must have at least one owner, for example, based on
organisational affiliation or human user ownership, and an agent must support at least
one notion of identity. This notion of identity is the Agent Identifier (AID) that labels an
agent so that it may be distinguished unambiguously within the Agent Universe. An
agent may be registered at a number of transport addresses at which it can be contacted.

A Directory Facilitator (DF) is an optional component of the AP, but if it is present, it
must be implemented as a DF service. The DF provides yellow pages services to other
agents. Agents may register their services with the DF or query the DF to find out what
services are offered by other agents, including the discovery of agents and their offered
services in ad hoc networks. Multiple DFs may exist within an AP and may be federated.

An Agent Management System (AMS) is a mandatory component of the AP. The AMS
exerts supervisory control over access to and use of the AP. Only one AMS will exist in a
single AP. The AMS maintains a directory of AIDs which contain transport addresses
(amongst other things) for agents registered with the AP. The AMS offers white pages
services to other agents. Each agent must register with an AMS in order to get a valid
AID.

An Message Transport Service (MTS) is the default communication method between
agents on different APs.

An Agent Platform (AP) provides the physical infrastructure in which agents can be
deployed. The AP consists of the machine(s), operating system, agent support software,
FIPA agent managementcomponents (DF, AMS and MTS) and agents.

The internal design of an AP is an issue for agent system developers and is not a subject
of standardisation within FIPA. AP’s and the agents which are native to those APs, either
by creation directly within or migration to the AP, may use any proprietary method of
inter-communication.

It should be noted that the concept of an AP does not mean that all agents resident on an
AP have to be co-located on the same host computer. FIPA envisages a variety of

89

different APs from single processes containing lightweight agent threads, to fully
distributed APs built around proprietary or open middleware standards.

FIPA is concerned only with how communication is carried out between agents who are
native to the AP and agents outside the AP. Agents are free to exchange messages

directly by any means that they can support.

- Software describes all non-agent, executable collections of instructions accessible
through an agent. Agents may access software, for example, to add new services, acquire
new communications protocols, acquire new security protocols/algorithms, acquire new
negotiation protocols, access tools which support migration, etc.

Software
i
Agent Platform
T
Agent
Direcs
Agant Management r-a-::ln;:'
System
i s i
v v v

Maszage Transport System

T

Maagage Transport System
Agent Platform

Figure 34. Multi-Agent system structure

8.1.3.3. Multi-Agent Systems Messages Structure

As said in section 4.1.1 agents must be capable to communicate between them. To achieve this,
it's prior to have a clear communication protocol. The FIPA, as the organisation in charge of this
subjects has published some standards [04] about the communication between agents, the
contents of the messages send and the codification of them. In this section the most important of

this messages are presented in order to have a clear idea about this communication isues.

A FIPA ACL message contains a set of one or more message parameters. Precisely which
parameters are needed for effective agent communication will vary according to the situation; the
only parameter that is mandatory in all ACL messages is the per f or mat i ve, although it is
expected that most ACL messages will also contain sender, recei ver and cont ent

parameters.

If an agent does not recognize or is unable to process one or more of the parameters or parameter

values, it can reply with the appropriate not - under st ood message.

90

Specific implementations are free to include user-defined message parameters other than the
FIPA ACL message parameters specified in Table 15. The semantics of these user-defined
parameters is not defined by FIPA, and FIPA compliance does not require any particular
interpretation of these parameters. The prefatory string “X- > must be used for the names of these

non-FIPA standard additional parameters.

Some parameters of the message might be omitted when their value can be deduced by the
context of the conversation. However, FIPA does not specify any mechanism to handle such
conditions, therefore those implementations that omit some message parameters are not

guaranteed to interoperate with each other.

The full set of FIPA ACL message parameters is shown in Table 15 without regard to their
specific encodings in an implementation. FIPA-approved encodings and parameter orderings for
ACL messages are given in other specifications. Each ACL message representation specification
contains precise syntax descriptions for ACL message encodings based on XML, text strings and

several other schemes.

Parameter Category of Parameters
performative Type of communicative acts
sender Participant in communication
receiver Participant in communication
reply-to Participant in communication
content Content of message

language Description of Content
encoding Description of Content
ontology Description of Content
protocol Control of conversation
conversation-id Control of conversation
reply-with Control of conversation
in-reply-to Control of conversation
reply-by Control of conversation

Table 15. FIPA ACL Message Parameters

The following terms are used to define the ontology and the abstract syntax of the FIPA ACL
message structure:
- Frame. This is the mandatory name of this entity that must be used to represent each
instance of'this class.
« Ontology. This is the name of the ontology, whose domain of discourse includes their

parameters described i the table.

91

« Parameter. This identifies each component within the frame. The type of the parameter
is defined relative to a particular encoding. Encoding specifications for ACL messages
are given in their respective specificatons.

« Description. This is a natural language description of the semantics of each parameter.
Notes are included to clarify typical usage.

+ Reserved Values. This is a list of FIPA-defined constants associated with each
parameter. This list is typically defined in the specificaton referenced.

All of the FIPA message parameters share the frame and ontology shown i Table 16.

Frame fipa-acl-message

Ontology fipa-acl
Table 16. FIPA ACL Message Frame and Ontology

- Performative
Parameter Description
performative Denotes the type of the communicative act of the ACL
message

Notes: The per f or mat i ve parameter is a required parameter of all ACL messages.

- Sender
Parameter Description
sender Denotes the identity of the sender of the message,

that is, the name of the agent of the communicative

act.

Notes: The sender parameter will be a parameter of most ACL messages. It is possible
to omit the sender parameter if, for example, the agent sending the ACL message
wishes to remain anonymous. The sender parameter refers to the agent which performs

the communicativeact giving rise to this ACL message.

- Receiver
Parameter Description
receiver Denotes the identity of the intended recipients of
the message.

Notes: Ordinarily, the r ecei ver parameter will be a part of every ACL message. It is

92

only permissible to omit the r ecei ver parameter if the message recipient can be
reliably inferred from context, or in special cases such as the embedded ACL message in
pr oxy and pr opagat e.

The r ecei ver parameter may be a single agent name or a non-empty set of agent
names. The latter corresponds to the situation where the message is multicast.
Pragmatically, the semantics of this multicast is that the sender intends the message for
each recipient of the CA encoded in the message. For example, if an agent performs an
I nf or mact with a set of three agents as receiver, it denotes that the sender intends each
of these agents to come to believe the content of themessage.

- Reply To
Parameter Description
reply-to This parameter indicates that subsequent messages in
this conversation thread are to be directed to the
agent named in the reply-to parameter, instead of
to the agent named in the sender parameter.
- Content
Parameter Description
content Denotes the content of the message; equivalently

denotes the object of the action. The meaning of the
content of any ACL message is intended to be
interpreted by the receiver of the message. This is
particularly relevant for instance when referring to
referential expressions, whose interpretation might

be different for the sender and the receiver.

Notes: Most ACL messages require a content expression. Certain ACL message types,
such as cancel, have an implicit content, especially in cases of using the
conversation-idorin-reply-to parameters.

- Language
Parameter Description
language Denotes the language in which the content parameter
is expressed.

Notes: The ACL cont ent parameter is expressed in a formal language. This field may

be omitted if the agent receiving the message can be assumed to know the language of the
content expression.

93

- Encoding

Parameter Description

encoding Denotes the specific encoding of the content

language expression.

Notes: The content expression might be encoded in several ways. The encodi ng
parameter is optionally used to specify this encoding to the recipient agent. If the
encodi ng parameter is not present, the encoding will be specified in the message

envelope that encleses the ACL message.

- Ontology
Parameter Description
ontology Denotes the ontology(s) used to give a meaning to
the symbols in the content expression.

Notes: The ont ol ogy parameter is used in conjunction with the | anguage parameter
to support the interpretation of the content expression by the receiving agent. In many
situations, the ont ol ogy parameter will be commonly understood by the agent

community and so this message parameter may be omitted.

- Protocol
Parameter Description
protocol Denotes the interaction protocol that the sending
agent is employing with this ACL message.

Notes: The pr ot ocol parameter defines the interaction protocol in which the ACL
message is generated. This parameter is optional; however, developers are advised that
employing ACL without the framework of an interaction protocol (and thus directly using
the ACL semantics to control the agent’s generation and interpretation of ACL messages)

is an extremely ambitious undertaking.

Any ACL message that contains a non-null value for the pr ot ocol parameter is
considered to belong to a conversation and it is required to respect the following rules:
- the initiator of the protocol must assign a non-null value to the
conver sati on-i d parameter,
- all responses to the message, within the scope of the same interaction protocol,
should contain the same value forthe conver sat i on- i d parameter, and,

+ the timeout value in the r epl y- by parameter must denote the latest time by

94

which the sending agent would like to have received the next message in the
protocol flow (not be confused with the latest time by which the interaction
protocol should terminate).

- Conversation Identifier

Parameter Description
conversation- Introduces an expression (a conversation identifier)
id which is used to identify the ongoing sequence of

communicative acts that together form a

conversation.

Notes: An agent may tag ACL messages with a conversation identifier to manage its
communication strategies and activities. Typically this will allow an agent to identify
individual conversations with multiple agents. It will also allow agents to reason across
historical records of conversations.

It is required the usage of globally unique values for the conversation-id
parameter in order to allow the participants to distinguish between several concurrent
conversations. A simple mechanism to ensure uniqueness is the concatenation of the
globally unique identifier of the sender agent to an identifier (for example, a progressive
number) that is unique within the scope of the sender agentitself

- Reply With
Parameter Description
reply-with Introduces an expression that will be used by the
responding agent to identify this message.

Notes: The r epl y-wi t h parameter is designed to be used to follow a conversation
thread in a situation where multiple dialogues occur simultaneously. For example, if
agent i sends to agent j a message which contains:

reply-wth <expr>
Agent; will respond with a message containing:

in-reply-to <expr>

- In Reply To
Parameter Description
in-reply-to Denotes an expression that references an earlier
action to which this message is a reply.

95

- Reply By

Parameter Description

reply-by Denotes a time and/or date expression which
indicates the latest time by which the sending agent

would like to receive a reply.

Notes: The time will be expressed according to the sender’s view of the time on the
sender’s platform. The reply message can be identified in several ways: as the next
sequential message in an interaction protocol, through the use of the reply-wi th
parameter, through the use of a conver sati on-i d and so forth. The way that the

reply message is identified is determined by the agentimplementer.

8.1.3.4. Multi-Agent Systems Communication Protocols

Another important feature of the Multi-Agent Systems are the communication protocols between
agents. With these protocols the agents are capable to perform complex activities. As seen in the
last section there is a parameter in the category control of conversation which is related to the
protocol. This protocol is who defines a set of rules or steps to follow in order to perform a
conversation.

As happens in the other Multi-Agent Systems related themes the FIPA defines a set of
communicative protocds[05], that are described here:

- FIPA Request

The FIPA Request Interaction Protocol (IP) allows one agent to request another to perform some
action. The Participant processes the request and makes a decision whether to accept or refuse
the request. If a refuse decision is made, then “refused” becomes true and the Participant
communicates arefuse. Otherwise, “agreed” becomes true.
If conditions indicate that an explicit agreement is required (that is, “notification necessary” is
true), then the Participant communicates an agree. The agree may be optional depending on
circumstances, for example, if the requested action is very quick and can happen before a time
specified in the reply-by parameter. Once the request has been agreed upon, then the Participant
must communicate either:
« A failure ifit fails in its attempt to fill the request,
+ An inform-done if it successfully completes the request and only wishes to indicate
that it is done, or,
+ Aninform-result ifitwishes to indicate both that it is done and notify the initiator
of the results.

96

Any interaction using this interaction protocol is identified by a globally unique, non-null
conversation-id parameter, assigned by the Initiator. The agents involved in the interaction must
tag all of its ACL messages with this conversation identifier. This enables each agent to manage
its communication strategies and activities, for example, it allows an agent to identify individual
conversations and to reason acrosshistorical records of conversations.

FIPA-Request-Protocol]

H request

] ot

agee

ﬂ'
A

necessany]

calon
e

1

mform-done : nform

:jr

1
1
1
i
1
mform-resull | inform !
1
1
1
1
i

Figure 35. FIPA Request Interaction Protocol

FIPA Query

The Initiator requests the Participant to perform some kind of inform action using one of two
query communicative acts, query—-1if or query-ref. The query-if communication is
used when the Initiator wants to query whether a particular proposition is true or false and the
query-ref communication is used when the Initiator wants to query for some identified
objects. The Participant processes the query-if or query-ref and makes a decision
whether to accept or refuse the query request. If the Participant makes a refuse decision, then
“refused” becomes true and the Participant communicates a refuse. Otherwise, “agreed” becomes
true.

If conditions indicate that an explicit agreement is required (that is, “notification necessary” is
true), then the Participant communicates an agree. The agree may be optional depending on
circumstances, for example, if the requested action is very quick and can happen before a time

specified in the repl y-by parameter. If the Participant fails, then it communicates a failure.

97

In a successful response, the Participant replies with one of two versions of inform:

« The Participant uses an inform-t/f communication in response to a query-if
where the content of the inform-t/f asserts the truth or falsehood of the proposition,
or,

« The Participant returns an inform-result communication in response to a query-
ref and the content of the inform-result contains a referring expression to the

objects for which the query was specified.

Any interaction using this interaction protocol is identified by a globally unique, non-null
conversation-id parameter, assigned by the Initiator. The agents involved in the interaction must
tag all of its ACL messages with this conversation identifier. This enables each agent to manage
its communication strategies and activities, for example, it allows an agent to identify individual

conversations and to reason across historical records of conversations.

FIPA-Query Pratocl J
Initiator Participant

query-i 1
T query-ref

[refused]

agree

lgreed and
nolficalion necessary]

falhwe

_ nform4 - mform >
[ery#] | Poteed]

miom-resul - mform
[queryreq

-

Figure 36. FIPA Query Interaction Protocol

FIPA Contract Net

The Initiator solicits m proposals from other agents by issuing a call for proposals (cf p) act ,

which specifies the task, as well any conditions the Initiator is placing upon the execution of the

98

task. Participants receiving the call for proposals are viewed as potential contractors and are able

to generate n responses. Of these, j are proposals to perform the task, specified as pr opose
acts.

The Participant’s proposal includes the preconditions that the Participant is setting out for the
task, which may be the price, time when the task will be done, etc. Alternatively, the i=n-j

Participants may r ef use to propose. Once the deadline passes, the Initiator evaluates the

received j proposals and selects agents to perform the task; one, several or no agents may be

chosen. The / agents of the selected proposal(s) will be sent an accept - pr oposal act and the
remaining k agents will receive a r] ect - pr oposal act. The proposals are binding on the
Participant, so that once the Initiator accepts the proposal, the Participant acquires a commitment
to perform the task. Once the Participant has completed the task, it sends a completion message

to the Initiator in the form of an i nf or m done or a more explanatory version in the form of an
i nform resul t. However, if the Participant fails to complete thetask, a f ai | ur e message
is sent.

Note that this IP requires the Initiator to know when it has received all replies. In the case that a
Participant fails to reply with either a pr opose or a r ef use act, the Initiator may potentially

be left waiting indefinitely. To guard against this, the cf p act includes a deadline by which
replies should be received by the Initiator. Proposals received after the deadline are automatically
rejected with the given reason that the proposal was late. The deadline is specified by the
r epl y- by parameter in the ACL message.

Any interaction using this interaction protocol is identified by a globally unique, non-null
conversation-id parameter, assigned by the Initiator. The agents involved in the
interaction must tag all of its ACL messages with this conversation identifier. This enables each
agent to manage its communication strategies and activities, for example, it allows an agent to
identify individual conversations and to reason across historical records of conversations. In the

case of 1:N interaction protocols or sub-protocols the Initiator is free to decide if the same
conver sati on-i d parameter should be used or a new one should be issued. Additionally,

the messages may specify other interaction-related information such as a timeout in the r epl y-
by parameter that denotes the latest time by which the sending agent would like to have received

the next message in the protocol flow.

99

FIF'A-OontractNet-F‘rotocoI)

‘ Initiator ‘ ‘ Participant
: i
i
cip m,.!
1
i
1
: Fn rafusa
["
| dend-
1
! < ina
i
Do
L
| poOposa

raject-proposal k9

nccopt-proposal 5k i

failura

inform-done : inform

Inform-rasult : inform

Figure 37. FIPA Contract Net Interaction Protocol

FIPA Iterated Contract Net

As with the FIPA Contract Net IP, the Initiator issues m initial call for proposals with the cf p
act. Of the n Participants that respond, k are pr opose messages from Participants that are

willing and able to do the task under the proposed conditions and the remaining j are from

Participants thatr ef use.

Of the k proposals, the Initiator may decide this is the final iteration and accept p of the bids (0 <
p < k), and reject the others. Alternatively the Initiator may decide to iterate the process by
issuing a revised cf p to / of the Participants and rejecting the remaining -/ Participants. The
intent is that the Initiator seeks to get better bids from the Participants by modifying the call and
requesting new (equivalently, revised) bids. The process terminates when the Initiator refuses all
proposals and does not issue a new Cf p, the Initiator accepts one or more of the bids or the

Participants all refuse to bid.

Any interaction using this interaction protocol is identified by a globally unique, non-null
conversation-id parameter, assigned by the Initiator. The agents involved in the

interaction must tag all of its ACL messages with this conversation identifier. This enables each

100

agent to manage its communication strategies and activities, for example, it allows an agent to
identify individual conversations and to reason across historical records of conversations.

In the case of 1:N interaction protocols or sub-protocols the Initiator is free to decide if the same
conver sati on-i d parameter should be used or a new one should be issued. Additionally,
the messages may specify other interaction-related information such as a timeout in the r epl y-

by parameter that denotes the latest time by which the sending agent would like to have received

the next message in the protocol flow.

FIPA-terated-Confractiet-Proto cal)
I
H I
i
I
- '

T

Figure 38. FIPA Iterated Contract Net Interaction Protocol

FIPA Brokering

The FIPA Brokering Interaction Protocol (IP) is a macro IP since the pr oXy communicative act
for brokerage embeds a communicative act as its argument and so the IP for the embedded
communicative act is also embedded in this IP. This embedded IP guides some parts of the
remainder of the interaction, thus parts of this protocol are written very generically.

The Initiator of the brokering interaction begins the interaction with a pr oxy message which
contains the following: a referential expression denoting the target agents to which the broker
should forward the communicative act, the communicative act to forward and a set of proxy
conditions such as the maximum number of agents to which the message should be forwarded.
The Broker processes the request and makes a decision whether to agree to or refuse the request
and communicates ecither an agree or a refuse communicative act accordingly.
Communication ofa r ef use terminates the interaction.

Once the Broker has agreed to be a proxy, it then locates agents per the description from the

101

pr oxy message. If no such agents can be found, the Broker returns a f ai | ur e- no- mat ch
and the interaction terminates. Otherwise, the Broker may modify the list of matching agents
based on the pr oxy- condi t i on parameter. It then begins m interactions with the resulting

list of n agents with each interaction in its own separate sub-protocol. At this point, the Broker

should record some of the ACL parameters, for example, conver sation-id, reply-
Wi t h and sender , of the received pr oXy message to return in the » replies to the Initiator.
Note that the nature of the sub-protocol and the nature of the replies are driven by the interaction
protocols specified in the communicative act from the pr oxy message. As the sub-protocol
progresses, the Broker forwards the responses that it receives from the sub-protocol to the
Initiator. These messages are defined as the reply-nessage-sub-protocol
communications, and may be either successful replies as defined by the sub-protocol or
fai | ure. If the initial proxy was an i nf or m there may in fact be no replies from the sub-
protocol (and in fact means that the interaction is identical to a recruited inform). When the sub-
protocol completes, the Broker forwards the final r epl y- message from the sub-protocol and
the brokering IP terminates. However, there can be other failures that are not explicitly returned
from the sub-protocol, for example, the agent that is executing the sub-protocol has failed. If the
Broker detects such problems, it returns af ai | ur e- br oker i ng, which terminates the IP.

A second issue to address occurs because multiple agents may match and therefore multiple sub-
protocols (m of them) may be initiated by the Broker within the brokering IP. In this case, the
Broker may collect the n received responses and combine them into a single reply-
nmessage- sub- protocol, or may forward the reply-nmessage-sub- protocol
messages from the separate sub-protocols individually (/ < p < n.). This is complicated by
situations such as one agent responding with a fai |l ure while a second agent returns a
repl y- message, or the situation where results are inconsistent. The Broker must determine
whether to resolve such situations internally or forward the responses to the Initiator. In doing
this, the Broker must also be careful to avoid disruptive acts such as directly forwarding a
fai | ur e from a sub-protocol, which would have the inadvertent effect of ending the brokering
IP.

Any interaction using this interaction protocol is identified by a globally unique, non-null
conversation-id parameter, assigned by the Initiator. The agents involved in the
interaction must tag all of its ACL messages with this conversation identifier. This enables each
agent to manage its communication strategies and activities, for example, it allows an agent to
identify individual conversations and to reason across hisorical records of conversations.

In the case of 1:N interaction protocols or sub-protocols the Initiator is free to decide if the same
conver sati on-i d parameter should be used or a new one should be issued. Additionally,

the messages may specify other interaction-related information such as a timeout in the r epl y-

by parameter that denotes the latest time by which the sending agent would like to have received

102

the next message in the protocol flow.

FIPA-Brokering-Protocol)

1]

’—" proxy (prxied- commmicative- i

proy-condilion) i

1 failwe-no-malch - falure
[agreed, cannat T any od- sub-protocal
D, ‘Targe agents] m L
I d
i Tailure prcy - Tale [?.‘;;I'm;:]w
[Adion-condliod
i dome-proxy - imform | [agreed)
|:| S Tind any|
Tamet
. agenis| | reply-message 0-n,
| [sub-protncol proceed]
| _reply culy ool p
[formed prixy-done, L
subproincol proceed] !
i g - faihure H
D\ [subproiocol ilre] i
i
i
1

Figure 39. FIPA Brokering Interaction Protocol

FIPA Recruiting

The FIPA Recruiting Interaction Protocol (IP) is a macro IP since the pr oXy communicative
actfor recruiting embeds a communicative act as its argument and so the IP for the embedded
communicative act is also embedded in this IP. This embedded IP guides some parts of the
remainder of the interaction, thus parts of this protocol are written very generically.

The Initiator of the recruiting interaction begins the interaction with a pr oXy message which
contains the following: a referential expression denoting the target agents to which the recruiter
should forward the communicative act, the communicative act to forward and a set of proxy
conditions such as the maximum number of agents to be forwarded. The Recruiter processes the

request and makes a decision whether to agree to or refuse the request, and communicates either

an agree or a refuse communicative act accordingly. Communication of a refuse
terminates the interaction.

Once the Recruiter has agreed to be a proxy, it then locates agents per the description from the
pr oxy message. If no such agents can be found, the Recruiter returns a f ai | ur e- no- mat ch
and the interaction terminates. Otherwise, the Recruiter may modify the list of matching agents
based on the pr oxy- condi ti on parameter. It then begins m interactions with the resulting
list of n agents with each interaction in its own separate sub-protocol. The initiation of the sub-
protocol should be done with care, using the ACL parameters to correlate the responses to the

103

request. If the Recruiter has been given a message containing a separate desi gnat ed-

recei ver parameter from the interaction Initiator, it needs to start cach sub-protocol with a
r epl y- t o parameter containing the Designated Receiver and the conver sat i on-i d of the
original conversation. If the Recruiter instead is to indicate that the Initiator should receive the
replies, then the r epl y- t 0 parameter should designate the Initiator and the conver sat i on-

i d of the recruiting conversation. Other ACL parameters may also need to be propagated.

Note that the nature of the sub-protocol and the nature of the replies are driven by the interaction
protocols specified in the communicative act from the proxy message. As the sub-protocol
progresses, it forwards its responses back either to the Designated Receiver or to the Initiator,
depending on the value of the r epl y-t 0 parameter in the pr oXy message. These messages

are defined as repl y- nessage- sub-prot ocol communications and may be either
successful replies as defined by the sub-protocol or fai | ure. If the initial proxy was an

i nf or m there may in fact be no replies from the sub-protocol (and in fact means that the

interaction is identical to a brokered i nf or m. When the sub-protocol completes, the Recruiter
forwards the final repl y- nessage-sub-protocol from the sub-protocol and the
recruiting [P terminates.

A second issue to address occurs because multiple agents may match and therefore multiple sub-
protocols may be initiated by the Recruiter within the recruiting IP. In this case, the sub-
protocols may be communicating multiple reply-nmessage-sub- protocol
communications from the different agents involved in the IP (for a total of m responses). This is
complicated by such situations as one sub-protocol responding with a f ai | ur e while a second
sub-protocol returns a r epl y- nessage- sub- pr ot ocol , or the situation where results are
inconsistent. The agent that receives the messagesmust determine how to detect andresolve such

situations internally.

Any interaction using this interaction protocol is identified by a globally unique, non-null
conversation-id parameter, assigned by the Initiator. The agents involved in the
interaction must tag all of its ACL messages with this conversation identifier. This enables each
agent to manage its communication strategies and activities, for example, it allows an agent to
identify individual conversations and to reason across historical records of conversations.

In the case of 1:N interaction protocols or sub-protocols the Initiator is free to decide if the same
conver sati on-i d parameter should be used or a new one should be issued. Additionally,
the messages may specify other interaction-related information such as a timeout in the r epl y-

by parameter that denotes the latest time by which the sending agent would like to have received

the next message in the protocol flow.

104

FIP ARecmiting-Protocol
Intiator Recruiter
T

i
T
Designated i promy {proraed- coms s icalive-
Recsiver | ad, agest sper, provy
T

Im _wﬂe-m sub-protocol

[agreed, nd any
agesis]

[adioe-condilion]

lcan find
eals]

Figure 40. FIPA Recruiting Interaction Protocol

FIPA Subscribe

The Initiator begins the interaction with a subscribe message containing the reference of the
objects in which they are interested. The Participant processes the subscribe message and
makes a decision whether to accept or refuse the query request. If the Participant makes a refuse
decision, then “refused” becomes true and the Participant communicates a r ef use. Otherwise,
“agreed” becomes true.

If conditions indicate that an explicit agreement is required (that is, “notification necessary” is
true), then the Participant communicates an agree. The agr ee may be optional depending on
circumstances, for example, if the requested action is very quick and can happen before a time
specified in the r epl y- by parameter.

In a successful response, the Participant replies with an inform-result communication with
the content being a referring expression to the subscribed objects. The Participant continues to
send inform-result messages as the objects denoted by the referring expression change. If
at some point after the Participant agrees, it experiences a failure, then it communicates this with
a failure message, which also terminates the interaction. Otherwise, the interaction may be
terminated by the Inifiator using the cancel meta-protocol.

Any interaction using this interaction protocol is identified by a globally unique, non-null
conversation-id parameter, assigned by the Initiator. The agents involved in the
interaction must tag all of its ACL messages with this conversation identifier. This enables each
agent to manage its communication strategies and activities, for example, it allows an agent to

identify individual conversations and to reason across historical records of conversations.

105

Additionally, because it may be important to preserve the sequence of the inform-result
messages, it is important that the message transport used for this IP preserve the ordering of

messages.

FIPA-Subscribe-Protocol J

Initiator Participant
7 T
]
|
|
subscribe i

[agreed and
nolicalion necessary]

- Inform-resut : infom 0-n

faihue
— [falled T
i i

Figure 41. FIPA Subscribe Interaction Protocol

FIPA Propose

The Initiator sends a pr opose message to the Participant indicating that it will perform some
action if the Participant agrees. The Participant responds by either accepting or rejecting the
proposal, communicating this with the accept - proposal or reject-proposal
communicative act, accordingly. Completion of this IP with an accept - pr oposal act would
typically be followed by the performance by the Initiator of the proposed action and then the
return of a status response.

Any interaction using this interaction protocol is identified by a globally unique, non-null
conversation-id parameter, assigned by the Initiator. The agents involved in the
interaction must tag all of its ACL messages with this conversation identifier. This enables each
agent to manage its communication strategies and activities, for example, it allows an agent to

identify individual conversations and to reason across historical records of conversations.

FIPA-Propose-Protocol

i T

. |

H i
|

popose

T

|

|

<

I

acceptproposal

Figure 42. FIPA Propose Interaction Protocol

106

FIPA Request When

The initiator uses the r equest - when action to request that the participant do some action

once a given precondition becomes true. If the requested agent understands the request and does

not initially refuse, it will agr ee and wait until the precondition occurs. Then, it will attempt to
perform the action and notify the requester accordingly.
If after the initial agreement the participant is no longer able to perform the action, then it will

send a f ai |l ure action to the initiator. Once the action has completed and the f ai | ure,
i nf orm done, ori nf orm result hasbeensent, the conversation ends.

Any interaction using this interaction protocol is identified by a globally unique, non-null
conversation-id parameter, assigned by the Initiator. The agents involved in the
interaction must tag all of its ACL messages with this conversation identifier. This enables each
agent to manage its communication strategies and activities, for example, it allows an agent to

identify individual conversations and to reason across historical records of conversations.

FIPA-Request When-Prolocol)

1
1

request-when

mfomm-done - nform
< ? ipmeeadition
hdd*la]

|

Figure 43. FIPA Request When Interaction Protocol

107

8.2. Annex 2. Developing Multi-Agent Systems: JADE

JADE [06] is a software development framework aimed at developing multi-agent systems and
applications conforming to FIPA standards for intelligent agents. It includes two main products:
a FIPA-compliant agent platform and a package to develop Java agents. JADE has been fully
coded in Java and an agent programmer, in order to exploit the framework, should code his/her

agents in Java.

As a middleware that facilitates the development of multi-agent systems, it includes:

A runtime environment where JADE agents can “live” and that must be active on a given
host before one or more agents can be executed on that host.

« A library of classes that programmers have to/can use (directly or by specializing them)
to develop their agents.

« A suite of graphical tools that allows administrating and monitoring the activity of

running agents.

8.2.1. JADE Packages

JADE is composed of the following main packages:

Jjade.core implements the kernel of the system. It includes the Agent class that must be extended
by application programmers; besides, a Behaviour class hierarchy is contained in
jade.core.behaviours sub-package. Behaviours implement the tasks, or intentions, of an agent.
They are logical activity units that can be composed in various ways to achieve complex
execution patterns and that can be concurrently executed. Application programmers define agent

operations writing behaviours and agent execution paths interconnecting them.

The jade.lang.acl sub-package is provided to process Agent Communication Language
according to FIPA standard specifications. The jade.content package contains a set of classes to
support user-defined ontologies and content-languages. A separate tutorial describes how to use
the JADE support to message content. In particular jade.content.lang.sl contains the SL codec,

both the parser and the encoder.

The jade.domain package contains all those Java classes that represent the Agent Management
entities defined by the FIPA standard, in particular the AMS and DF agents, that provide life-
cycle, white and yellow page services. The subpackage
jade.domain.FIPAAgentManagement contains the FIPA-Agent-Management Ontology and all
the classes representing its concepts. The subpackage jade.domain.JADE.AgentManagement

108

contains, instead, the JADE extensions for Agent-Management (e.g. for sniffing messages,
controlling the life-cycle of agents, ...), including the Ontology and all the classes representing
its concepts. The subpackage jade.domain.introspection contains the concepts used for the
domain of discourse between the JADE tools (e.g. the Sniffer and the Introspector) and the JADE
kernel. The subpackage jade.domain.mobility contains all concepts used to communicate about
mobility.

The jade.gui package contains a set of generic classes useful to create GUIs to display and edit
Agent-Identifiers, Agent Descripions, ACLMessages, ...

The jade.mtp package contains a Java interface that every Message Transport Protocol should
implement in order to be readily integrated with the JADE framework,and the implementation of
a set of these protocols.

Jjade.proto is the package that contains classes to model standard interaction protocols (i.e. fipa-
request, fipa-query, fipa-contract-net, fipa-subscribe and soon others defined by FIPA), as well as
classes to help application programmers to create protocols of their own.

The FIPA package contains the IDL module defined by FIPA for [IOP-based message transport.

Finally, the jade.wrapper package provides wrappers of the JADE higher-level functionalities
that allows the usage of JADE as a library, where external Java applications launch JADE agents
and agent containers.

JADE comes bundled with some tools that simplify platform administration and application
development. Each tool is contained in a separate sub-package of jade.tools. Currently, the
following tools are available:

> Remote Management Agent, RMA for short, acting as a graphical console for platform
management and control. A first instance of an RMA can be started with a command line
option ("-gui") , but then more than one GUI can be activated. JADE maintains coherence
among multiple RMAs by simply multicasting events to all of them. Moreover, the RMA
console is able to start other JADE tods.

> The Dummy Agent is a monitoring and debugging tool, made of a graphical user interface
and an underlying JADE agent. Using the GUI it is possible to compose ACL messages
and send them to other agents; it is also possible to display the list of all the ACL
messages sent or received, completed with timestamp information in order to allow agent

conversation recording and rehearsal.

> The Sniffer is an agent that can intercept ACL messages while they are in flight, and
displays them graphically using a notation similar to UML sequence diagrams. It is
useful for debugging your agent societies by observing how they exchange ACL
messages.

> The Introspector is an agent that allows to monitor the life cycle of an agent, its

109

exchanged ACL messages and the behaviours n execution.

> The DF GUI is a complete graphical user interface that is used by the default Directory
Facilitator (DF) of JADE and that can also be used by every other DF that the user might
need. In such a way, the user might create a complex network of domains and sub-
domains of yellow pages. This GUI allows in a simple and intuitive way to control the
knowledge base of a DF, to federate a DF with other DF's, and to remotely control
(register/deregister/modify/search) the knowledge base of the parent DF's and also the
children DF's (implementing the network of domains andsub-domains).

> The LogManagerAgent is an agent that allows setting at runtime logging information,
such as the log level, for both JADE and application specific classes that use Java
Logging.

> The SocketProxyAgent is a simple agent, acting as a bidirectional gateway between a
JADE platform and an ordinary TCP/IP connection. ACL messages, travelling over
JADE proprietary transport service, are converted to simple ASCII strings and sent over a
socket connection. Viceversa, ACL messages can be tunnelled via this TCP/IP
connection into the JADE platform. This agent is useful, e.g. to handle network firewalls
or to provide platform interactions with Java applets within a web browser.

8.2.2. The Agent Platform

The standard model of an agent platform, as defined by FIPA, is represented in the following
figure.

Agent Platform

Agent
Agent Management
System

I I I

Message Transport System

Directory
Facilitator

Figure 44. Reference architecture of a FIPA Agent Platform

The Agent Management System (AMS) is the agent who exerts supervisory control over access
to and use of the Agent Platform. Only one AMS will exist in a single platform. The AMS
provides white-page and life-cycle service, maintaining a directory of agent identifiers (AID) and
agent state. Each agent must register with an AMS in order to get a valid AID.

The Directory Facilitator (DF) is the agent who provides the default yellow page service in the
platform.

110

The Message Transport System, also called Agent Communication Channel (ACC), is the
software component controlling all the exchange of messages within the platform, including
messages to/from remote platforms.

JADE fully complies with this reference architecture and when a JADE platform is launched, the
AMS and DF are immediately created and the ACC module is set to allow message
communication. The agent platform can be split on several hosts. Only one Java application, and
therefore only one Java Virtual Machine (JVM), is executed on each host. Each JVM is a basic
container of agents that provides a complete run time environment for agent execution and
allows several agents to concurrently execute on the same host. The main-container, or front-end,
is the agent container where the AMS and DF lives and where the RMI registry, that is used
internally by JADE, is created. The other agent containers, instead, connect to the main container
and provide a complete run-time environment for the execution of any set of JADE agents.

Host | Host 2 Host 3

AR EIE| |2 HEERE:
o o] B0 Bl =) =)
= (8 (e 24 | < 2|2 | =
= o = =1 = = =] =]
El|E]||8 2|2l |2 S| E] |8
S| |2 |2 =1 = = = =)
38| |2 N EIRE 2122
= = = =9 .

[=9 [=% =% o [=» B . =N =
SN ErM & M= = =M ==

RMI Jade distributed Agent Platform
Registry
Jade Main Container Jade Agent Container Jade Agent Container

| Network protocol stack |

@ = =

Figure 45. JADE Agent Platform distributed over several containers

According to the FIPA specifications, DF and AMS agents communicate by using the F/PA-SL0
content language, the fipa-agent-management ontology, and the fipa-request interaction protocol.
JADE provides compliant implementations for all thesecomponents:

> the SL-0 content language is implemented by the class jade.content.lang.sl.SLCodec.
Automatic capability of using this language can be added to any agent by using the
method get Cont ent Manager () . r egi st er Language(new SLCodec(0));

2 concepts of the ontology (apart from Agent Identifier, implemented by jade.core.AID)
are implemented by classes in the jade.domain.FIPAAgentManagement package.The
FIPAManagementOntobgy class defines the vocabulary with all the constant symbols of

111

the ontology. Automatic capability of using this ontology can be added to any agent by
using the following code:

get Cont ent Manager () . r egi st er Ont ol ogy(FI PAManagemnment Ont ol ogy. get I nst ance()) ,

2 finally, the fipa-request interaction protocol is implemented as ready-to-use behaviours in
the package jade.proto.

Every class implementing a concept of the fipa-agent-management ontology is a simple
collection of attributes, with public methods to read and write them, according to the frame based
model that represents FIPA fipa-agent-management ontology concepts. The following
convention has been used. For each attribute of the class, named attrName and of type attrType,
two cases are possible:

1. The attribute type is a single value; then it can be read with attrType getAttrName() and
written with void setAttrName(attrType a), where every call to setAttrName() overwrites
any previous value of the attribute.

2. The attribute type is a set or a sequence of values; then there is an void
addAttrName(attrType a) method to insert a new value and a void clearAllAttrName()
method to remove all the values (the list becomes empty). Reading is performed by a
Iterator getAllAttrName() method that returns an Iterator object that allows the
programmer to walk through the List and cast its elements to the appropriate type.

8.2.3. Basic concepts of the ontology

The package jade.content.onto.basic includes a set of classes that are commonly part of every
ontology, such as Action, TrueProposition, Result, , ...

Notice that the Action class should be used to represent actions. It has a couple of methods to
set/get the AID of the actor (i.e. the agent who should perform the action) and the action itself
(e.g. Register/Deregister/Modify).

8.2.4. Simplified API to access DF and AMS services

JADE features described so far allow complete interactions between FIPA system agents and
user defined agents, simply by sendng and receiving messages as defined by the standard.

However, because those interactions have been fully standardized and because they are very
common, the following classes allow to successfully accomplish this task with a simplified

interface.

Two methods are implemented by the class Agent to get the AID of the default DF and AMS of
the platform: get Def aul t DF() and get AMS() .

112

8.2.5. DFService

Jjade.domain.DF Sernice implements a set of static methods to communicate with a standard FIPA

DF service (i.e. a yellow pages agent).

It includes methods to request register, deregister, modify and search actions from a DF. Each of
this method has a version with all the needed parameters, and one with a subset of them where
the omitted parameters are given default values.

Notice that these methods block every agent activity until the action is successfully executed or a
jade.domain.FIPAExcepion exception is thrown (e.g. because a failure message has been
received by the DF), that is, until the end of the conversation.

In some cases, instead, it is more convenient to execute these tasks in a non-blocking way. In
these cases a jade.proto.AchieveREInitiator or jade.proto.Subscriptionlnitiator should be used in
conjunction with the cr eat eRequest Message(),
createSubscri pti onMessage(), decodeDone(), decodeResult() and
decodeNot i fi cati on() methods that facilitate the preparation and decoding of messages
to be sent/received to/from the DF. The following piece of code exemplifies that in the case of an
agent subscribing to the default DF.

DFAgent Description tenplate = // fill the tenplate
Al D df = getDefaul t DF();
ACLMessage subs = DFService. createSubscri pti onMessage(this, df, tenplate, null))
Behavi our b = new Subscriptionlnitiator(this, subs) {
protected void handl el nforn{ ACLMessage inform {
try {
DFAgent Descri ption[] dfds =
DFSer vi ce. decodeNot i fi cation(inform getContent());
/1 do sonething
}
catch (Fl PAException fe) {
fe.printStackTrace();
}
}
b
addBehavi our (b) ;

8.2.6. AMSService

This class is dual of DFService class, accessing services provided by a standard FIPA AMS
agent and its interface completely corresponds the the DFService one.

Notice that JADE calls automatically the register and deregister methods with the default AMS
respectively before calling set up() method and just after t akeDown() method returns; so

113

there is no need for a normal programmer to call them.

However, under certain circumstances, a programmer might need to call its methods. To give
some examples: when an agent wishes to register with the AMS of a remote agent platform, or
when an agent wishes to modify its description by adding a private address to the set of its
addresses, ...

114

9. References

[01] Knowledge-Based HomeCare eServices for an Ageing Europe - Annex I - “Description
of Work”. 76 pag. 04/11/2005

[02] Fabio Campana, Roberta Annicchiarico, David Riafio et al. Knowledge-Based
HomeCare eServices for an Ageing Europe — D01 — The K4CARE Model. 182 pag. 2006,
http://www.k4carenet.

[03] David Isern, Antonio Moreno, Gianfranco Pedone, Lazslo Varga - Agent-based
provision of Home Care Services. Artificial Intelligence in Medicine 07-11 July of 2007 in
Amsterdam, http:/www.aimedicine.ail/AIMEQ7/.

[04] David Riafio — The SDA Model v1.0: a Set Theory approach, 50 pag. DEIM Report,
2007

[05] David Isern — Avaluacio d'entornsde desenvolupament de SMAs, 1998-99. Projectede
Final de Carrera, ET. Inf. Sistemes. ETSE, Universitat Rovira i Virgili.

[06] FIPA ACL Message Structure - http://www.fipa.org/specs/fipa0006¥SC00061G.html

[07] FIPA Protocds Specification - http://www.fipa.org/repository/standardsgcs.html

[08] JADE Programmer's Guide - http://jade.tilab.com/doc/programmersgude.pdf

[09] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides - Design Patterns:
Elements of Reusable Object-Oriented Software, 349 pag. Ed. Addison Wesley, 2003

[10] Eclipse IDE - http://www.eclipse.org

[11] Protege - http://protegestanford.edu

[12] Google - http://www.google.com

[13] Wikipedia - http://en.wikipedia.org

[14] JUnit - http://www.junit.org
[15] Maven - http://maven.apache.org
[16] Subversion - http://subversion.tigris.org/

[17] Tony Sintes - Learn custom events with a concrete example
(http://www.javaworld.com/javaworld/javnqa/2002-03/01-ga-0315-happyeventhtml)

[18] Tony Sintes - How do you create a custom event?
(http://www.javaworld.com/javaqa/2®0-08/01-qa-0804-events.html)

[19] Asbru Description - http://www.openclinical.org/gmm_asbru.html

115

http://www.openclinical.org/gmm_asbru.html
http://www.javaworld.com/javaqa/2000-08/01-qa-0804-events.html
http://www.javaworld.com/javaworld/javaqa/2002-03/01-qa-0315-happyevent.html
http://subversion.tigris.org/
http://maven.apache.org/
http://www.junit.org/index.htm
http://en.wikipedia.org/
http://www.google.com/
http://protege.stanford.edu/
http://www.eclipse.org/
http://jade.tilab.com/doc/programmersguide.pdf
http://www.fipa.org/repository/standardspecs.html
http://www.fipa.org/specs/fipa00061/SC00061G.html
http://www.aimedicine.eu/AIME07/
http://www.k4care.net/

[20] PROforma Description - http://www.acl.icnetuk/lab/proforma.html

[21] D. Isern and A. Moreno. Computer-based management of clinical guidelines: A Survey.

In Proc. of Fourth Workshop on Agents applied in Healthcare on ECAI'06. Riva del Garda
(Italy), August 28 - September 1, 2006

116

http://www.cs.dartmouth.edu/~dfk/trips/2005ItalyRiva/2005ItalyRiva.html
http://ecai2006.itc.it/cda/aree/index.php
http://www.etse.urv.es/recerca/rgai/toni/Workshops/ECAI2006.html
http://www.acl.icnet.uk/lab/proforma.html

	1.Introduction
	2.Project Context Description. The K4CARE Project
	2.1. What is K4CARE
	2.2. The K4CARE Model
	2.2.1. The Model
	2.2.2. Actors
	2.2.3. Professional Actions and Liabilities
	2.3. Services and Procedures
	2.3.1. Information Documents
	2.4. K4CARE Partners
	2.5. URV work in the K4CARE

	3.The SDA* Model
	3.1. Introduction
	3.2. The SDA* Model: Syntax and Semantics
	3.2.1. Formal description
	3.2.1.1. The Universe of Discourse
	3.2.1.2. Elements
	3.2.1.3. Connectors
	3.2.1.4. Sequences and cycles
	3.2.1.5. Non-determinism
	3.2.1.6. Time
	3.2.1.7. Parallelism

	3.3. Construction and execution of health procedures with the SDA* Model
	3.3.1. Abstract data type SDA* procedure
	3.3.2. Textual representation of the SDA* procedures
	3.3.3. Execution of SDA* procedures
	3.3.4. Examples
	3.3.4.1. Representing partial knowledge
	3.3.4.2. CSI’s Hypertension Diagnosis and Treatment
	3.3.4.3. Comprehensive Assessment K4CARE Procedure
	3.3.4.4. The use of Antidepressant Medication in the Elderly
	3.3.4.5. Management of Depression with Cognitive Impairment
	3.3.4.6. Management of Depression with Dementia
	3.3.4.7. Suicide: Risk of Assessment and Management

	4.K4CARE Multi-Agent System
	4.2. K4CARE MAS Architecture
	4.3. SDA* Agent-based execution
	4.3.1. SDA* Agent
	4.3.2. SDA*'s actions flow
	4.3.3. IIP execution message flow
	4.3.4. Procedure execution message flow

	4.4. K4CARE SDA* Ontology
	4.4.1. Concepts
	4.4.2. Actions

	5.Design and implementation of the SDA* Agent
	5.1. Code Structure
	5.2. SDA* graph data structure
	5.2.1. SDA Subpackage
	5.2.2. Connector Subpackage
	5.2.3. I2P Class

	5.3. SDA* executor
	5.3.1. Event-based Orientation
	5.3.2.Finish conditions
	5.3.3. SDA* Executor design

	5.4. SDA* Agent
	5.5. SDA* Ontology
	5.5.1. Defining and creating the Ontology
	5.5.2. The generated code

	5.6. Controlling problematic situations
	5.7. Developing in a distributed team

	6.Testing
	7.Conclusions and future work
	8.Annex
	8.1. Annex 1. What is a Multi-Agent System?
	8.1.1. Agent Properties
	8.1.2. Agent Types
	8.1.3. Multi-Agent Systems
	8.1.3.1. Multi-Agent Systems advantages
	8.1.3.2. Multi-Agent Systems management
	8.1.3.3. Multi-Agent Systems Messages Structure
	8.1.3.4. Multi-Agent Systems Communication Protocols

	8.2. Annex 2. Developing Multi-Agent Systems: JADE
	8.2.1. JADE Packages
	8.2.2. The Agent Platform
	8.2.3. Basic concepts of the ontology
	8.2.4. Simplified API to access DF and AMS services
	8.2.5. DFService
	8.2.6. AMSService

	9.References

