
Projecte de Final de Carrera
Enginyeria Informàtica

Agent­based execution of medical
guidelines represented in the SDA*

formalism

Author:
José Miguel Millan Rosa
josemiguel.millan@estudiants.urv.cat

Project Director:
Dr. Antonio Moreno Ribas

Escola Tècnica Superior d'Enginyeria
(ETSE)
Universitat Rovira i Virgili (URV)
http://www.etse.urv.es

Grading Period: 2006­07

mailto:josemiguel.millan@estudiants.urv.cat
http://www.etse.urv.es/

Table of contents
1.Introduction..5
2.Project Context Description. The K4CARE Project...7

2.1. What is K4CARE..7
2.2. The K4CARE Model...10
2.2.1. The Model...11
2.2.2. Actors..12
2.2.3. Professional Actions and Liabilities...13
2.3. Services and Procedures..14
2.3.1. Information Documents..16
2.4. K4CARE Partners..17
2.5. URV work in the K4CARE...18

3.The SDA* Model...19
3.1. Introduction..19
3.2. The SDA* Model: Syntax and Semantics...20

3.2.1. Formal description...22
3.2.1.1. The Universe of Discourse..22
3.2.1.2. Elements...23
3.2.1.3. Connectors...27
3.2.1.4. Sequences and cycles...28
3.2.1.5. Non-determinism...30
3.2.1.6. Time...31
3.2.1.7. Parallelism..32

3.3. Construction and execution of health procedures with the SDA* Model..................................33
3.3.1. Abstract data type SDA* procedure..33
3.3.2. Textual representation of the SDA* procedures...34
3.3.3. Execution of SDA* procedures...35
3.3.4. Examples..38

3.3.4.1. Representing partial knowledge..38
3.3.4.2. CSI’s Hypertension Diagnosis and Treatment..39
3.3.4.3. Comprehensive Assessment K4CARE Procedure..40
3.3.4.4. The use of Antidepressant Medication in the Elderly...42
3.3.4.5. Management of Depression with Cognitive Impairment..42
3.3.4.6. Management of Depression with Dementia..43
3.3.4.7. Suicide: Risk of Assessment and Management..43

4.K4CARE Multi-Agent System..45
4.2. K4CARE MAS Architecture...45
4.3. SDA* Agent-based execution...47

4.3.1. SDA* Agent...48
4.3.2. SDA*'s actions flow..48
4.3.3. IIP execution message flow...49
4.3.4. Procedure execution message flow...51

4.4. K4CARE SDA* Ontology..53
4.4.1. Concepts...54
4.4.2. Actions...56

5.Design and implementation of the SDA* Agent..59
5.1. Code Structure...59
5.2. SDA* graph data structure..60

5.2.1. SDA Subpackage...62
5.2.2. Connector Subpackage..62
5.2.3. I2P Class..63

5.3. SDA* executor...63

5.3.1. Event-based Orientation..64
5.3.2.Finish conditions...66
5.3.3. SDA* Executor design..67

5.4. SDA* Agent...68
5.5. SDA* Ontology...70

5.5.1. Defining and creating the Ontology..70
5.5.2. The generated code..71

5.6. Controlling problematic situations..72
5.7. Developing in a distributed team..73

6.Testing..75
7.Conclusions and future work...85
8.Annex...87

8.1. Annex 1. What is a Multi-Agent System?..87
8.1.1. Agent Properties..87
8.1.2. Agent Types...88
8.1.3. Multi-Agent Systems...88

8.1.3.1. Multi-Agent Systems advantages..88
8.1.3.2. Multi-Agent Systems management...89
8.1.3.3. Multi-Agent Systems Messages Structure..90
8.1.3.4. Multi-Agent Systems Communication Protocols..96

8.2. Annex 2. Developing Multi-Agent Systems: JADE...108
8.2.1. JADE Packages..108
8.2.2. The Agent Platform...110
8.2.3. Basic concepts of the ontology..112
8.2.4. Simplified API to access DF and AMS services...112
8.2.5. DFService..113
8.2.6. AMSService...113

9.References..115

1. Introduction

This project is related to the design and implementation of an agent-based platform within the

K4CARE project[1]. The work described in this document refers to a part of the work done by

the University Rovira i Virgili in this European research project. This document is divided in 4

parts.

One of these parts is the integration of the medical workflows designed or generated for the

project into the K4CARE's Multi-Agent System, also called clinical practice guidelines. This

medical workflows are represented in a new formalism designed which will be explained in

section 2. As it is still in development, the goal of this project is to design and implement the

tools needed to use a first version of this format.

The product of this integration work is an Agent which will be in charge of the execution of all

the structures represented with this formalism in the system. All the agents in the platform which

need to execute one or more of these structures will invoke this agent in order to delegate to him

all the tasks of interpreting and managing all the tasks related to this structure interpretation.

In the last part of this document, some tests over the generated code are presented in order to

have a verification of the correct functionality of the written code. These tests are structured in

some levels: the first level is centered in testing the data structure used to represent the medical

guidelines, the second level tests the execution engine, and in the third level the interaction of

this execution engine with the rest of the agents is evaluated.

5

6

2. Project Context Description. The K4CARE Project

[1]In eHealth it is increasingly necessary to develop tele-informatic applications to support

people involved in providing basic medical care (physicians, nurses, patients, relatives, and

citizens in general). The care of chronic and disabled patients involves life long treatment under

continuous expert supervision. Moreover, healthcare workers and patients accept that being cared

for in hospitals or residential facilities may be unnecessary and even counterproductive. From a

global view, such patients may saturate national health services and increase health related costs.

The debate over the crisis of financing healthcare is open and is a basic political issue for old and

new EU member countries and could hinder European convergence.

To face these challenges we can differentiate medical assistance in health centres from assistance

in a ubiquitous way (Home Care -HC- model); the latter can undoubtedly benefit from the

introduction of ICT (Information and Communication Technologies).

2.1. What is K4CARE

The K4CARE Project is one ICT project that will develop a platform to manage the information

needed to guarantee an ICT Home Care service. It will:

a) integrate information of different types and from different sources.

b) be integrated with ICT whilst ensuring private and customized data access.

c) use ontologies to define the profile of accessing subjects (e.g. physicians, patient) and

objects (e.g. disease, case study).

d) have a mechanism to combine and refine the ontologies to personalize the system, taking

into account the way a physician works and the individual patient characteristics.

e) incorporate 'know-how' from geriatric clinical guidelines as Intervention Plans (IP).

f) generate IPs from the healthcare centres databases if clinical guidelines do not exist or are

inappropriate for a particular situation.

g) configure a knowledge-based decision support tool that can supply eServices to all

subjects involved in the Home Care model.

h) extract evidence from real patients and integrate it with published evidence derived from

RCTs.

The main objective of the K4CARE project is to improve the capabilities of the new EU society

to manage and respond to the needs of the increasing number of senior population requiring a

personalized HC assistance1. The project will capture and integrate the information, skills,

expertises, and experiences of specialised centres and professionals of several old and new EU

1 - HC has to be properly addressed to the patients who can derive the higher benefit: the typical HC Patient
(HCP) is an elderly patient, with co-morbid conditions and diseases, cognitive and/or physical impairment,
functional loss from multiple disabilities, impaired self-dependency. We shall refer to this “average patient” as the
HCP.

7

countries, and will incorporate them in an intelligent web platform in order to provide e-services

to health professionals, patients, and citizens in general. To achieve this goal, the members of the

project will provide the scientific and technical knowledge, develop the intelligent technologies

to manage that knowledge, supply the ICT infrastructure for anticipating and hastening the

medical assistance, implement a web-based platform to approach these technologies to healthcare

professionals, patients, and citizens, and assess the platform services in a scenario of combined

old and new EU healthcare institutions: HC services and related hospitals, rehabilitation centres,

geriatric departments, and town councils.

The above main objective can be detailed in other more specific objectives. In the next lines

general objectives, scientific objectives, and technological objectives are exposed separately.

General objectives describe the aims of the project from a global perspective. Scientific and

technological objectives concern the technical aspects of the project either from a CS, ICT, or

medical perspective.

General objectives

O1. Generate a new ICT Sanitary Model (K4CARE model) for assisting HCPs in the enlarged

Europe. The system will seamlessly integrate services, healthcare practices, and assistance

knowledge coming from old (e.g. Italy, UK) and new (e.g. Czech Republic, Romania, Hungary)

European countries.

O2. Propose a telematic and knowledge-based CS platform (K4CARE platform) that implements

the above model. This platform will include all the technologies developed in the project and it

will assist all the human actors involved in the care of HCPs. These actors include physicians,

nurses, social workers, rehabilitative professionals, patient relatives, patients themselves, and

citizens in general.

O3. The platform will be tested on west (Italy, UK) and east (Czech Rep., Romania, Hungary)

EU societies through pilot tests in order to highlight their differences and also to pursue a

convergence to a homogeneous way-of-doing, contributing to a unique European Healthcare ICT

society in HC.

O4. The K4CARE platform can serve as a means of integrating knowledge about HCPs

assistance all over the new and old EU countries. Some healthcare centres from Italy, UK, Czech

Republic, Romania and Hungary will work to demonstrate that sharing this sort of knowledge

across EU countries is not only possible but also beneficial and necessary for achieving an

European standard HC service supported by the new technologies.

Scientific Objectives (Integrating information)

O5. The project will define a solution for Electronic Health Record (EHR) incorporating lessons

learned in past experiences (e.g. I4C/TripleC, PROREC and Provenance projects), and exploiting

the knowledge of the consortium about standards within this field. The defined EHR will be

implemented and used to store information about HC. This EHR will integrate different data

8

types (e.g. text, numerical values, multimedia parts) and documents coming from different

sources (e.g. hospital services, laboratories, consultations, specialists, relatives and patients at

home).

O6. Within the project, the cooperating healthcare partners will pre-process information about

physicians, patients, citizens and other agents involved in the K4CARE model and will fill in the

EHR with it in order to have a test bench with real data. The EHR will integrate information

coming from different EU member countries (homogenising the differences) and will be under

continuous evaluation and adaptation deriving from the specialised partners indications.

Scientific Objectives (Knowledge representation)

O7. Define the Actor Profile Ontologies (APO) for representing the profiles of the subjects

involved in the K4CARE model: healthcare professionals, patients and relatives, citizens, and

social organisms. APOs contain the skills, concerns, aspirations, etc. of the people that they

represent, together with the healthcare services that those people offer to or receive from the

K4CARE model (e.g. medical services such as drug prescription, clinical consultations,

laboratory analysis; social services such as counselling, information , advice, social support).

O8. Define the patient-Case Profile Ontologies (CPO) for representing symptoms, diseases,

syndromes, case mix. APOs and CPOs describe "know-what" knowledge about agents accessing

the K4CARE model, and "pure" pathologies the K4CARE model gives support to, respectively.

These ontologies are based on terms related to symptoms, signs, drugs, medical and surgical

procedures, dietetic conditions, physical and hygienic requirements, cognitive functions, self-

dependency, etc.

O9. Define Formal Intervention Plans (FIP) for a number of disease and syndrome treatments.

These FIPs will be generated from the information deriving from the available evidence-based

clinical practice guidelines that represent standards of practice, particularly in the fields of

geriatrics. These FIPs represent the professional worldwide existing "know-how" knowledge

within the K4CARE platform, and they will guide the services the system offers to the

professional users. In other words, FIPs are the explicit expressions of how HC must be provided

in a growing ageing EU.

Technological Objectives (Knowledge adaptation and use)

O10. Personalise the access to the K4CARE platform. Adapt the APOs to the user requirements

in order to customize the access to the EHR and the assistance provided by the K4CARE model,

because not all the patients wish their care in the same way (in terms of services, treatment,

explanation, terminology, etc.). The developed personalising methods will also be applied to the

care-givers ontologies in order to represent the fact that not all the professionals interact with the

healthcare system in the same way. The particularized ontologies and the interface technologies,

together with usability and security aspects, will play a crucial role in the acceptance and

socialization of the K4CARE platform.

9

O11. Personalise the assistance to senior citizens. CPOs as they stand are not valid in real

practice since a HCP has a combination of features which makes his/her treatment different from

any other treatment. Developed technologies for merging prototypic CPOs will be used to have

CPOs adjusted to the individual condition of the patient.

O12. FIPs will be inductively learned from the EHR with the use of new machine learning

techniques. These techniques must be developed and tested in the domain of HCPs. They are

learned from the procedures regarding past patients stored in the system.

Technological Objectives (Service Supplying)

O13. Design and implement intelligent agents that allow users to access the EHR, edit, adapt,

and merge ontologies, and introduce and induce FIPs. Combine these intelligent agents in a

multi-agent system that provides e-services to care-givers, patients and citizens (e.g. scheduling

of prolonged clinical treatments, intelligent decision support, intelligent distribution of data

among users). Deliver those services through the Internet and the mobile telephony in a safe,

everywhere, anytime way.

O14. Develop an application that will be integrated in the K4CARE platform for localizing

patients topographically. This is particularly relevant for some sort of patients with memory or

cognitive impairments and also in order to anticipate the medical and care actions.

2.2. The K4CARE Model

In this section the whole project model[02] is described. This model contains a description of the

different actors, services, etc. which conform the system. First the model will be described, and

in the next sections its different elements will be explained:

• The system actors.

• The professional actions and liabilities.

• The services and procedures.

• The information documents.

10

2.2.1. The Model

The K4CARE model provides a paradigm easily adoptable in any of the EU countries to project

an efficient model of HC[03].

Figure 1. The K4CARE Model Architecture for HC

In the model, services are distributed by local health units and integrated with the social services

of municipalities, and eventually with other organizations of care or social support. The model is

aimed at providing the patient with the necessary sanitary and social support to be treated at

home. To accomplish this duty, the K4CARE model gives priority to the support of the HCP, his

relatives and Family Doctors (FD) as well. Because of its aim, the model is represented by a

modular structure that can be adapted to different local opportunities and needs. The success of

this model is directly related to the levels of efficacy, effectiveness and best practice of the

health-care services the model is able to support. As shown in Figure 1, the K4CARE Model is

based on a nuclear structure (HCNS) which comprises the minimum number of common

elements needed to provide a basic HC service. The HCNS can be extended with an optional

number of accessory services (HCAS) that can be modularly added to the nuclear structure.

These services will respond to specialized cares, specific needs, opportunities, means, etc. The

distinction between the HCNS and the complementary HCASs must be interpreted as a way of

introducing flexibility and adaptability in the K4CARE model. Going into detail, each one of the

HC structures (i.e. HCNS and HCAS's) consists of the same components: Actors are all the sort

of human figures included in the structure of HC; Professional Actions and Liabilities are the

actions each actor performs to provide a service within the HC structure; Services are all the

utilities provided by the HC structure for the care of the HCP; Procedures are the chain of events

that leads an actor in performing actions to provide services; Information are the documents

11

required and produced by the actors to provide services in the HC structure. As new HCASs are

incorporated to the K4CARE Model, new actors, actions, services, procedures and information

enter to be part of the extended model. In this way, the K4CARE model is compatible both with

the current situation in the European countries where the international, national, and regional

laws define different HC systems for different countries, and also with the forthcoming expected

situation in which a European model for HC was decided.

2.2.2. Actors

In HC there are several people interacting: patients, relatives, physicians, social assistants,

nurses, rehabilitation professionals, informal care givers, citizens, social organisms, etc. These

individuals are the members of three different groups of HC actors: the patient; the stable

members of HCNS (the family doctor, the physician in charge of HC, the head nurse, the nurse,

the social worker, each of them present in the HCNS); the additional care givers.

Figure 2. Actors in the Home Care Nuclear Structure (HCNS)

The family doctor, the physician in charge of HC, the head nurse, and the social worker join in a

temporary structure – the Evaluation Unit – devoted to assess the patient’s problems and needs,

to decide the treatment (by constructing the Individual Intervention Plan – IIP – based on one or

more FIPs) and to monitor its progress. The patient (i.e. the HCP) is in the centre of the HCNS of

the K4CARE model (see Fig.2), and the rest of the groups are organised around it as a symbol of

a patient-oriented HC model.

12

2.2.3. Professional Actions and Liabilities

These represent general actions that each one of the actors in the K4CARE model performs in his

duties within the HCNS service. Two lists of actions are provided for each sort of actor: the list

of general actions, and the list of HCNS actions. The list of general actions is intended to contain

all the actions that actors are expected to perform in a general purpose Home Care System. The

list of HCNS actions complements the explanation with the specific actions the K4CARE Model

define for the actors involved in the HCNS. The HCNS actions are grouped following the

standard below:

- P.xx – Patient Actions

- BO.xx – Back Office Actions

- EU.xx – Evaluation Unit Actions

- M.xx – Medical Actions

- M.FM.xx – Medical Actions performed by the Family Doctor

- M.SP.xx – Medical Actions performed by the Specialist Physician

- N.xx – Nursing Actions

- CM.xx – Case Management Actions

- S.xx – Social Actions

HCNS actions are those required to accomplish the procedures that implement the care services

of the HCNS. Any action represents a professional activity for which the actor (or group of

actors) is liable. In the next tables some action examples are presented:

P.1 confirm appointment

P.2 agree on interventions

P.3 give consent

P.4 request certification

P.5 ask intervention

BO.9 supervise HCP information

BO.1 provide information

BO.2 ask information
Table 1. HCNS Patient list of actions

13

BO.1 provide information

BO.2 ask information

BO.4 assign actor

EU.1 evaluate through scales

EU.2 define intervention plan

EU.3 define outcomes

EU.4 schedule controls

EU.5 schedule re-evaluations

M.1 perform Clinical Assessment

M.2 perform Physical Examination

M.3 request Diagnostic Procedures

M.4 request Laboratory Analysis

M.5 prescribe Pharmacological Treatment

M.6 prescribe non-Pharmacological Treatment
Table 2. Summarized HCNS Physician in Charge list of actions

2.3. Services and Procedures

The HCNS provides a set of services for the care of HCP. These services are classified into

Access services, Patient Care services, and Information services.

Access services see the actors of the HCNS as elements of the K4CARE model and they address

issues like patient’s admission and discharge from the HC model. Patient Care services are the

most complex services of the HC model by considering all the levels of care of the patient as part

of the HCNS. Finally, Information services cover the needs of information that the HCNS actors

require in the K4CARE model. Examples of very relevant services are: the Comprehensive

Assessment (which is the service devoted to detect the whole series of HCPs diseases, conditions,

and difficulties, from both the medical and social perspectives), the Intervention Plan Definition

(which represents the course of actions to be performed in order to provide care to the HCP in

terms of treatment and support) and the Intervention Plan Performance (which defines the

execution of a previously defined IP). In the K4CARE Model a procedure represents the way

that the actions provided by/to the actors are combined to accomplish one service. The following

table summarizes some of the services and procedures in the K4CARE:

14

A. ACCESS SERVICES

1. Individual Services

i. HC Request

ii. HCP Admission

iii. HCP Discharge

iv. Professional Admission

v. Professional Discharge

vi. Edit HCP/Professional information

2. Structural Services

i. EU Constitution

ii. EU-HCP Binding

...

Table 3. Summarized K4CARE HCNS Services

HC Request
(a) The FD makes a HC Request demand HC for a particular HCP.

HCP Admission
(a) PC and HN consider the pertinence and the relevance of information reported in the request
(b) In case of non sufficient information the PC and HN ask the FD to integrate the request
(c) In case of non pertinent or non relevant request, the PC and HN reject the request
(d) PC and HN admit the patient to the HC, if the information is sufficient

HCP Discharge
(a) The HCP is discharged in case of: reaching of outcomes (as defined by the IIP); refusal of services;

moving to other place than house; death. The discharge is done by PC and HN.
(b) The service can be suspended, in case of temporary admission to hospital. For the time of admission.

Suspension is done by PC and HN.

Professional Admission
(a) Defined actors are admitted in the system at the time of first assignment to a service. The admission is

done by the PC and HN.
(b) The actor accepts admission.

Professional Discharge
(a) An actor with a professional profile is discharged after a defined period subsequent the last

participation to a service. It is done by the PC and HN.

Edit HCP/Professional information
(a) The change of administrative data concerning the actors is done by the PC and HN

Table 4. K4CARE Procedures in Individual Services from Access Services

15

2.3.1. Information Documents

The HCNS structure defines a set of information units whose main purpose is to provide

information about the care processes realized by the actors to accomplish service. Different kinds

of actors will be supplied with specific information that will help them to carry out their duties in

the K4CARE model. All these data are considered here to be part of documents. Different types

of document have been classified as follows:

- Documents in Access Services: the information required in each one of the K4CARE access

services;

- Documents in Patient Care Services: the support to actors taking part of the patient care

services. Since these documents may have different general purposes inside the sets of

services and procedures, they can be sub-divided into request documents, authorization

documents, prescription documents, and anamnestic documents;

- Documents in Information Services: in order to support the information services a list of

documents is defined. In general, information service documents report on underlying

activities or on officially recognized information, related to HC. A special service is

represented by the possibility of exchanging messages among actors.

Nevertheless, a classification of the documents according to the patient care services is also

provided, in order to relate documents to the patient care services in which they are used.

In the next table, some documents in the K4CARE are listed.The rights of the actors to read or

write these documents are also depicted in the table:

Name Code EVALUATION UNIT

F
A

M
IL

Y
 D

O
C

TO
R

P
H

Y
S

IC
IA

N
 I

N
 C

H
A

R
G

E

H
E

A
D

 N
U

R
S

E

S
O

C
IA

L
 W

O
R

K
E

R

N
U

R
S

E

S
P

E
C

IA
L

IS
T

 P
H

Y
S

IC
IA

N

S
O

C
IA

L
 O

P
ER

A
T

O
R

C
O

N
T

IN
U

O
U

S
 C

A
R

E

P
R

O
V

ID
E

R

P
A

T
IE

N
T

HC Request Document AD01 W R R R

HCP Admission Document AD02 R W R W R R

HCP Discharge Document AD03 R W R W R R R R R R R

Professional Admission Document AD04 W R W R R* R* R* R*

Professional Discharge Document AD05 W R W R R* R* R* R*

EU Constitution Document AD06 R R W R R

* According to competencies; W: authorization to write and modify; R: authorization to read.

Table 5. Documents in K4CARE Access Services

16

2.4. K4CARE Partners

As one can deduce, the K4CARE Project is being developed by a group of member entities each

one of them specialised on its field. The next table is presentes a list of these participants:

Participant no. Name

Participant

Organization

short name

1 (coordinator) Universitat Rovira i Virgili URV

2 Centro Assistenza Domiciliare Azienda Sanitaria Locale RM B CAD

3 Czech Technical University in Prague CVUT

4 University of Perugia UNIPG

5 Telecom Italia S.p.A. TI

6 European Research and Project Office GmbH EURICE

7 Ana Aslan International Academy of Aging ANA

8 Fondazione Santa Lucia FSL

9 Computer and Automation Research Institute of the Hungarian

Academy of Sciences

MTA SZTAKI

10 The Research Institute for the Care of the Elderly RICE

11 Amministrazione Comunale di Pollenza COMPOL

12 General University Hospital in Prague GUH

13 Szent Janos Hospital SJH
Table 6. The K4CARE partners

These partners are divided in three groups: the administration group, the technical group and the

medical group.

- The administration group is composed by the partners which are implied in tasks of

coordination and administration of the whole project. The participants who belong to this group

are CVUT, CAD, EURICE and URV.

- The technical group consists of the members which are involved in the technical

elements of the project. This means the design, development and testing of the different technical

components in the project, and, also the connection of these tools with the medical knowledge.

The entities involved in this task are TI, MTA SZTAKI, CVUT and URV.

- The medical group is the one which is in charge of the different medical issues in the

17

project. This means that the partners from this group are in charge of formalising and providing

their knowledge to the technical group members, and also, to supervise and feedback the new

knowledge and tools. The members of this group are SJH, GUH, RICE, COMPOL, FSL, ANA,

UNIPG and CAD.

2.5. URV work in the K4CARE

As it can be inferred the University Rovira i Virgili has some tasks into this project. These tasks

are mainly related to the administrative and to the technical parts of the project. In the case of the

administrative tasks the URV has to:

● Coordinate the work of the different partners in the project.

● Be in charge of writing the documentation related to this coordination.

● Administrate its internal works.

The list of technical tasks is, in fact, longer than the administrative one because the University's

staff which is involved in this project are mainly IT Engineers and Doctors. So the tasks of the

URV in the technical part of the project are the following:

● Develop a formalism to represent the medical guidelines which appear in the project and

all the needed techniques to work with this formalism.

● Design and develop the required ontologies to represent the medical knowledge related to

the HomeCare.

● Develop techniques of tailoring for each actor in the system.

● Design and implement part of the Multi-Agent System (MAS) which will be the final

K4CARE platform system.

● To research about the most useful techniques and products in the market that would be

useful in all the mentioned tasks.

The work reported in this document is centered in the 13th K4CARE's objective which is the

design and implementation of an intelligent agent platform. Concretely this work consists in the

design and implementation of the medical workflows execution engine. The following chapters

will describe this work, so the next chapter describes the medical guidelines formalism, the

SDA*. In chapter 4 the K4CARE's Multi-Agent Platform will be described, and finally, the

chapter 5 will introduce to the reader the design and implementation of an agent-embeddable

execution engine.

18

3. The SDA* Model

One of the K4CARE's objectives is to develop a new formalism to represent clinical guidelines.

Clinical practice guidelines, [13] are collections of practical information for use by doctors and

other medical professionals. Often, these are gleaned from systematic review of medical journals

and other published material. They are a prime tool for evidence based medicine, and require

frequent updating as new information becomes available.

There exist some formats to represent guidelines like ASBRU [04][19][21], PROforma

[04][20][21], etc, but K4CARE uses a new formalism [04] designed by Dr. David Riaño which is

presented here.

3.1. Introduction

In the K4CARE project, procedures, formal intervention plans and individual intervention plans

are the basic structures to represent health care procedural knowledge (or know how). In this

setting, a procedure is described as an implementation of a health care service by means of a

combination of actions. For example, the steps that configure a blood analysis, or the health care

activities involved in a comprehensive assessment.

Formal Intervention Plans (FIPs) are defined as formal structures representing the healthcare

procedures to assist patients suffering form particular ailments or diseases. They contain

indications to all the actors involved in the care process (i.e. healthcare professionals, patients

and relatives, etc.) in order to provide the best coordinated and effective action plan. A FIP on

hypertension, for instance, provides the indications of how to act with a hypertensive patient in

general. FIPs are general structures that have to be adapted to the particularities of a patient

before it is actionable and applicable to this patient. In the K4CARE project the structure

resulting from this adaptation is called Individual Intervention Plan (IIP).

In the K4CARE Project, these three structures are used to:

● Represent the professional worldwide existing "know-how" knowledge within the

K4CARE platform.

● Guide the K4CARE services the system offers to the professional users

● Make explicit the way Home Care (HC) must be provided in a growing ageing EU

● Offer a knowledge representation frame in which the new machine learning techniques

developed in the project make explicit the knowledge about HC interventions implicit in

the Electronic Health Care Record (these are learned from the procedures regarding past

patients stored in the system);

● Offer a representation frame in which procedural knowledge about “pure” pathologies

19

can be integrated in complex or co-morbid pathologies;

● personalize the care to particular patients, taking into account their specific

characteristics;

● develop a family of FIPs representing procedural knowledge about the treatments of the

syndromes targeted in the K4CARE project;

● adapt to a common representation several clinical guidelines already published by

international healthcare organizations as the National Library of Medicine and the

National Guideline Clearinghouse in the USA, the New Zealand Guidelines Group, the

Scottish SIGN, etc.;

● use knowledge engineering methods to create new formal representations for conditions

and diseases relevant in the project that do not have any trustable treatment published or

known. These FIPs will integrate the experiences in the treatment of such cases by all the

healthcare partners of the K4CARE consortium.

3.2. The SDA* Model: Syntax and Semantics

SDA[04] stands for State-Decision-Action, SDA* (SDA star) represents the repetition of states,

decisions and actions in order to describe health care procedural knowledge as, for example,

K4CARE procedures, FIPs, or IIPs. In the SDA* model, states are used to describe patient

conditions, situations, or statuses that deserve a particular course of actions which is totally or

partially different from the actions to be followed when the patient is in other state. It provides a

response to the fact that a disease, ailment, pathology, or syndrome can present alternative

degrees of evolution whose treatment must be distinguished. Decisions in the SDA* model

capture the need of procedural knowledge to represent alternative options whose selection

depends on the available information about the patient. In this sense, decisions are able to unify

in a single representation of the procedural knowledge alternative courses of actions that have to

be applied to patients that meet different conditions. Unlike states, decisions are not intended to

make the degree of evolution of a disease explicit, but to orientate a general purpose treatment to

the particular characteristics of the patient; for example in the treatment of hypertension, high-

blood-pressure is a patient condition that may deserve a special treatment and, therefore, if

should be represented as a state. On the contrary, in the treatment of cardiac insufficiency, the

patient condition high-blood-pressure provides information which is relevant to adapt the

treatment, but not to decide on the treatment as a whole, which is based on other conditions as

structural-heart- disease or prior-heart-problems. So in cardiac insufficiency, high-blood-pressure

should be taken as a decision. Finally, actions are the proper treatment steps in the SDA*

procedural knowledge that are performed according to the preceding decisions.

20

 States, decisions, and actions are combined to form a joined representation of how to deal with

a particular health care situation (e.g. a therapy). For example, Figure 2 depicts the FIP that was

published by the Institute for Clinical Systems Improvement (www.icsi.org) to diagnose and

treat hypertension. It is based on the following indications:

I. Patients in the FIP can be in four alternative states:

a) Screening and identification of elevated BP in patients with diabetes, chronic kidney disease, heart

failure, or CAD (FIP element #1).

b) Initial assessment completed; i.e. evaluated, accurately staged, and complete risk assessed (FIP

element #3).

c) Hypertension is suspected to be caused by secondary causes (FIP element #5).

d) Hypertension is under control and a continuing care must start (FIP element #12).

II. The process is based on three yes-no decisions (one of them appearing twice in the FIP):

a) Is a second cause of hypertension suspected (FIP element #4)?

b) Is the blood pressure at goal; i.e. within normality limits (FIP elements #7 and #9)?

c) Is it a resistant hypertension; i.e. have we fail to achieve a normal BP despite the use of a rational

triple-drug regimen in optimal doses (FIP element #10)?

III. The actions proposed for the diagnosis and treatment are:

a) Confirm hypertension on the initial visit, plus two follow-up visits with at least two BP measures at

each visit; following standardized BP measurement techniques, including out of office or home

blood pressure measurements (FIP element #2).

b) Consider a thiazide-type diuretic as initial therapy in most patients with uncomplicated

hypertension (FIP element #6).

c) For many patients, two or more drugs in combination may be needed to reach hypertension goals

(FIP element #8).

d) Refer to hypertension consultation (FIP element #11)

In the next subsections the SDA* model is formally introduced, followed by the explaination of

how sequences and cycles are made in the model, what non-determinisms the model is able to

deal with, and the temporal model which is beneath the SDA* model.

21

Figure 2. FIP on hypertension diagnosis and treatment

3.2.1. Formal description

The SDA* model is introduced to represent knowledge on procedural activities in health care. In

the next sections, the SDA* model is described in terms of the domain terms, the elements, and

the connections that describe the health care procedure that is being formalized.

3.2.1.1. The Universe of Discourse

Given D a particular disease, ailment, pathology, or syndrome, a finite set of terms VD={v1, …,

vn} within the medical domain of D is defined to represent any descriptive or procedural health

care knowledge on D. For example, the terms in the hypertension treatment contained in Figure 1

22

are seventeen: screening-and-identification-of-elevated-BP, diabetes, chronic-kidney-disease,

heart-failure, CAD, confirm-elevated-blood-pressure, complete-initial-assessment, secondary-

cause-suspected, additional-work-up, consider-referral, life-style-modifications, drug-therapy,

BP-at-goal, change-treatment, resistant-HT, HT-consult, and HT-continuing-care.

Some of these terms are defined as state terms (i.e. SD V⊆ D is the set of state terms). State terms

represent facts that are useful to determine the condition of the patient in the process the SDA*

model is describing. In the SDA* model, a patient condition contains all the terms observed for

the patient in a particular moment (i.e. signs, symptoms, antecedents, taking drugs, secondary

diseases, test results, etc.), therefore it is a subset of the set of terms VD.

The set of decision terms DD V⊆ D is the set of all the terms in VD that may be required by

medical experts to choose among alternative medical, surgical, clinical, or management actions

within the treatment of the disease D that the procedure globally describes. State and decision

terms may be used to define any patient condition possible in D.

The set of action terms AD V⊆ D is the set of all the terms that represent the medical, surgical,

clinical, or management actions that a doctor may decide on a patient in the course of the

treatment of that patient’s disease or health care procedure.

Though these three sets are not necessarily mutually disjoint, they together must contain all the

feasible terms in D, i.e. VD =SD D∪ D A∪ D. For example, in the above mentioned case of

hypertension, Shypertension = {screening-and-identification-of-elevated-BP, diabetes, chronic-

kidney- disease, heart-failure, CAD, complete-initial-assessment, secondary-cause-suspected,

BP-at-goal, HT-continuing-care}, Dhypertension = {secondary-cause-suspected, BP-at-goal,

resistant-HT}, and Ahypertension = {confirm-elevated-blood-pressure, additional-work-up,

consider-referral, life-style-modifications, drug-therapy, change-treatment, HT-consult} would

be the set of state variables, decision variables, and action terms, respectively. Observe that the

underlined terms are state and decision terms simultaneously.

In the first version of the SDA* model the universe of discourse is based on a set of the primitive

medical terms that may be used to construct states, decisions, and actions. In forthcoming

versions of the SDA* model, the universe of discourse will be extended to include Boolean

variables (i.e. variables that are allowed to have two values: TRUE or FALSE), and later multi-

valued variables (i.e. variables that can take one out of several possible values). This means that

in this first version the health condition of a patient is defined exclusively by all the signs and

symtoms this patient has.

3.2.1.2. Elements

The set of terms VD is used to define the three basic elements of the SDA* model: states,

decisions, and actions. Formally speaking, a state s is a subset of state terms (i.e. s (S∈℘ D)); a

decision d is based on a subset D of decision terms (i.e. D (D∈℘ D)) and it is defined as a finite

23

list <D; D1, D2, …, Dk>, such that Di (D)∈℘ is a decision alternative (or branch),

D=D1 D∪ 2 … D∪ ∪ k, and k ≥0 is the branching factor of the decision. An action a is a subset of

action terms (i.e. a (A∈℘ D)).

From the point of view of semantics, a state (or SDA* entry point) describes an abstract patient

condition in which all the terms in the state hold. For example, the state {diabetes, complete-

initial-assessment} represents all the patients with both diabetes and a complete initial

assessment, but which may also have other possible features. From a logical point of view, a

state is a conjunction of state terms. From a functional point of view, the states of a SDA*

procedure are the entry points to that procedure or, in other words, the points where the treatment

described can start.

If C (S⊆ D D∪ D) is the current condition of a patient, we say a state s of a SDA* procedure is a

feasible entry point of that patient in that procedure if and only if s C. It may happen that one⊆

patient has several feasible entry points for the same SDA* under the same condition. It may also

happen that one or several states are included in other states of the same SDA* (e.g. s1 s⊆ 2). In

this case, every time s1 is a feasible entry point, s2 is also a feasible entry point. Empty states are

also possible and they represent states in the SDA* procedure that any patient meets. Observe

that a state s that does not contain a state term v will be a feasible entry point to both patients

whose condition comprises v and patients whose condition does not comprise v (see Table 7). If

we want to change this behavior we have to define two terms for the same health care concept,

one being the negation of the other one (e.g. diabetes and not-diabetes). This way, a state

containing the term not-diabetes (i.e. negation of diabetes) will not be a feasible entry point for

diabetic patients whose condition does not comprise not-diabetes.

v PATIENT CONDITION ∈ v PATIENT CONDITION∉

v s∈ s is a feasible entry point s is NOT a feasible entry

point

v s ∉ s is a feasible entry point s is a feasible entry point

Table 7. Basic logic rule of feasible entry points

A decision (or SDA* branching point) describes a point of the SDA* where the treatment can

follow alternative courses of action depending on which are the decision terms the treated patient

meets. For example, the set of decision terms D = {stage1-HT, stage2-HT, low-BP, BP-at-

goal}could be used to propose alternative treatments whether the patient is hypertensive (D1 =

{stage1-HT, stage2-HT} D⊆), hypotensive (D2={low-BP} D⊆) or none (D3={BP-at-goal} D-(⊆

D1 D∪ 2)). From a logical point of view, a decision represents a disjunction of conjunctions on a

set of decision terms. From a functional point of view, decisions allow the represented SDA* to

be as general and flexible as to combine several variations on the treatment of a disease, and to

make the application of these variations depend on the particularities of the patient.

24

If C (S⊆ D D∪ D) is the current condition of a patient and d=< D; D1, D2, …, Dk > a decision

element of a SDA* procedure, we say Di is a feasible branch for that patient if and only if Di ⊆

C. One or several branches may contain none decision variable; in this case, all these branches

are feasible. It may also happen that in the same decision two or more branches totally or

partially overlap. In the first case (i.e. Di D⊆ j), Di will be a feasible branch whenever Dj is

feasible, and Dj will not be a feasible branch if Di is not. In the second case (i.e. (Di ∩ Dj)≠∅)

each situation must be studied separately. Observe that if Di = Dj, both branches are evaluated

the same for any possible patient. Empty conditions are always feasible.

Concerning the branching factor k of a decision, it must be zero, one, or greater than one. An

SDA* decision with a branching factor of zero or one is interpreted as unfinished element,

maybe because at the time of developing of the SDA* there is not health evidence on how to

branch patients at that point of care. A branching factor k=0 transforms a SDA* decision into a

dead end element. A branching factor k=1 acts as a filter of the patients that may proceed with

the treatment at the decision point. A branching factor k=2, allows the construction of SDA*

binary decisions as <D; D1, D-D1>. Observe that binary decisions are not equivalent to IF-

THEN-ELSE structures since any patient with a condition C containing all the decision terms in

D will make both branches of the above decision feasible. Like in the case of the state elements,

IF-THEN-ELSE behaviors may be achieved through the definition of contrary terms (e.g.

diabetes and not-diabetes), and the definition of decisions as <{diabetes, not-diabetes};

{diabetes}, {not-diabetes}>. In this case, diabetic patients will follow the first branch, and non

diabetic patients the second one.

An alternative interpretation of a decision d=< D; D1, D2, …, Dk > is that it is based on a

“fictitious” variable d whose domain (i.e. the values that the variable can take) is D, and each

branch Di is a subset of these possible values. For example, BP=<{stage1-HT, stage2-HT, low-

BP, BP-at-goal}; {stage1-HT, stage2-HT}, {low-BP}, {BP-at-goal}>.

Let us observe that a branch Di=∅ of a decision d is always feasible for any patient arriving to d.

If a patient condition C includes none of the branches of a SDA* decision < D; D1, D2, …, Dk >

(i.e. Di C for all i=1, 2, …, k⊄), then none of the branches is feasible, and the decision becomes a

dead end element of the SDA* procedure for all the patients under that condition. In order to

avoid this situation a SDA* decision can contain an otherwise branch (i.e. < D; D1, …, Dk ,

otherwise>) which is feasible only if the patient condition C makes none of other branches

feasible. For example, BP= <{ BP-at-goal }; { BP-at-goal }, otherwise> that represent the

decisions #7 and #9 in the FIP of Figure 1.

An action element (or SDA* action block) describes a group of actions in the SDA* procedure.

These elements do only represent action proposals whose application must be seen out of the

SDA* model. So, if the SDA* suggests the physician to prescribe a beta-blocker it is up to the

physician to decide whether the drug is finally prescribed or not, and it is up to the patient (or

some other person) to make sure that the patient takes the drug. This means that two sequential

actions in the SDA* model do not necessarily represent a sequential execution of the actions in

25

the real world, but consecutive action proposals within the SDA* procedure.

The SDA* model does not distinguish between instant actions (i.e. those actions with an

immediate end as for example an expert recommendation) and abiding actions (i.e. those actions

which extend in time as for example starting an assessment process that may last several days).

The reason is that actions in the SDA* model represent the launch of the action, regardless

whether this is an instant or an abiding action in the real world. Typical sorts of actions are:

recommendations (e.g. stop-smoking, start-soft-exercise, avoid-salt-in-meals, etc.); prescriptions;

radiographies; analyses; medical, surgical or clinical procedures; specialist consultations;

application of an alternative SDA* procedures, etc. From a functional point of view, action

blocks represent the core elements of the SDA* model since the final purpose of this model is to

represent health care procedures as a combination of actions.

Each action term in an action element has two constraints: the first one (called the set of

petitioners) is on the sort of actors that are allowed to request the action (e.g. only medical

doctors are allowed to prescribe drugs). The second one (called the set of performers) is on the

sort of actors that are allowed to perform the action in the real world (e.g. injecting some drugs

can be restricted to nurses and to medical doctors, but some other drugs can also be injected by

the own patient or some relative). These constraints on the actions permit the description of

collaborative medical treatments in which several professionals may interact. Any petitioner in

the set of petitioners is allowed to requests the action to be executed. Any performer in the set of

performers is allowed to execute the action.

Action blocks are independent of the patient condition; therefore they use to be preceded either

by a state that describes what the state of a patient should be in order to deserve that action, or by

a decision that determines whether the patient meets the features required for the action to be

applied. Empty action blocks have the meaning of “do nothing”, which is the same as not having

the action block in the SDA*.

Flowcharts are used to represent SDA* procedures in a graphical way. Figure 3 shows how

states, decisions, and actions are represented in this sort of flowcharts.

Figure 3. Elements of the SDA* model

The correct combination of states, decisions, and actions allows the construction of explicit

health care procedural knowledge within the SDA* model. This combination of elements is

made by means of connectors.

26

3.2.1.3. Connectors

This section explains how the SDA* elements introduced in the previous section can be

combined to form proper health care procedures.

In the SDA* model, a connector is defined as an arrow that goes from one element in the input of

the connector (or in-element) to another element in the output of the connector (or out- element).

From the point of view of the SDA* elements, any state is an in-element of one connector, but it

may be an out-element of any number of connectors in the FIP (including none). Decisions are

in-elements of as many connectors as the branching factor of the decision, and out-elements of

one or several connectors in the SDA* procedure. Finally, actions are in-elements of one only

connector, and out-elements of at least one connector. These restrictions are graphically shown in

Figure 4.

Figure 4. Feasible element connections in the SDA* Model.

In that figure, the up-left state and the bottom-left state describe a situation in which all the

patients whose condition makes the state a feasible entry point evolve following the outgoing

connector. The difference between them is that in the first case the SDA* procedure do not

inform about when a patient can reach that state in the middle of a treatment (i.e. it is an input

state of the health care procedure). In the second case, the state can be either an input state of the

health care procedure for new incoming patients, or an intermediate state which is reached after

the application of any of the elements in the incoming connections of the state.

A decision was defined as a list < D; D1, D2, …, Dk > of sets of decision terms; D being all the

possible terms in the decision, Di a subset of D for all i=1..k, and k the branching factor. Each

alternative Di in the decision is assigned a different outgoing connector of the decision. The

meaning of a decision point is that any patient reaching the decision (by one of the incoming

connectors) may follow any of the outgoing connectors whose Di is contained in the patient

condition (i.e. one of the feasible branches of the decision).

27

An action block contains all the action terms that are to be suggested to deal with the patient

reaching that element. The up-right actions in Figure 5 describe types of action blocks that are

only reachable from one element in the SDA*. Within this group, the left one describes a

terminal action in which the information of how to proceed after the action is not provided by the

health care procedure. The actions in the bottom are general cases describing action blocks to

follow after the application of any of the elements in the action incoming connectors. They also

act as a joint of several courses of action of the SDA* procedure that converge to stop (action on

the left) or that converge into one single action block to propose the same group of actions and

then proceed in the same way through the action block outgoing connector (action on the right).

Figure 5. SDA Sequence

3.2.1.4. Sequences and cycles

The basic structure of the SDA* model is the SDA sequence that connects one state with a

decision and each branch of that decision with an action. Figure 5 represents this basic structure.

The SDA sequence can be simplified with the elimination of one or several of the elements in the

sequence. So, the elimination of the state must be interpreted as if there is not a health care

reason to describe the state of the patient at this point of care (e.g. lack of medical meaning,

medical irrelevance, cause of confusion, disagreement, etc.). Sometimes, the application of a set

of actions is mandatory for all the patients arriving to the SDA sequence. In this case the decision

element is eliminated and only one action block with all the common actions is connected after

the state. Sometimes, a decision element is not enough to arrive to a conclusion about the sort of

actions to carry on or the representation of all the possibilities with a single decision is confusing.

In these cases the action block must be eliminated from the SDA sequence in order to chain

several decisions. All these cases of SDA sequence reduction are depicted at the top of Figure 6.

At the bottom of Figure 6 the cases of elimination of two elements of a SDA sequence are

represented. The left side case describes a situation in which two (or more) states from

consecutive SDA sequences are connected. Although this is a correct sequence, there is not a

clear reason that justifies it since a sequence of states is equivalent to a single state containing the

state terms of all the states in the sequence. The case in the middle represents a sequence that

connects two decisions. This is a common practice in the construction of health care procedures

with the SDA* model. The last case in the bottom-right side represents a sequence of two (or

28

more) actions of consecutive SDA sequences directly connected. Like it happened with the states

in the first case, this sequence is better replaced by a single action containing all the action terms

of the action blocks involved in the sequence.

Figure 6. Simplified SDA Sequences

SDA sequences (and their reductions) can be concatenated by means of connectors. Figure 7

shows the most general case of a SDA sequence concatenation where none of the elements in the

SDA sequences have been eliminated.

Figure 7. Concatenation of SDA Sequences

Apart of sequences, the SDA* model can represent cycles. A cycle is defined as a repeated

sequence of elements in a SDA* procedure. Cycles may be used to represent repetitions in a

medical process or jumps to an already previously observed situation in the course of action

followed. Cycles in this model do not have explicit termination conditions; the exit of a cycle

occurs when one of the decisions of the cycle drives the patient to an outgoing connection which

is not part of the cycle.

29

3.2.1.5. Non-determinism

Determinism is the principle by which every event, act, and decision (effect) is the consequence

of some antecedents (causes). In healthcare, these causes can be medical, surgical, genetic,

environmental, managerial, familiar, social, etc. On the contrary, non-determinism states that

there are events which do not correspond to a cause. Historically, there have been defined three

types of non-determinisms: one that holds that some events are uncaused (e.g. from a practical

point of view, in healthcare, uncaused events are equivalent to events with an unknown

unfindable cause), another one that holds that there are nondeterministically caused events (e.g. a

physician that follows alternative therapies for equivalent cases without an explicit explanation),

and the third one that holds that there are agent-caused events (e.g. external events like the arrival

of a patient whose health condition allows the treatment to start at different points). The SDA*

model can deal with all the above types of non-determinism. As a consequence of this, for the

same situation (i.e. patient condition) a non-deterministic SDA* is able to represent several

different interventions with no support to decide which one should be followed. A non-

deterministic SDA* procedure may propose more than one intervention and it must be the

physician the final responsible of the selection.

Figure 8. Non-Determinism in the SDA* Model

Figure 8 shows the three sorts of non-determinism in the SDA* model that can be observed in a

SDA* FIP. From left to right, the first case (type-0 non-determinism) describes the situation in

which a patient with a particular condition can match several states at the same time and

therefore be non-deterministically recommended to start one out of several alternative

interventions. In the second case (type-1 non-determinism), the current condition of a patient can

satisfy several branches of the same decision, and therefore be able to follow any of them. For

example, if the patient condition is {high-blood-pressure, taking-drugs}, then any branch of the

sort {}, {high-blood-pressure}, {taking-drugs}, or {high-blood-pressure, taking-drugs} is a

feasible branch. The last case in the right side of Figure 8 (type-2 non-determinism) describes a

situation in which either a state or an action in the FIP are in-elements of several connectors.

Here, the SDA* procedure introduces two or more alternative paths that patients going out of

these elements may (or may not) non-deterministically follow.

30

3.2.1.6. Time

The time model establishes two sorts of temporal constraints: those which are related to the terms

in a SDA* element and those others related to the connectors. Each term and connector may

optionally have one constraint or not. The time constraints of the terms are of the sort [start, end,

frequency] and they mean that the term is observed from the start time, to the end time with the

frequency indicated. For example, when v = (antidepressant, [3w, 1d, 24h]) is a state term it

means that the state of the patient is conditioned by the fact that “(with respect to the current

moment) he has been taking one antidepressant every day since three weeks ago to one day ago”.

Observe that taking two antidepressant units should be said (twoAntidepressant, [x, y, 24h]) or

(antidepressant, [x, y, 12h]) if the units are taken together or in two doses, respectively. The first

case can also be represented by introducing the term v in the state two times.

If v is a decision term the meaning is equivalent to the question “has the patient been daily taking

one antidepressant between three weeks ago and yesterday?”. But if it is an action term the

meaning is an order of taking that antidepressant starting in the start time and ending in the end

time with the frequency indicated in the frequency value (i.e. a prescription). In this case, start

must be a nearer to the current time than end.

s Seconds

m Minutes

h Hours

d Days

w Weeks

M Months

y Years
Table 8. Time units in the SDA* model

In the SDA* model, this sort of terms with a time constraint are called temporal terms.

The second sort of time constraints in the SDA* model is related to the SDA* connectors and it

has the form [min, max]. They are optional and represent delays (or durations). Both values are

also optional. A connector with such time constraint indicates that the evolution from the in-

element to the out-element of the connector takes between min and max times. If only the min

value is present, it means that the connector can be crossed only if a min interval of time passes.

If only the max value is in the constraint, the meaning is that the connector can be followed not

later than a max interval of time.

The sort of temporal units of the start, end, frequency, min, and max components of the time

31

constraints are the ones included in Table 8 and any of these values is represented by a natural

number followed by one of these temporal units (Other temporal concept as “now”, “birth-

time”, and “death-time” are also possible). For example, 15s for “fifteen seconds”, 5m for “five

minutes”, 3h for “three hours”, 4d for “four days”, 7w for “seven weeks”, 10M for “ten

months”, and 3y for “three years”.

States and decisions describe past or current aspects of the patient, and therefore the temporal

constraint of start must be bigger than the temporal constraint of the end (e.g. [3d, 2d] or [1y,

3w]). On the contrary, action elements represent future actions and the start value of a temporal

constraint must be smaller than the temporal constraint of the end (e.g. [1d, 3y] or [1h, 6d]).

3.2.1.7. Parallelism

Parallelism is admitted by the SDA* model but in a patient-oriented (instead of a procedure-

oriented) fashion. From the point of view of the patient following a SDA* procedure, this person

has a single treatment in which several evens may concur in time. In this approach parallelism

does not mean that the patient is following several treatments at the same time (this will be a

procedure-oriented approach), but that the actions of the treatment overlap in time.

This idea must be conceived together with the fact that SDA* procedures do not represent the

health care procedures themselves, but the indications of what health actions have to be started

now and, expectedly, in the future. Parallel to the SDA* procedure, the evolution of the real

patient in the real world is what conditions how to apply the SDA* procedure in the next

encounter with the patient. In other words, the SDA* procedure suggests a set of actions

according to the current patient condition, and provides a farther perspective of how the

treatment of this patient should be in the future, based exclusively on the limited current

evidence provided by the current state of the patient and not on the real future evolution of the

patient. Of course, this perspective is founded on both health care knowledge and experiences

about the feasible evolutions of patients in the disease the SDA* procedure is dealing with.

In this context, all the action terms of an action block are launched in parallel, subject to their

respective temporal constraints. In Figure 9 the action terms Ai and Aj, belonging to the same

action block, have a parallel region where both behave simultaneously on the patient. These

actions may also be in parallel to actions as Ak from other action blocks, as the figure also

depicts.

32

Figure 9. Parallel actions in time

3.3. Construction and execution of health procedures with the SDA*

Model
This section introduces the procedures that the SDA* model is able to describe as an abstract

data type (ADT), providing the specification of a basic functional interface to manage the

construction of such health procedures. An XML Schema is proposed that provides the structure

to represent SDA* procedures as XML documents. The ADT functions are used to describe the

execution of a health procedure under the SDA* model. The section finishes with several

examples of SDA* procedures in the K4CARE project.

3.3.1. Abstract data type SDA* procedure

This section aims at providing a formal proposal about the basic constructors that any system

capable of defining SDA* procedures is recommended to have. This proposal follows the

definitional notation of formal specification of abstract data types.

Time

&

Actors

TIME = λ | NUMBER{ s | m | h | d | w | M | y }

PETITIONERS = Set of ACTOR

PERFORMERS = Set of ACTOR

elements EmptyState: → STATE

InsertTerm: Term × [TIME]3 × STATE → STATE

EmptyBranch: → BRANCH

OtherwiseBranch: → BRANCH

InsertTerm: Term × [TIME]3 × BRANCH → BRANCH

EmptyDecision: → DECISION

33

InsertBranch: BRANCH × DECISION → DECISION

EmptyAction: → ACTION

InsertTerm: Term × [TIME]3 × PETITIONERS × PERFORMERS × ACTION →

ACTION

SDA* EmptySDA*: → SDA*

InsetElement: Element × SDA* → SDA*

InsertConnector: {STATE | ACTION}2 × [TIME]2 × Element × SDA* →

SDA*

InsertConnector: BRANCH × DECISION × [TIME]2 × Element × SDA* →

SDA*

Table 9. SDA* Abstract data type: basic constructors

Patient states, branches, and actions are sets containing temporal terms of the form (term, [time1],

[time2], [time3]), any of the three times being optional; decisions are sets of branches, and SDA*

are sets that contain either states, decisions, actions, or connectors, where connectors can be

elements of the form (sa1, sa2, [time1], [time2]) or (branch, decision, [time1], [time2]), sai standing

for a state or an action.

3.3.2. Textual representation of the SDA* procedures

The procedures of the SDA* model can be expressed in textual format. Table 10 shows the body

of the XML Schema to define SDA* procedures as XML files.

...

 <xs:simpleType name="sda_time">

 <xs:restriction base="xs:string">

 <xs:pattern value="[0-9]*[smhdwMy]"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="sda_term">

 <xs:sequence>

 <xs:element name="start" type="sda_time" minOccurs="0"/>

 <xs:element name="end" type="sda_time" minOccurs="0"/>

 <xs:element name="frequency" type="sda_time" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="sda_actionterm">

 <xs:sequence>

 <xs:element name="start" type="sda_time" minOccurs="0"/>

 <xs:element name="end" type="sda_time" minOccurs="0"/>

 <xs:element name="frequency" type="sda_time" minOccurs="0"/>

 <xs:element name="petitioner" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="performer" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="type" type="xs:string"/>

 </xs:complexType>

 <xs:complexType name="sda_connector">

 <xs:sequence>

34

 <xs:element name="min" type="xs:time" minOccurs="0"/>

 <xs:element name="max" type="xs:time" minOccurs="0"/>

 <xs:element name="element" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="sda_branch">

 <xs:sequence>

 <xs:element name="sda_term" type="sda_term" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="sda_connector" type="sda_connector"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="sda_state">

 <xs:sequence>

 <xs:element name="sda_term" type="sda_term" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="next" type="sda_connector" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="id" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="sda_decision">

 <xs:sequence>

 <xs:element name="sda_branch" type="sda_branch" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="otherwise" type="sda_connector" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="id" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="sda_actionblock">

 <xs:sequence>

 <xs:element name="sda_action" type="sda_actionterm" minOccurs="0"

maxOccurs="unbounded"/>

 <xs:element name="next" type="sda_connector" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="id" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="sda_procedure">

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="sda_state" type="sda_state"/>

 <xs:element name="sda_decision" type="sda_decision"/>

 <xs:element name="sda_action" type="sda_actionblock"/>

 </xs:choice>

 </xs:complexType>

...

Table 10. SDA* XML Schema

3.3.3. Execution of SDA* procedures

One of the key aspect to fully understand procedures described under the SDA* model is to

know how they are executed for a particular patient. Before going on, we must recall that these

procedures are formal representations of the general intervention to deal with a particular disease,

ailment, pathology or syndrome. They are not representations of the evolutions of the patients

under such circumstances. This means that applying the indications of a SDA* to a particular

patient does not necessarily imply that this patient will evolve the way the SDA* indicates. This

fact describes a parallel view of the problem at two levels, the level of the course of actions

indicated in the SDA* (medical knowledge) and the level of the evolution of the patients that

35

follow the SDA* (reality or medical data).

This duality may disturb or confuse the reader. However, this same reader must think of the

SDA* as indications that a particular patient may follow, may not follow, follow in part, or

follow during not enough time; or, also common in medicine, even strictly following the

indications, the patient may evolve unexpectedly.

The practice of medicine is universally based on the encounters between the patients and the

healthcare professionals. In a particular encounter a patient exhibits a specific condition within

the disease he is assisted for. The role of the health care professional in the encounter is to

interpret these signs, symptoms, and the rest of the information provided in order to conclude

about the set of actions to follow (e.g. recommendation, prescription, procedure, etc.).

In the SDA* model, a patient condition is described as a set of temporal terms representing the

patient current condition, including the patient health antecedents. These terms can be state,

decision or action terms. For example, {(ElevatedBloodPressure), (BPAtGoal, [t1,t2,-]),

(Antidepressant, [t3, t4, t5])} is the condition of a patient that has an elevated blood pressure (i.e.

BP≥140/90), but who has had the pressure at goal between the times t1 and t2, and who has been

taking antidepressant between t3 and t4 with a frequency t5.

Patient

condition

EmptyCondition: → PCONDITION

InsertTerm: Term × [TIME]3 × PCONDITION →

PCONDITION
Table 11. Patient condition abstract data type: basic constructors

Given a patient condition and a SDA*, both based on the same set of terms, the execution of that

SDA*procedure for that patient starts at any of the states of the SDA* that are feasible entry

points. If it is required, the health care professionals in the encounter can select a subset of all the

alternatives. Each feasible entry point in the selected set starts alternative feasible treatments of

the patient.

A treatment consists of all the action (temporal) terms found in a SDA* path that starts in a

feasible entry point and finishes either in a state that is not a feasible entry point (i.e. The

patient condition must change before evolving in this line) or in a connector with a

temporal range [min, max] with min>0 (i.e. the SDA* procedure sets a temporal break

before the patient treatment can continue). This path is a sequence of SDA* elements, each

one being an out-element of a connector with in-element the pervious element in the sequence. If

the in-element is a decision, all the branches that the patient condition meets (or the branch

otherwise if none meets), i.e. the feasible branch of the decision, can be followed. If an element

is non-deterministically connected to other elements all the non-deterministic connectors can be

followed. In both cases, it is the health care professional who selects the treatment to apply

among all the feasible alternatives supported by the SDA* procedure.

36

We define a temporal term (v,[t1,t2,t3]) is equally or more restrictive than another temporal term

(v,[t1’,t2’,t3’]) if the following conditions hold:

1. (t1’≤t1) or (t1’ is void).

2. (t2≤t2’) or (t2’ is void) or (t2’ = 0).

3. (t3≤t3’) or (t3 is void)

Given a patient condition, we say a SDA* state is a feasible state if all the terms in the state can

be found in the patient condition and they are equally or more restrictive in the state than in the

patient condition. In a similar way, we say a branch of a SDA* decision is feasible if all the

terms in the branch are in the patient condition contains and they are equally or more restrictive

in the branch than in the patient condition.

For example, a SDA* state {[beta-blocker, 1M, 1w, 1d]} (i.e. patients taking one beta-blocker

per day during the last month until last week) will be feasible for patients that meet condition c1

in Table 11 (more restrictive), but not feasible for patients meeting conditions c2 (the patient has

been taking the drug since more time than one month ago), c3 (the patient has been taking beta-

blockers during the last week, just in contradiction with the indication of stop taking beta-

blockers one week ago pointed out by the state), or c4 (not only the frequency but the duration of

medication is shorter).

Provided a decision term [highBloodPressure, 1M, 3d, -] (i.e. true if the patient has got high

blood

pressure since one month ago till recently), all the patients meeting conditions c5 or c6 in Table

12 (more restrictive) will evaluate the decision term to true, but not c7.

Conditio

n

Expression Meaning

c1 [beta-blocker, 1y, 1d, 12h] Taking a beta-blocker every twelve hours since one year ago till

yesterday.

c2 [beta-blocker, -, 2d, 8h] Taking beta-blocker every eight hours till two days ago (since

much time ago).

c3 [beta-blocker, 1w, -, 8h] Taking beta-blocker every eight hours since one week ago (till

now).

c4 [beta-blocker, -, -, 3d] Taking beta-blocker every eight hours since much time ago till

now.

c5 [highBloodPressure, 2M, 1d,

-]

Till yesterday, Blood Pressure has been high during the last two

months.

c6 [highBloodPressure, 2M, -, -] Blood Pressure has been high during the last two months (and it is

now).

c7 [highBloodPressure, 3w, -, -] Blood Pressure has been high during the last three weeks (and it is

now).

Table 12. Some examples of temporal terms and meaning

37

3.3.4. Examples

This section contains partial and complete examples of SDA* procedures. The action terms have

been classified into recommendations, prescriptions, radiographies, analyses, procedures,

specialists, FIPs, and any, as Table 13 summarizes.

[RECOMMENDATION] [REC] Variable that represents a recommendation of the physician.

[PRESCRIPTION] [PRES] Variable that represents a drug prescription.

[RADIOGRAPHY] [RAD] Variable that represents an order of radiography.

[ANALYSIS] [ANA] Variable that represents an order of analysis.

[PROCEDURE] [PROC] Variable that represents the application of a procedure.

[SPECIALIST] [SPEC] Variable that represents the specialist the patient is derived to.

[FIP] [FIP] Variable that represents the execution of another FIP.

[ANY] [ANY] Variable that represents any sort of action.
Table 13. Sorts of action variables

The treatment of hypertension in 3.3.4.2 is taken from the guideline published by the Institute for

Clinical Systems Improvement (www.icsi.org) in the National Guideline Clearinghouse in the

USA. The rest of procedures were taken from the “Consensus Guidelines for Assessment and

Management of Depression in the Elderly“ of the NSW Health Department in Australia. An

exception is presented in subsection 3.3.4.3, where the K4CARE procedure for Comprehensive

Assessment of homecare patients is represented following the SDA* model.

3.3.4.1. Representing partial knowledge

Many times clinical practice guidelines contain valuable knowledge that is apparently

disconnected from other pieces of knowledge that may appear in the same guideline. This kind of

knowledge is usually represented as text. This section contains some examples of textual

knowledge pieces extracted from real guidelines and it shows how they could be represented in

the SDA* model.

“Medication is likely to be needed where there is any

sustained depressive disorder and when non-

pharmacological strategies are not achieving their

goals”

38

“Useful signs to indicate commencing medication are:

● Presence of biological signs, disturbed sleep,

appetite and energy changes

● Diurnal variation in mood

● Agitation or retardation

● Depression with any psychotic features.”

“Admission to hospital can be essential where the

depression:

● Is severe enough to impair reasonable daily

living function and supports cannot be put in

practice

● Has safety issues –suicidal ideas or plans,

psychotic signs, severe psychomotor agitation

otherwise or retardation

● Has not responded to fair treatment”

3.3.4.2. CSI’s Hypertension Diagnosis and Treatment

The Clinical Algorithm provided by the Institute for Clinical Systems Improvement (ICSI) that

represents the processes of diagnosis and treatment of hypertension is translated to the SDA*

notation. The result is:

39

3.3.4.3. Comprehensive Assessment K4CARE Procedure

In the K4CARE healthcare model comprehensive assessment is a service that comprises

multidimensional evaluation plus clinical assessment and physical examination (integrating the

medical side) and social needs and social network assessment (integrating the social side). It is

the service devoted to detect the whole series of patient diseases, conditions and difficulties, from

both the medical and social perspectives. This service is implemented with a procedure that may

be represented in the SDA* model as it follows.

Here, the actions indicate the actor performing the action (i.e. performers) because

comprehensive assessment is a collaborative process achieved with the combined actions

performed by different actors.

[HCP] Action performed by the Home Care Patient.

[FD] Action performed by the Family Doctor.

[PC] Action performed by the Physician in Charge of the

patient.

[HN] Action performed by the Head Nurse.

[SW] Action performed by the Social Worker.

[EU] Action performed by the Evaluation Unit (nuclear work

team).

[CCP] Action performed by the Continuous Care Provider.

[ANY] Action performed by any of the K4CARE actors.

Table 14. Sorts of action variables for comprehensive assessment

40

41

3.3.4.4. The use of Antidepressant Medication in the Elderly

3.3.4.5. Management of Depression with Cognitive Impairment

42

3.3.4.6. Management of Depression with Dementia

3.3.4.7. Suicide: Risk of Assessment and Management

43

44

4. K4CARE Multi-Agent System

In this section the concepts related to the K4CARE's Multi-Agent System will be introduced. As

the base of this project is founded on agents, as said in section 2.1.1, an introduction about why

to use a Multi-Agent System in the K4CARE platform will be done.

If the reader has no knowledge about what Multi-Agent Systems are, a description is presented in

the Annex1. This knowledge is needed to understand the concepts shown in the sections from 4.2

to 4.4 where the K4CARE MAS Architecture is described, and the work related to the

architecture done in this project is explained. So section 4.3 will give to the reader an extensive

description of the SDA* Agent and its common tasks within the project, and finally, in section

4.4 an SDA* ontology will be detailed. It's interesting to remark that this ontology has a crucial

mission in the whole system because it's the only way to communicate the SDA* Agent with the

rest of the K4CARE agents without losing the semantics associated to each event related to the

execution of one SDA* structure.

These 3 last subsections will be very important to understand the rest of the document because

the design and the implementation that have been done are based on this architecture, and some

of the reasons why the generated agent is as it is will be explained here.

4.2. K4CARE MAS Architecture

As described in section 1, one of the K4CARE project objectives is the creation of a web

application which will give all the wished services to the final user. This application will be

composed by a user interface, a control layer (the MAS) and a data layer (the information

repositories). This section will introduce to the reader the internal architecture of the MAS, and

its situation in the whole system.

The MAS is the part of the K4CARE which manages the functionality of the whole system. Its

main goals are to connect the Web Interface (as this is am ICT project it will have a web-based

user interface) with the HC Agents, to represent all the people involved in HomeCare with one

intelligent agent in the K4CARE system, to consult/modify the EHCR of the patients, etc, in

short its main goal or objective is to give the desired funcionality of the project to the real actors

which will use it.

Firstly it's important to do a general description of the knowledge managed in the K4CARE, the

ontologies and the EHCR. The Ontologies[03], as a set of concepts, properties and relations,

constitute a feasible paradigm to represent the declarative knowledge used in the system. There

are two basic ontologies in K4CARE. The first ontology, named Actor Profile Ontology (APO),

details the basic elements of the K4CARE HC model (actors, actions, services, procedures,

documents) and the relationships between them (e.g. which actions may be performed by each

45

kind of actor, or which document is associated to each action). The second one, named Case

Profile Ontology (CPO), stores all the medical terms related to HC (diseases, syndroms, signs,

symptoms, assessment tests, clinical interventions, laboratory analysis, social issues) and the

relationships between them (e.g. the diseases included in a certain syndrom, or the symptoms of

a disease). Agents will be able to reason using the knowledge contained in this ontology, which

can be considered as a bridge between the concepts that agents are able to recognize (conditions,

diseases) and how actors have to act on those situations (associated interventions). Taxonomic

and non taxonomic relations between concepts have been defined in order to allow structuring

the information in an appropriate way to answer high level queries about that data.

The EHCR (Electronical HealthCare Record), as is deductible from its name, is a kind of

database which contains all the information related to a real Patient. This means, his personal

data, his clinical history, etc, in short, all his HC personal information and case history. One of

the main features of the K4CARE project is to define the internal structure of this record.

In second place, the multiagent system provides us a set of Gateway Agents used to connect the

User Interface (Web browser) with the agents in the system (HealthCare agents). These last

agents are in charge of executing all its activities described in the D01[02], in concrete, two of

these activities are the execution of Individual Intervention Plans and the execution of

Procedures. These two information models will be represented in the format proposed by Dr.

David Riaño, the SDA*[04]. The next section presents an agent capable of managing these

structures. It's important to remark that this is only a data structure to represent a real knowledge,

so this data structure can be stored as XML, as Java objects, as text, etc. therefore we must only

be interested in how to perform the interpretation and execution of this data structure and the

decisions concerning its storage format will be taken later.

To achieve all these goals we can present the next schema where the connections listed above

are represented. In this schema, it is possible to see how the MAS has access to the K4CARE's

ontologies (where the knowledge of the actors and diseases is represented) and has also access to

the EHCR of each patient.

In figure 10 this architecture is presented, where the K4CARE MAS is clearly described. In this

internal architecture there are 3 diferent types of agents, the Gateway Agents, the SDA* Agents

and the HealthCare Agents:

• The Gateway Agents are the ones in charge of connecting the HealthCare Actors

(patients and medical staff) with their respective HealthCare Agents. In order to achieve

this, this kind of agent will manage a connection between the web browser and the

respective HealthCare Agent.

• The SDA* Agents are dynamically created agents which are in charge of managing,

executing and storing the SDA* structure associated to one concrete HealthCare Agent.

This kind of agent will be asked to execute the Individual Intervention Plans and

Procedures described in the K4CARE model.

46

• The HealthCare Agents are a software representation of the medical staff and the patients.

They are in charge of managing all the tasks that one real actor must perform and

informing to this actor, and also to the system, about the state of these tasks or actions.

Procedures

Formal Intervention
Plans (FIPs)

SDA* APIOWL API

Case Profile
Ontology (CPO)

queries

SDA*

Actor Profile
Ontology (APO)

OWL
queries Data

Electronic Health
Record (EHR)

EHR API

SQL
queries XML or

Result Sets

Application Program Interface (API)

know-what
queries Data

know-how
queries Data

EHR-related
queries Data

Multi-Agent System

Agent
Actor #j

Agent
Actor #l

Agent
Actor #k

Agent
Actor #i

inter-agent
communication

intra-agent
communication

Client Side Browser

actor

validation

actions
results
events

requests
queries
log in

K4CARE
Platform

Data
Abstraction
Layer

Knowledge
Layer

Gateway
Agent #i

Servlet

Gateway
Agent #k

SDA Execution
Engine #l

Figure 10. The K4CARE System architecture

The Data Abstraction Layer provides a Java-based API that allows the K4CARE platform agents

to retrieve the data and knowledge they need to perform their tasks. That layer offers a wide set

of high level queries that provide transparency between the data (knowledge) and their use

(platform).

The Knowledge Layer includes all data sources required by the platform. It contains an

Electronic Health Record that stores patient records (personal information, medical visits and

ongoing treatments). The procedural -organisational and medical- knowledge (know-what) is

represented in the APO and CPO ontologies, using OWL. Medical procedures (that implement

services) and Formal Intervention Plans are coded using the flowchart-like representation SDA*

and stored in specific databases.

4.3. SDA* Agent-based execution

The aim of this section is to describe the design of an agent prepared to manage and execute

SDA* structures. We will start describing what it means to execute a SDA* structure, so in order

to describe this execution flow, the execution of some described procedures in the D01 and of an

arbitrary Individual Intervention Plan will be presented. After this some requirements of the

SDA* Agent will be mentioned.

47

4.3.1. SDA* Agent

Basically the initial idea was to separate the complex tasks of interpreting and managing the

medical guidelines from the other tasks assigned to the K4CARE agents, as initially, these agents

were not prepared to interpret and execute the medical guidelines formalism used in the project,

the SDA*. So, one new agent type has been designed and developed. This agent is the main

objective of this work.

The designed solution is one agent capable to interpret and execute the SDA* structure,

separating this task from the other tasks that the K4CARE agents perform and, using a

communication ontology, communicate to these agents the tasks derived from the SDA*

execution. Then all the agents interested in managing the SDA* structures (basically the agents

interested in interpreting an Individual Intervention Plan or any procedure described in [02]), will

have to create a new SDA* Agent and using this communicative ontology ask some defined

tasks to him. This new dynamically created agent will manage and execute the SDA* structure,

and perform the related tasks to this management and execution, freeing of these tasks to his

invoker.

So in the next section the actions flow generated from the execution of some SDA* structures

will be described. In section 4.4 the ontology designed to communicate the different actions and

concepts will be presented. Finally, in chapter 5 the design and implementation of the SDA*

Agent will be introduced.

4.3.2. SDA*'s actions flow

This section presents the flow of actions derived from the execution of one SDA*, in concrete

one Individual Intervention Plan.

Figure 11. Individual Intervention Plan Actions flow

About figure 11, it's interesting to remark the actions flow presented. The process starts when the

48

Head Nurse (as the agent in charge of this execution) recovers the patient's IIP from the EHCR

(step 1). After this, the execution of this IIP is started by a dynamically created SDA Agent (step

2) who is in charge of interpreting the SDA* structure, linked with the responsible HN who will

send action requests (using the FIPA Request Protocol) to the implied agents in order to execute

the SDA* (step 3). To finish this execution, the agents fill in their related document subsections,

creating the final document which will be saved into the EHCR of the patient (step 4).

After this explanation, it's interesting to analyse the possible actors involved in the SDA*

execution. There is an execution coordinator agent (the Head Nurse in the case of the IIPs) and a

set of support agents which help this coordinator to complete the execution of the IIP. There is

another interesting component in the system, this is the information repository, in this case the

EHCR. We also note that the ontologies and other databases proposed in other documents will

act as information repository too. Finally, it is also interesting to think about the results of this

execution, which are the generation of one or more documents which must be saved in the EHCR

of the patient.

4.3.3. IIP execution message flow

Here we present an arbitrary IIP (is important to remark that this IIP isn't real) and the message

flow between the agents involved in its execution. First the IIP is presented:

Figure 12. Kidney problems fictitious SDA* diagram

The IIP has four action blocks, and each block has its own group of subactions. Two of these

49

blocks are performed if the patient hasn't kidney functionality, Action 3 is performed if he has

low functionality, and in the other cases Action block 4 is performed.

The next diagram represents the message passing between the agents implied in the execution of

the Action blocks A1 and A2, which are the blocks with more actions to perform. Block A3 is

represented in the next section, as it has a procedure invocation. Block A4 hasn't any interest as it

only represents a message to the patient.

In the first step the gateway agent asks the performance of the patient's IIP, as this service must

be given by the platform to the users, and the way to communicate them is through a Gateway

Agent. After this is sent, the Head Nurse Agent reads from the EHCR the IIP and, given the

status of the patient, arrives to Action A1. Once the execution has arrived here, the HN sends

messages to the involved Agents of this Action block in order to achieve its results.

To avoid representing all the execution, in the next diagram of the presented IIP only the

messages passed between agents are represented:

Figure 13. Agent message exchange of the IIP's Action first branch

50

4.3.4. Procedure execution message flow

The next diagram presents the performance of the procedure “Prescription of Non-

Pharmacological Treatment” described in D01, and invoked in the IIP's action block A3. There

are 3 steps in this procedure. In the first step the three actors which can invoke this procedure are

presented.

Figure 14 presents this sequence diagram:

Figure 14. Agent message exchange of the IIP's Action second branch

It's important to remark the last message (number 3), where the PC is informed about the

cancellation of the treatment performed by the FD; in any other case, the gateway agent is

notified about the acceptance of the treatment, and it shows this fact to its owner.

Finally, the supposed message exchange of a complex procedure is presented. In this case a more

complex diagram, which is described in [02] called “Comprehensive Assessment”, is presented.

To represent this, some assumptions are done; the first is that there isn't any agent in charge of

the execution, so a controller agent is created, but as in the previous diagram, its functionality

can be passed to another of the HC staff agents. The second one is the agent who represents the

EU, here is it assumed that the HN is this agent because this agent is also in charge of the

assignment of members to the EU. This second assumption can be discussed because it's not

clear who represents the EU and, like in the SDA* execution, there are two clear options, an EU

agent or an agent representing all the EU. In the diagram we have chosen the solution where one

of the agents represents all the EU, in this case the FD.The actions “n.1” (where n is a number

51

between 0 to the maximum steps in the procedure) represent an asking alternative when a HC

staff agent needs information about HCP. The “auto-arrows” refer to actions in one procedure

which are done by the same agent. Figure 15 represents this complex SDA* structure execution:

Figure 15. Message exchange between agents in the Comprehensive Assessment execution

52

4.4. K4CARE SDA* Ontology

As the reader can imagine, to achieve the execution of the SDA* structures the agents should

have some common language in order to communicate all these messages. To accomplish this

objective the agents who are interested in executing an SDA* structure must know the concepts

and actions defined in the SDA* Ontology described here.

This ontology contains all the elements which are needed in order to execute the SDA*

structures, like the actions that one agent must perform, or the concepts related to the execution

of the concrete SDA*, etc. In figure 16 the context of this ontology within the whole system is

presented:

Figure 16. Context of the SDA* ontology in the system

Figure 17 presents the structure of the different concepts and agent-actions cotained in this

ontology:

53

Figure 17. SDA* MAS Ontology

4.4.1. Concepts

In this section the diferent concepts in the SDA* model execution which can appear in a two

agent conversation are presented. These concepts are the following:

• The SDA* structure itself

This is the conceptual representation of the SDA* structure itself.

Attribute Type Opt. Description

Id. String M Identification of the SDA* in K4CARE

terms

Procedure Boolean O Refers to the fact that SDA* is one of

the K4CARE defined procedures

• The current State node information

This is a representation of the patient's state or the state of the execution of a procedure,

this means the health status of the patient or the position in the SDA* execution, or

anything which can be represented with a state node.

54

Attribute Type Opt. Description

Id. String M Identification of the SDA* current State

node

Procedure Boolean O Refers to the fact that SDA* is one of

the K4CARE defined procedures

Status Set of State Variables M A set of the status variables into this

State node related to the SDA*

• The current Action node information

The concept of an Action node presented in the SDA* specification, the 4-tuple and the

time interval required to represent the action correctly.

Attribute Type Opt. Description

Id. String M Action Identification (from the

K4CARE Action list)

Receiver String M Which actor must receive this action

Performer String M Who must perform this action

Time_Interval SDA* 3-valued time

interval

O Indicates the interval of time and the

repetitions in which this action must be

performed

Document_Related String M Indicates the document in which the

results of this action must be written

• 3-valued time interval

This is the conceptual abstraction of the waiting periods which are described in the SDA*

formalism.

Attribute Type Opt. Description

Start Date M The start of this period

End Date M The end of this period

Period Time M The time period which this action has to

be repeated

• A period of time

This is the conceptual abstraction of the waiting periods which are described in the SDA*

formalism.

55

Attribute Type Opt. Description

Min_time Date M The minimum time which should be

waited

Max_time Date M The maximum time which has to be

waited

• Explanations about an unexpected execution stopping situation

This is a conceptualization of an execution error, i.e. a representation of an unexpected

status of the SDA* execution.

Attribute Type Opt. Description

Ending_Condition String M Name or code of the ending condition

Description String O A short description explaining why the

execution of the current SDA* has

finished

4.4.2. Actions
This section introduces the list of possible actions which the K4CARE agents may request to the

SDA* agent and vice versa. This actions list could be increased in the future, depending on the

possible needs of the system. These three first actions are referred to the ones which the

K4CARE agent system would ask to the SDA* Agent, the last one has the inverse sense, and is

requested by the SDA* Agent to the system agents.

• Initiate a new SDA* - From controller to SDA* agent

Request to initialize a new SDA* structure.

Attribute Type Opt. Description

SDA* SDA* Structure M The SDA* structure to be initiated

• Start/Pause the current SDA* - From controller to SDA* agent

Used when a controller agent wants a SDA* agent to start or pause the current SDA*.

Attribute Type Opt. Description

SDA* SDA* Structure M The SDA* structure to be paused or

56

started

Start Boolean M If the SDA* structure has to be started

or not, if not it means that it has to be

paused

• Cancel the SDA* execution - From controller to SDA* agent

Request the cancellation of a SDA* structure execution which is in progress.

Attribute Type Opt. Description

SDA* SDA* Structure M The SDA* structure which has to be

cancelled

• Perform these actions – From SDA* to controller agent

When a SDA* agent reaches an action node into the SDA* structure needs to ask to the

related actor in the system to perform those actions, so this abstraction represents the

performance of these actions.

Attribute Type Opt. Description

Action_lists Set of Actions to be

performed

M A set of actions (node information

structure) which has to be performed by

the asked agent

• Wait this period – From SDA* to controller agent

To indicate to the receiver that he must wait the referred period of time expressed into

this action.

Attribute Type Opt. Description

Period Time_period M The period that the asked agent should

wait

57

58

5. Design and implementation of the SDA* Agent

This chapter of the document presents the design and structure of the SDA* Agent. As said in

section 4.3.1, this agent is capable to execute the SDA* structures (as they are nowadays). To do

so, this agent has an internal data structure to represent and manage this formalism.

Besides this data structure, the Agent needs some kind of engine to execute the contents of this

structure, as its purpose is to execute this representation. So the SDA* agent has an execution

engine which gives to him this execution capabilities.

5.1. Code Structure

The code written to implement the SDA* Agent has been structured in some packages, as shown

in figure 18:

Figure 18. The SDA Agent Packages

The code is structured in 4 main packages: the SDA_Ontology, the I2P, the sdaExecutor and

the SDAAgent.

• The I2P is the representation of the SDA* formalism in Java classes. It implements a

graph-like structure with the needed modifications in order to correctly represent this

formalism.

• The sdaExecutor is the event oriented engine capable to interpret and execute SDA*

structures. As it will be shown in the next sections, this engine is the basis of the whole

functionality of the SDAAgent.

• The SDA_Ontology is the package which contains the code related to the ontology

59

described in section 4.4. This package includes the concepts and the actions related to the

execution of SDA* structures.

• Finally, the SDAAgent is the concrete implementation of the Agent described above. This

agent uses the other 3 packages in order to understand and execute SDA* structures, and

to communicate to the other agents the different events that occur during this execution.

5.2. SDA* graph data structure

In this section the data structure used to represent the SDA* formalism will be described. The

objective of this data structure is to implement the SDA* format in a Java package, in order to be

accessible by the agents in the system who would like to use it. To do so, this structure must

accomplish the next points:

• It must be robust.

• It should have operations of creation, modification and reading.

• It has to provide functions to perform traversals over it, respecting the time and decisions

restrictions that will appear during this process.

• It must be prepared to support concurrent access.

To achieve these objectives, the package has been structured in 3 blocks. The first one is the

representation of the different SDA* node elements, which are the States, the Decisions and the

Actions. The second block is the representation of the connectors between these SDA* node

elements. These connectors can have different functionalities, depending on their purposes.

Finally, the third block is the SDAGraph structure itself, which uses the other 2 blocks and

creates the whole structure. The next figure shows a global overview of the I2P package:

Figure 19. SDA* representation package

60

As it is possible to view, the package contains the 3 mentioned blocks. In the next two figures the

classes contained in the SDA subpackage and in the connector subpackage, and the relations

between the different classes in these subpackages are shown:

Figure 20. The SDA Package from the I2P data structure

Figure 21. The connector package from the I2P data structure

In the two figures presented above it is possible to view the different fields of each class and the

respective position of each class in the internal structure of the package. In the next subsections

the concrete funcionality of each one of the three presented blocks will be described.

61

5.2.1. SDA Subpackage

As said, this subpackage contains the concrete representation of each of the possible nodes in a

SDA* structure. To do so, the States, Decisions and Actions inherit or implement an abstract

class which represents the concept of a SDA element, which is the main concept of this class.

The SDAElement abstract class has functions to connect itself with the connectors of the

connectors package. It also has functions which permits the executor to know which node is

referenced and to control the cycles of that node (see section 6.6 for more information).

There are another 2 classes which need to be analyzed deeper, which are StateStructure and

the ActionStructure. The first one is used to represent the contents of the States and contains

information about the variable which it represents and the value associated to this variable. The

second one represents the semantic information related to an action, so it is composed by five

elements:

➔ The subject who performs the action.

➔ The object which gives the action.

➔ The document related to this action.

➔ The action code (as specified in document D01).

➔ The interval time of repetition of this action (as described in the SDA* formalism)

With this five fields, this class can represent all the information related to a medical action, as it

is needed to know who performs the action, and who receives this action. It is also needed to

know which document must be filled after this action, and which concrete action must be

performed during which time period.

5.2.2. Connector Subpackage

This package is used to connect the different nodes present in the SDA subpackage, respecting

the different constraints present in the formalism related to the connection between these nodes.

So, these connectors must give to the developer possibilities to represent the time restrictions,

and the decision restrictions, too.

To do so, an inheritance model has been designed, as in the case of the SDA package. The

different connectors inherit from a general class, which is called connector and has information

about the two nodes which it connects.

The other subclasses are the following:

➔ General connector: this is the representation of a connection between two nodes without

any time or decision restriction.

62

➔ Decision connector: this represents the connection between a decision node and another

type of node. It has the information about why the path that it sets has been chosen.

➔ Time connector: represents a timed connection with a time restriction that must be

respected. This time restriction is of the 2-tuple form, in other words, it contains the

miminum time and maximum time that must be spent to let the execution follow through

this path.

➔ Decision timed connector: this is a mix of the time connector and the decision connector,

as it could be interesting to jump through a decision path, but at the same time, wait a

concrete time before doing the next action.

5.2.3. I2P Class

This is the main class of this package. It uses the two subpackages described above to give to the

system the desired functionality. To do so, it gives SDA* creation methods, as add or delete

nodes and connections; and at the same time, it gives traversal methods, in order to permit the

execution of the represented SDA* graph.

The additional methods don't have any intrinsic problematic, as they permit to add a node after

the last inserted node, using the parameters to specify which kind of connection will connect

these two nodes. The problematic resides in the removal methods, in concrete in the deletion of

decision nodes, as deleting a node which connects with another node is quite easy, but the

deletion of a decision node is not as trivial because normally a decision divides the graph into 2

subgraphs, so, the deletion of a decision returns the list of possible subgraphs generated from this

deletion.

When the SDA* structure is formed, it is interesting to go through it, so, “jumping” methods are

given. These methods have parameters which permit to jump to the next node specifiying the

possible restriction, as for example, a time restriction, permiting to the execution package to

transparently control the possible time constraints.

5.3. SDA* executor

After having defined the SDA* data structure, it was required to have some kind of interface or

engine to interpret and execute the contents of this structure. To do so, the SDA* executor has

been designed. This executor is based in an event model, and it follows the next steps:

1. Someone asks to the executor to load an SDA*

2. The executor is asked to advance (or step forward) in the passed SDA*

3. After this the executor generates an event informing about what has happened

4. These two last steps are iteratively repeated until the SDA* finishes

63

In this section, the event orientation, its implementation and the finalisation conditions will be

described. Finally, the sdaExecutor final design will be introduced.

5.3.1. Event-based Orientation

Before starting to describe how to design an event-based package, the event orientation will be

defined. Event-driven programming or event-based programming is a computer programming

paradigm in which the flow of the program is determined by user actions or messages from other

programs. In contrast, in batch-programming or flow-driven programming the flow is

determined by the programmer. Batch programming is the style taught in beginning

programming classes while event-driven programming is what is needed in any interactive

program. Event-driven programs can be written in any language, although the task is easier in

some languages than in others. Some programming environments make the task quite easy,

others less so. This kind of paradigm gives to the execution of the SDA* an intuitive

approximation which allows a clear separation of components, allowing to have a clear

implementation.

To use this technique some other techniques were required in order to give to our Java code this

orientation. After some researches in Software Engineering it was clear that the most useful tool

to achieve this objective were the Design Patterns[07]. A design pattern is a general repeatable

solution to a commonly occurring problem in software design. A design pattern is not a finished

design that can be transformed directly into code. It is a description or template for how to solve

a problem that can be used in many different situations. Object-Oriented design patterns typically

show relationships and interaction between classes or objects, without specifying the final

application classes or objects that are involved.

Design patterns can be classified in terms of the underlying problem they solve. Examples of

problem-based pattern classifications include:

• Fundamental patterns.

• Creational patterns, which deal with the creation of objects.

• Structural patterns, ease the design by identifying a simple way to realize relationships

between entities.

• Behavioural patterns, that identify common communication patterns between objects and

realize these patterns.

• Concurrency patterns.

In concrete, to solve the event-orientation a behavioural pattern was chosen, the observer pattern.

The observer pattern is a design pattern used in computer programming to observe the state of an

object in a program. It is related to the principle of implicit invocation.

The essence of this pattern is that one or more objects (called observers or listeners) are

registered (or register themselves) to observe an event which may be raised by the observed

64

object (the subject). The object which may raise an event generally maintains a collection of the

observers. The figure below illustrates this structure:

Figure 22. The Observer pattern components

The participants of the pattern are detailed below. Member functions are listed with bullets.

Subject

This class provides an interface for attaching and detaching observers. The subject class also

holds a private list of observers. It contains these functions:

• Attach - Adds a new observer to the list of observers observing the subject.

• Detach - Removes an observer from the list of observers observing the subject.

• Notify - Notifies each observer by calling the notify() function in the observer, when a

change occurs.

ConcreteSubject

This class provides the state of interest to observers. It also sends a notification to all observers,

by calling the Notify function in its super class (i.e. in the Subject class). It contains this

function:

• GetState - Returns the state of the subject.

Observer

This class defines an updating interface for all observers, to receive update notifications from the

subject. The Observer class is used as an abstract class to implement concrete observers. It

contains this function:

• Update - An abstract function, to be overriden by concrete observers.

65

ConcreteObserver

This class maintains a reference with the ConcreteSubject, to receive the state of the subject

when a notification is received. It contains this function:

• Update - This is the overridden function in the concrete class. When this function is

called by the subject, the ConcreteObserver calls the GetState function of the subject to

update the information it has about the subject's state.

When the event is raised each observer receives a callback. This may be either a virtual function

of the observer class (called 'notify()' on the diagram) or a function pointer (more generally a

function object or "functor") passed as an argument to the listener registration method. The

notify function may also be passed some parameters (generally information about the event that

is occurring) which can be used by the observer.

Each concrete observer implements the notify function and as a consequence defines its own

behaviour when the notification occurs.

5.3.2.Finish conditions

Before starting the execution of a SDA* structure there are some finishing conditions that must

be detailed, as if they aren't it's possible that the execution won't ever finish. So, in the frame of

this project the next SDA* finishing conditions have been taken into account:

• The interpretation of a node n times: as there can be cycles in the SDA* structure, and it

is a medical structure, it has been decided that if some action has been performed more

than n times it should be probable that this SDA* won't be the most appropiate for the

patient.

• The arrival to a node which hasn't continuation: if the execution arrives to a node which

hasn't any next node it's clear that the execution has finished.

• The execution of a decision node which hasn't the branch that is asked.

• Or, the jumping to a node with a time restriction which can't be accomplished, this

means, two nodes connected with a time connector and is required to jump from the first

to the second, but the time restriction is not fulfiled.

66

5.3.3. SDA* Executor design

This section presents the design of the execution engine. After explaining the requirements to

execute in an event orientation paradigm and the ending conditions of the SDA* execution the

next design has been created:

Figure 23. The SDA Executor Package

As described in the figure above, the executor is composed by four elements:

• The representation of the Events, the SDAEvent class. This class contains information

about the event that has been produced, as which node has produced this event.

• A tailored exception, to be thrown in case of errors.

• The interface that must be implemented by any class which wants to listen to SDA

events. In this interface the possible events that are generated from the execution of a

SDA* structure are described. All these events have an associated SDAEvent class which

has the information related to the concrete event. This interface represents the Observer

class in the pattern.

• The execution engine, which interprets the contents of the SDA* structure and raises the

different events to the registered listeners. It performs the Subject role in the observer

pattern.

67

5.4. SDA* Agent

In this section the SDA* Agent package, and its interaction with the rest of the packages listed

above will be described . As shown in figure 24 the SDA* Agent has 2 main classes:

Figure 24. SDA* Agent Package

This agent is composed by the implementation of an Agent by the JADE library (see section 5.1)

and the definition of its SDA* execution behaviour:

• The Agent JADE code, as said, and by references to the behaviour that it has and to a

SDAGraphFactory, which is a connection with the SDA* repositories.

• The behaviour is a concrete implementation of a Cyclic Behaviour, which asks to its

associated SDAExecutor (because it implements a SDAListener) to step in the SDA

execution at each cycle of the behaviour. After this step this behaviour receives the

generated events and treats them.

In the next diagram (figure 25) the connections of the SDA Agent with the rest of the classes are

presented, in order to have a global view of the whole design:

68

Figure 25. SDA* Agent Package Interaction

As is possible to see, the agent has connections to an executor, to a SDAGraph, and obviously to

its behaviour. When this behaviour is added to the agent, it is subscribed to the executor in order

to receive the events, and it's also connected to the SDA* representation, in order to have

knowledge about what is being executed. These connections are clear in the next code fragment,

where the finishing conditions can also be noticed:

import sdaExecutor.SDAExecutor;

public class SDAAgent extends Agent {

AID recv;

SDAExecutor sdaEngine;

AgentBehaviour behaviour;

SDAGraphFactory factory;

int maxCycles = 3; //Finishing condition

protected void setup() {

System.out.println("Agent ” + getLocalName() + " started.");

factory = new SDAGraphFactory(); //Consult the EHCR instead

sdaEngine = new SDAExecutor(maxCycles);

behaviour = new

AgentBehaviour(this,”patient_name”,sdaEngine);

sdaEngine.addSDAListener(behaviour); //Connection Agent -

SDAExecutor

sdaEngine.LoadSDAGraph(factory.buildSDA());

// Add the SDABehaviour

addBehaviour(behaviour);

}

}

69

5.5. SDA* Ontology

This section describes the process of generation of the Ontology used to represent the concepts

present in the execution of the SDA* structures. This section explains the process of creating a

JADE ontology using the Protégé tool and its plugin the Protégé Bean Generator.

5.5.1. Defining and creating the Ontology

In any JADE ontology there are 3 important elements:

• The concepts: represent the basic information in the communication between agents.

• The predicates: represent some determined conditions that must be fulfiled by the

response data to an information request.

• The actions: represent the request of the performance of a concrete task by one agent, and

they have all the needed information for its execution.

So, first of all we needed to codify the concepts, predicates and actions formally described in

section 4.4 in an ontology. As the process of creating a JADE ontology is quite slow, an assistive

tool has been used to speed up this process. To do this, the Protégé tool has been used to create

an ontology and a plugin of Protégé to generate the code. To define the ontology, the template

provided to create a JADE ontology using the Bean Generator plugin was used, because the Bean

Generator has some restrictions about the generation of this kind of ontologies, and one of these

constraints is the use of this template.

Figure 26. Ontology created with Protégé

70

As can be seen, the ontology has the concepts and the agent actions described in the ontology

section. Once it is done, it's possible to use the Bean Generator tab, in order to create the JADE

ontology. Using this tool, Protégé will create the needed classes to define a JADE ontology

without having to be written by the developer, and having an easy maintenance. Figure 27 shows

this tab window:

Figure 27. The Bean Generator Tab

After the parameters to create the ontology are introduced, we are able to generate the ontology

beans with the “Generate Beans” button.

5.5.2. The generated code

After this process, Protégé has generated a set of classes that can be used to communicate

concepts, actions and predicates in a JADE conversation. Figure 28 shows the “pool” of

generated classes, each one representing one concept or action, and its attributes:

71

Figure 28. The SDA* Agent communication ontology

5.6. Controlling problematic situations

Finally, to finish the design description there are some problematic situations that have been

solved following the next indications:

● As the K4CARE is a project still in development, the checking procedure of the patient

variables has been done using the standard input, as there is another subproject in

K4CARE whose goal is to obtain this information from the databases.

● The time constraints which are present in the SDA* specification are still not clear

nowadays, like the parallelism of action execution. This work only treats the time

restrictions as they are specified in the SDA* specification, so evaluates the time

restrictions jumping between two nodes and informs about the repetition of one action to

the agents requested to. It is planned that in future versions these issues will be treated.

● The error conditions haven't been clearly defined nowadays, so, the SDA* Agent only

informs to its parent about any appearing error.

72

5.7. Developing in a distributed team

As K4CARE is an European project with some teams distributed among the continent the need

of usage of collaborative tools is prior. This section comments the tools used to work in the

project:

• It is necessary to have a tool to manage all the generated code, as the amount of code

generated by all the team's members is sufficiently large to be complex to manage. The

used tool has been subversion[16].

• We need to have a tool to compile the code written by each team member, as it's

important to share a uniform way of compiling and generating the results of the written

code. To achieve this aim, two tools have been used, Maven[15] (the one used for this

part of the project) and Ant. This kind of tools have been used as nobody in each working

unit of the whole project has to know how it exactly is distributed, so, only installing and

using the provided configuration files for each project unit by each responsible developer

every one will be capable to generate each part.

• As the code can have errors, it's important to have a testing tool in order to verify the

code, and at the same time, use one with standarized characteristics, as Junit[14].

• As the generation of the ontology code is a boring and repetitive process it is interesting

to have a tool to generate this code automatically, and also to manage the OWL files

generated, as the Protégé + Ontology bean generator[11].

73

74

6. Testing

To test the development that has been done, three level of tests have been performed:

✔ test of the I2P package as a data structure: To test this part of the project, a testing

package has been designed using JUnit. In this package the creation, modification and the

reading of this data structure has been tested, and it has worked correctly.

As the IDE (Eclipse [10]) used has JUnit integration it has been quite easy to integrate

the designed tests with the generated code. To do so, a new package has been added into

the package structure of the project:

Figure 29. The package structure

This package contains basically one test case, divided in 3 parts:

✔ Elements construction test, which tests the correct construction of the different

elements in a SDA*, the States, the Decisions and the Actions.

✔ Elements referencing test, tests the creation and functionality of the branches.

✔ Structure test, tests the SDA* graph structure by itself

In the next piece of code it is possible to see the internal structure of this test case:

75

Figure 30. SDA* Structure testing

After developing this code, the test finishes correctly, so it's possible to conclude that the

SDA Graph structure is sufficiently robust and bug-free to be used:

Figure 31. The JUnit testing results

✔ test of the executor engine:

The second level of test is centered in the execution engine. In this test the SDA Agent

execution capabilities have been tested. To do so, some simple SDA* structures have

been developed using the SDA:

76

Figure 32. SDA* tested graphs structure

Some changes have been performed over these structures, like the introduction of some

temporal restrictions, or cycles between the nodes. The main goals of these tests were

accomplished:

✔ Test the interpretation of the SDA* graph structure

✔ Test the Agent event-based proactive behaviour

✔ Continue with the evaluation of the SDA* structure

Due to the amount of tests done and the output generated it is impossible to write all them

here, however, an example of the output generated from the execution of the first diagram

presented above is shown here:

Agent SDAExecutioner: started

Agent Behaviour:I've this possible Entry Points:
0) main.java.com.K4CARE.i2p.SDA.State: Acute Psoriasis
1) main.java.com.K4CARE.i2p.SDA.State: Serious Psoriasis
Agent Behaviour:Choose one Entry Point by its id:
 Serious Psoriasis
Agent Behaviour:Choose one Entry Point by its id:
Serious Psoriasis
Agent Behaviour:I've detected a new state reached event
Agent Behaviour:The state is: Serious Psoriasis
SDAExecutor: I've detected an state element. I need the next info Psoriasis
SDAExecutor: I'm in a main.java.com.K4CARE.i2p.SDA.State node. With 0
cycles.
SDAExecutor: I'm going to jump to another node without any label or time
SDAExecutor: I'm in a main.java.com.K4CARE.i2p.SDA.Decision node. With 1
cycles.
SDAExecutor: I'm going to jump to another node without any label or time
SDAExecutor: An action has been reached
Agent Behaviour:I've detected a new action reached event, now I read the
action: What to do
Agent Behaviour:I've detected that the graph has finished. I finish my
execution

77

In this code extract it is possible to see the interaction between the agentBehaviour and

the SDAExecutor and the different messages which these two elements exchange. It's

also possible for the reader to notice the interaction with the Data Abstraction Layer via

text input, as it is still under development by other member of the project.

✔ test of the SDA* Agent in an Agent environment:

This final test is centered in the SDA Agent interaction with other agents. The main goals

in this test are:

• To evaluate the correct functionality of the ontology

• Test the interaction of the SDA Agent in a Multi-Agent System

• Verify tests one and two

To do so, in this test a new SDA Structure has been created, in this case the invented

SDA* graph structure from section 3.3.3 has been used (see figure 12), but some

modifications have been introduced, concretely no Nurse agent has been created, and the

tasks related to the Nurse agent have been assigned to the Head Nurse. This has been

done in order to simplify a few the exchanged messages and to remove an actor that does

not give any new functionality to the test. So in this test we have 4 static agents:

• A Physician in Charge

• A Family Doctor

• The Head Nurse

• The Patient

And one dynamic agent created by the Head Nurse, the SDA Agent. The first task of

these agents is to register to the DF, and after this is done, the Head Nurse creates a new

SDA Agent who also registers to the DF. When all the agents have registered, the SDA

Agent starts the execution of the SDA structure mentioned before, and we have obtained

the following results.

After defining the actors in our test system, the execution of the SDA* structure has been

started. Like in the second test, the output generated is quite long. So, in order to reduce

it, only the execution of one branch of the SDA* structure is shown. In this case the

chosen one is the “No Functionality” branch, related with “Kidney Problems”. Here we

have the text output:

78

Agent FD_Julius.Hibert started.
FD_Julius.Hibert is going to register to the DF.
Agent Patient_Homer.Simpson started.
Patient_Homer.Simpson is going to register to the DF.
Agent PC_Nick.Riviera started.
PC_Nick.Riviera is going to register to the DF.
Agent FD_Julius.Hibert: I'm registered.
Julius Hibert: I'm doing something
Agent HN_Edna.Krabappel started.
HN_Edna.Krabappel is going to register to the DF.
Agent Patient_Homer.Simpson: I'm registered.
Homer Simpson: I'm doing something
Agent PC_Nick.Riviera: I'm registered.
Nick Riviera: I'm doing something
Agent HN_Edna.Krabappel: I'm registered.
Edna Krabappel: I'm doing something
Agent HN_sdaAgent: started
Agent HN_sdaAgent: My father is => HN_Edna.Krabappel
Agent Behaviour:I've this possible Entry Points:

0) main.java.com.K4CARE.i2p.SDA.State: Kidney Problems
1) main.java.com.K4CARE.i2p.SDA.State: Low Kidney Functionality
Agent Behaviour: Choose one Entry Point by its id:
Kidney Problems

Agent Behaviour:I've detected a new state reached event
Agent Behaviour:The state is: Kidney Problems
SDAExecutor: I've detected an state element. I need the next info Kidney
failure
SDAExecutor: I'm in a main.java.com.K4CARE.i2p.SDA.State node. With 1
cycles.
SDAExecutor: I'm going to jump to another node without any label or time
SDAExecutor: I'm in a main.java.com.K4CARE.i2p.SDA.Decision node. With 1
cycles.
SDAExecutor: I'm going to jump to another node without any label or time
SDAExecutor: A decision has been reached
Agent Behaviour:I've detected a new decision reached event
Agent Behaviour:The decision is: Perform adequate actions and has 3
connections
Agent Behaviour:I've this possible connections:

0) Otherwise
1) No functionality
2) Low functionality
Agent Behaviour: Choose one:
No functionality

SDAExecutor: I'm in a main.java.com.K4CARE.i2p.SDA.Decision node
SDAExecutor: I'm going to jump to another node with a reasoning to
accomplish
SDAExecutor: An action has been reached
Agent Behaviour:I've detected a new action reached event, now I read the
action: Assistive devices
HN_sdaAgent I've sent: ((action (agent-identifier :name
HN_Edna.Krabappel@morpheus:1099/JADE :addresses (sequence
http://morpheus:7778/acc http://morpheus:42311/acc)) (Perform_Action
:Action_List (SDA_Action :Time_Interval (Action_Period :End "Thu Jun 07
10:50:39 CEST 2007" :Period "0" :Start "Thu Jun 07 10:50:39 CEST 2007")
:Performer PC :Document_Related (sequence "D. Assistive Devices") :Receiver
Patient :Identification "Assistive devices"))))
HN_sdaAgent: I'm going to wait the necessary time
Edna Krabappel I've received: ((action (agent-identifier :name

79

HN_Edna.Krabappel@morpheus:1099/JADE :addresses (sequence
http://morpheus:7778/acc http://morpheus:42311/acc)) (Perform_Action
:Action_List (SDA_Action :Time_Interval (Action_Period :End "Thu Jun 07
10:50:39 CEST 2007" :Period "0" :Start "Thu Jun 07 10:50:39 CEST 2007")
:Performer PC :Document_Related (sequence "D. Assistive Devices") :Receiver
Patient :Identification "Assistive devices"))))
Edna Krabappel: I've received the next order => Assistive devices
Edna Krabappel: I agree with the asked action
HN_sdaAgent: I confirm the response
HN_sdaAgent: I've received an agree response
Edna Krabappel: confirmed
Edna Krabappel: I'm going to wait the necessary time
Nick Riviera: I've received: ((action (agent-identifier :name
HN_Edna.Krabappel@morpheus:1099/JADE :addresses (sequence
http://morpheus:7778/acc http://morpheus:42311/acc)) (Perform_Action
:Action_List (SDA_Action :Time_Interval (Action_Period :End "Thu Jun 07
10:50:39 CEST 2007" :Period "0" :Start "Thu Jun 07 10:50:39 CEST 2007")
:Performer PC :Document_Related (sequence "D. Assistive Devices") :Receiver
Patient :Identification "Assistive devices"))))
Nick Riviera: I've received the next order ==>Assistive devices
Nick Riviera: I agree with the asked action
HN_Edna.Krabappel: I confirm the response
HN_Edna.Krabappel: I've received an agree response
Nick Riviera: confirmed
HN_Edna.Krabappel: Action asked to PC_Nick.Riviera done.
Nick Riviera: I'm doing something
Edna Krabappel: I'm doing something
HN_sdaAgent: Action asked to HN_Edna.Krabappel done.
SDAExecutor: I'm in a main.java.com.K4CARE.i2p.SDA.Action node. With 1
cycles.
SDAExecutor: I'm going to jump to another node without any label or time
SDAExecutor: An action has been reached
Agent Behaviour:I've detected a new action reached event, now I read the
action: Cure the Patient
HN_sdaAgent I've sent: ((action (agent-identifier :name
HN_Edna.Krabappel@morpheus:1099/JADE :addresses (sequence
http://morpheus:7778/acc http://morpheus:42311/acc)) (Perform_Action
:Action_List (SDA_Action :Time_Interval (Action_Period :End "Thu Jun 07
10:50:40 CEST 2007" :Period "0" :Start "Thu Jun 07 10:50:40 CEST 2007")
:Performer PC :Document_Related (sequence "D. Nursing Care") :Receiver
Patient :Identification "Cure the Patient"))))
HN_sdaAgent: I'm going to wait the necessary time
Edna Krabappel I've received: ((action (agent-identifier :name
HN_Edna.Krabappel@morpheus:1099/JADE :addresses (sequence
http://morpheus:7778/acc http://morpheus:42311/acc)) (Perform_Action
:Action_List (SDA_Action :Time_Interval (Action_Period :End "Thu Jun 07
10:50:40 CEST 2007" :Period "0" :Start "Thu Jun 07 10:50:40 CEST 2007")
:Performer PC :Document_Related (sequence "D. Nursing Care") :Receiver
Patient :Identification "Cure the Patient"))))
Edna Krabappel: I've received the next order => Cure the Patient
HN_sdaAgent: I confirm the response
HN_sdaAgent: I've received an agree response
Edna Krabappel: I agree with the asked action
Edna Krabappel: confirmed
Edna Krabappel: I'm going to wait the necessary time
Nick Riviera: I've received: ((action (agent-identifier :name
HN_Edna.Krabappel@morpheus:1099/JADE :addresses (sequence
http://morpheus:7778/acc http://morpheus:42311/acc)) (Perform_Action
:Action_List (SDA_Action :Time_Interval (Action_Period :End "Thu Jun 07

80

10:50:40 CEST 2007" :Period "0" :Start "Thu Jun 07 10:50:40 CEST 2007")
:Performer PC :Document_Related (sequence "D. Nursing Care") :Receiver
Patient :Identification "Cure the Patient"))))
Nick Riviera: I've received the next order ==>Cure the Patient
Nick Riviera: I agree with the asked action
HN_Edna.Krabappel: I confirm the response
HN_Edna.Krabappel: I've received an agree response
Nick Riviera: confirmed
HN_Edna.Krabappel: Action asked to PC_Nick.Riviera done.
HN_sdaAgent: Action asked to HN_Edna.Krabappel done.
HN_sdaAgent I've sent: ((action (agent-identifier :name
HN_Edna.Krabappel@morpheus:1099/JADE :addresses (sequence
http://morpheus:7778/acc http://morpheus:42311/acc)) (Perform_Action
:Action_List (SDA_Action :Time_Interval (Action_Period :End "Thu Jun 07
10:50:41 CEST 2007" :Period "0" :Start "Thu Jun 07 10:50:41 CEST 2007")
:Performer FD :Document_Related (sequence "D. authorize nursing care")
:Receiver Patient :Identification "Cure the Patient"))))
HN_sdaAgent: I'm going to wait the necessary time
Nick Riviera: I'm doing something
Edna Krabappel: I'm doing something
Edna Krabappel I've received: ((action (agent-identifier :name
HN_Edna.Krabappel@morpheus:1099/JADE :addresses (sequence
http://morpheus:7778/acc http://morpheus:42311/acc)) (Perform_Action
:Action_List (SDA_Action :Time_Interval (Action_Period :End "Thu Jun 07
10:50:41 CEST 2007" :Period "0" :Start "Thu Jun 07 10:50:41 CEST 2007")
:Performer FD :Document_Related (sequence "D. authorize nursing care")
:Receiver Patient :Identification "Cure the Patient"))))
Edna Krabappel: I've received the next order => Cure the Patient
HN_sdaAgent: I confirm the response
HN_sdaAgent: I've received an agree response
Edna Krabappel: I agree with the asked action
Edna Krabappel: confirmed
Edna Krabappel: I'm going to wait the necessary time
Julius Hibert: I've received: ((action (agent-identifier :name
HN_Edna.Krabappel@morpheus:1099/JADE :addresses (sequence
http://morpheus:7778/acc http://morpheus:42311/acc)) (Perform_Action
:Action_List (SDA_Action :Time_Interval (Action_Period :End "Thu Jun 07
10:50:41 CEST 2007" :Period "0" :Start "Thu Jun 07 10:50:41 CEST 2007")
:Performer FD :Document_Related (sequence "D. authorize nursing care")
:Receiver Patient :Identification "Cure the Patient"))))
Julius Hibert: I've received the next order ==>Cure the Patient
Julius Hibert: I agree with the asked action
HN_Edna.Krabappel: I confirm the response
HN_Edna.Krabappel: I've received an agree response
Julius Hibert: confirmed
HN_Edna.Krabappel: Action asked to FD_Julius.Hibert done.
HN_sdaAgent: Action asked to HN_Edna.Krabappel done.
HN_sdaAgent I've sent: ((action (agent-identifier :name
HN_Edna.Krabappel@morpheus:1099/JADE :addresses (sequence
http://morpheus:7778/acc http://morpheus:42311/acc)) (Perform_Action
:Action_List (SDA_Action :Time_Interval (Action_Period :End "Thu Jun 07
10:50:42 CEST 2007" :Period "0" :Start "Thu Jun 07 10:50:42 CEST 2007")
:Performer HN :Document_Related (sequence "D. intravenous therapy")
:Receiver Patient :Identification "Cure the Patient"))))
HN_sdaAgent: I'm going to wait the necessary time
Julius Hibert: I'm doing something
Edna Krabappel: I'm doing something
Edna Krabappel I've received: ((action (agent-identifier :name
HN_Edna.Krabappel@morpheus:1099/JADE :addresses (sequence

81

http://morpheus:7778/acc http://morpheus:42311/acc)) (Perform_Action
:Action_List (SDA_Action :Time_Interval (Action_Period :End "Thu Jun 07
10:50:42 CEST 2007" :Period "0" :Start "Thu Jun 07 10:50:42 CEST 2007")
:Performer HN :Document_Related (sequence "D. intravenous therapy")
:Receiver Patient :Identification "Cure the Patient"))))
Edna Krabappel: I've received the next order => Cure the Patient
Edna Krabappel: I agree with the asked action
HN_sdaAgent: I confirm the response
HN_sdaAgent: I've received an agree response
Edna Krabappel: confirmed
HN_sdaAgent: Action asked to HN_Edna.Krabappel done.
HN_sdaAgent I've sent: ((action (agent-identifier :name
HN_Edna.Krabappel@morpheus:1099/JADE :addresses (sequence
http://morpheus:7778/acc http://morpheus:42311/acc)) (Perform_Action
:Action_List (SDA_Action :Time_Interval (Action_Period :End "Thu Jun 07
10:50:43 CEST 2007" :Period "0" :Start "Thu Jun 07 10:50:43 CEST 2007")
:Performer HN :Document_Related (sequence "D. follow-up report") :Receiver
Patient :Identification "Cure the Patient"))))
HN_sdaAgent: I'm going to wait the necessary time
Edna Krabappel: I'm doing something
Edna Krabappel I've received: ((action (agent-identifier :name
HN_Edna.Krabappel@morpheus:1099/JADE :addresses (sequence
http://morpheus:7778/acc http://morpheus:42311/acc)) (Perform_Action
:Action_List (SDA_Action :Time_Interval (Action_Period :End "Thu Jun 07
10:50:43 CEST 2007" :Period "0" :Start "Thu Jun 07 10:50:43 CEST 2007")
:Performer HN :Document_Related (sequence "D. follow-up report") :Receiver
Patient :Identification "Cure the Patient"))))
Edna Krabappel: I've received the next order => Cure the Patient
Edna Krabappel: I agree with the asked action
HN_sdaAgent: I confirm the response
HN_sdaAgent: I've received an agree response
Edna Krabappel: confirmed
HN_sdaAgent: Action asked to HN_Edna.Krabappel done.
Edna Krabappel: I'm doing something
SDAExecutor: I'm in a main.java.com.K4CARE.i2p.SDA.Action node
SDAExecutor: I'm going to jump to another node with a time reasoning
Agent Behaviour: I've detected a new time event
Agent Behaviour: The execution has been late, so it will finish
Agent Behaviour: The execution has been aborted, so bye bye dear

The agents after registering in the DF remain waiting for action requests. Once the SDA

Agent arrives to an Action Block from the SDA* structure, he sends to the related agent

the tasks that are there written, and sends an agree message, which is replied with a

confirm message, and agreed by the SDA Agent. If we analyze the outputs generated by

the agents it's possible to see the contents of the request messages, and there we can see

an ontology message codified in the SL codec. It's interesting to notice that, in this test

case, the patient isn't requested to do anything because the actions in the SDA* structure

are requested to the other agents, and the responsible of these agents are who must

perform these actions over the patient.

Finally when the execution is finished, the SDA Agent finalizes its execution and the

other agents remain waiting new messages.

82

In the next figure is shown a global view of this message exchange:

Figure 33. Message exchange between agents in an SDA* execution

So, after these three testing packages it's possible to conclude that the SDA Agent and structure

are working fine as the SDA* structure works correctly, the engine interprets correctly the

structures, and finally, the communication between agents also work accurately.

83

84

7. Conclusions and future work

The most important conclusion to which we have arrived in this project is that Multi-Agent

Systems technologies are a great approach in the field of Artificial Intelligence, as they combine

some elements from the real world as capabilities to perform intelligent processes, multitask

functionalities, and the most important, collaboration possibilities. This last feature is by far the

most interesting of all the features given by Multi-Agent Systems, as it has been possible to see

during the development of this project where an agent has been designed to coordinate with other

agents. It's important to remark the importance of the fact that all the issues concerning Multi-

Agent Systems have an standarisation entity like the FIPA (which is an IEEE Computer Society

standards organization) who regulates them. This avoids the possible incompatibilities between

different implementations and gives detailed documentation about how and why a protocol or the

messages between the agents are defined.

In second term, some conclusions about the SDA* formalism. This is a great approach to

represent a medical guideline, because it has a graph structure (easily understandable by

computer engineers) and thanks to its “tree” visual representation it's also useful for the medical

staff (who are the most interested on them). However, there are some aspects that we think that

this formalism has to improve. The first one is the possibility of using first order logic (feature

that is in progress nowadays), because is more closer to the real world than propositional logic,

giving to the doctors (an also to the computer science people) richer semantical content in the

representation. In second place, and from the point of view of the agents, it's important to strictly

define which parallel behaviours are being represented in a SDA* graph, as nowadays it hasn't a

clear representation and it's important to model a more real world.

A global conclusion that can be extracted from the SDA* is the fact that it is a good

approximation, but it needs some refinements in order to be more precise.

In third place, it's important to remark the different utilities that Software Engineering gives to

the developer, as the design patterns. Without this kind of tools or “recipes” (because the design

patterns are more like recipes than tools) it would be very difficult to solve the final design of the

system in a clear and understandable way.

In fourth place and to finish the conclusions, we would like to stress the important paper of the

tools used to work in the K4CARE team. Without these tools it would be very complicated to

maintain, share and use the generated code and the generated designs. So thanks to tools like

subversion it has been easy to use the code generated by other team members, or with tools like

JUnit it has been possible to test the correct functionalities of the generated code, in order to find

the possible bugs present on it.

85

Nowadays, the K4CARE Project is in its second year. During the first year the design of the

ontologies, the documents and the architecture of the system have been done. In this second year

the development of the Multi-Agent System will be done, so the work presented in this document

will be integrated with the work done by all the other project members, and at the same time it

will be revised and extended with the new needed features. As future features it would be

interesting to implement the SDA* formalism completely including the first order logic and the

parallelism (and all the issues related to these implementations) and also integrating all this code

with the rest of the final Multi-Agent System.

To finalise this document, I would like to thank all the comments and revisions given by Dr.

Antonio Moreno in his task of directing this work, to David Isern for his comments and ideas for

the design and development of the Agent, to David Sánchez for the help given to design and

develop the ontology and to Montserrat Batet, Albert Solé and Joan Casals for the help given

during the development of some parts of the code. I'd like also to thank the K4CARE Hungarian

and Czech people the comments given during the development of the work.

86

8. Annex

8.1. Annex 1. What is a Multi-Agent System?
Before starting to explain what are the Multi-Agent Systems, it's important to understand what

are their basic elements, the Agents.

It's easy to find some definitions about what is an agent as this is a large field of research, but one

of the most accepted ones is the proposed by Michael Wooldridge collected in [03]:

- An intelligent agent is a computational process which is capable to perform tasks in an

autonomous way, and which could communicate with other agents in order to resolve

problems cooperating, coordinating and negotiating with them. The agents live in a

complex and dynamic environment with whom they interact in order to achieve a set of

objectives.

8.1.1. Agent Properties

An intelligent agent is a hardware or (more usually) software-based computer system that enjoys

the following properties:

• autonomy: agents operate without the direct intervention of humans or others, and have

some kind of control over their actions and internal state;

• social ability: agents interact with other agents (and possibly humans) via some kind of

agent-communication language;

• reactivity: agents perceive their environment, (which may be the physical world, a user

via a graphical user interface, a collection of other agents, the INTERNET, or perhaps all

of these combined), and respond in a timely fashion to changes that occur in it;

• pro-activeness: agents do not simply act in response to their environment, they are able to

exhibit goal-directed behavour by taking the initiative.

• Reasoning/learning: agents must capable to increase the performance of their acts using

some kind of learning or reasoning techniques.

• Mobility: agents must be able to physically move between different computers. This is

not an essential property, but it can be desired.

• Temporal continuity: agents will be executing processes continuously.

• Truthfulness: agent will always communicate true information.

• Benevolence: agents will not have conflictive objectives and it will perform what it is

asked for.

• Intelligence: From the other properties, it's possible to conclude that an agent would use

some artificial intelligence techniques in order to solve the problems which it would

have.

87

8.1.2. Agent Types

Agents also can be of some types, in this section the most important of these types will be

presented but, it's possible that there will be more agent types that won't be listed here:

• Collaborative: This kind of agents collaborate with other agents in order to achieve one

concrete objective.

• Interface: This type of agents are the ones which join forces with the user in the

achievement of one concrete objective.

• Mobile: This sort of agents are characterized by having mobility capabilities.

• Internet: Typology of agents related to the search and manipulation of information

through Internet.

• Reactive: Agents which react to external stimulation, without having any explicit world

model nor reasoning or planification.

• Hybrid: This last sort of agents are combinations of two or more types of the ones listed

above.

8.1.3. Multi-Agent Systems

After presenting the concepts related to the term agent we are ready to understand the Multi-

Agent theory, so we define a Multi-Agent System as that in one set of agents cooperate,

coordinate and communicate in order to achieve a common objective.

In this subsection, the typical properties and advantages of the Multi-Agent Sustems are

presented.

8.1.3.1. Multi-Agent Systems advantages

The principal advantages of using Multi-Agent systems are the next:

• Modularity: The programming complexity is reduced because the working units are

smaller, this advantage also relies in a more structure programming.

• Eficiency: The distributed programming permits to distribute the tasks among the agents

achieving parallelism.

• Reliability: The fact that a system element breaks its work hasn't mean that the rest of the

elements stop their work also; although it's possible to achieve more security due it's

possible to replicate critical services, and so, obtaining redundancy.

• Flexibility: It's possible to add and delete agents dinamically.

88

8.1.3.2. Multi-Agent Systems management

The agent administration stablishes a logical model for the creation, register, communication,

mobility and destruction of agents. As the FIPA is the standarisation organization of all the

related protocols, architectures, etc. related to the agents, in this project their management

structure will be used. This structure is presented in the figure 34, and has the next components:

• An agent is a computational process that implements the autonomous, communicating

functionality of an application. Agents communicate using an Agent Communication

Language. An Agent is the fundamental actor on an AP which combines one or more

service capabilities, as published in a service description, into a unified and integrated

execution model. An agent must have at least one owner, for example, based on

organisational affiliation or human user ownership, and an agent must support at least

one notion of identity. This notion of identity is the Agent Identifier (AID) that labels an

agent so that it may be distinguished unambiguously within the Agent Universe. An

agent may be registered at a number of transport addresses at which it can be contacted.

• A Directory Facilitator (DF) is an optional component of the AP, but if it is present, it

must be implemented as a DF service. The DF provides yellow pages services to other

agents. Agents may register their services with the DF or query the DF to find out what

services are offered by other agents, including the discovery of agents and their offered

services in ad hoc networks. Multiple DFs may exist within an AP and may be federated.

• An Agent Management System (AMS) is a mandatory component of the AP. The AMS

exerts supervisory control over access to and use of the AP. Only one AMS will exist in a

single AP. The AMS maintains a directory of AIDs which contain transport addresses

(amongst other things) for agents registered with the AP. The AMS offers white pages

services to other agents. Each agent must register with an AMS in order to get a valid

AID.

• An Message Transport Service (MTS) is the default communication method between

agents on different APs.

• An Agent Platform (AP) provides the physical infrastructure in which agents can be

deployed. The AP consists of the machine(s), operating system, agent support software,

FIPA agent management components (DF, AMS and MTS) and agents.

The internal design of an AP is an issue for agent system developers and is not a subject

of standardisation within FIPA. AP’s and the agents which are native to those APs, either

by creation directly within or migration to the AP, may use any proprietary method of

inter-communication.

It should be noted that the concept of an AP does not mean that all agents resident on an

AP have to be co-located on the same host computer. FIPA envisages a variety of

89

different APs from single processes containing lightweight agent threads, to fully

distributed APs built around proprietary or open middleware standards.

FIPA is concerned only with how communication is carried out between agents who are

native to the AP and agents outside the AP. Agents are free to exchange messages

directly by any means that they can support.

• Software describes all non-agent, executable collections of instructions accessible

through an agent. Agents may access software, for example, to add new services, acquire

new communications protocols, acquire new security protocols/algorithms, acquire new

negotiation protocols, access tools which support migration, etc.

Figure 34. Multi-Agent system structure

8.1.3.3. Multi-Agent Systems Messages Structure

As said in section 4.1.1 agents must be capable to communicate between them. To achieve this,

it's prior to have a clear communication protocol. The FIPA, as the organisation in charge of this

subjects has published some standards [04] about the communication between agents, the

contents of the messages send and the codification of them. In this section the most important of

this messages are presented in order to have a clear idea about this communication issues.

A FIPA ACL message contains a set of one or more message parameters. Precisely which

parameters are needed for effective agent communication will vary according to the situation; the

only parameter that is mandatory in all ACL messages is the performative, although it is

expected that most ACL messages will also contain sender, receiver and content

parameters.

If an agent does not recognize or is unable to process one or more of the parameters or parameter

values, it can reply with the appropriate not-understood message.

90

Specific implementations are free to include user-defined message parameters other than the

FIPA ACL message parameters specified in Table 15. The semantics of these user-defined

parameters is not defined by FIPA, and FIPA compliance does not require any particular

interpretation of these parameters. The prefatory string “X-” must be used for the names of these

non-FIPA standard additional parameters.

Some parameters of the message might be omitted when their value can be deduced by the

context of the conversation. However, FIPA does not specify any mechanism to handle such

conditions, therefore those implementations that omit some message parameters are not

guaranteed to interoperate with each other.

The full set of FIPA ACL message parameters is shown in Table 15 without regard to their

specific encodings in an implementation. FIPA-approved encodings and parameter orderings for

ACL messages are given in other specifications. Each ACL message representation specification

contains precise syntax descriptions for ACL message encodings based on XML, text strings and

several other schemes.

Parameter Category of Parameters

performative Type of communicative acts

sender Participant in communication

receiver Participant in communication

reply-to Participant in communication

content Content of message

language Description of Content

encoding Description of Content

ontology Description of Content

protocol Control of conversation

conversation-id Control of conversation

reply-with Control of conversation

in-reply-to Control of conversation

reply-by Control of conversation

Table 15. FIPA ACL Message Parameters

The following terms are used to define the ontology and the abstract syntax of the FIPA ACL

message structure:

• Frame. This is the mandatory name of this entity that must be used to represent each

instance of this class.

• Ontology. This is the name of the ontology, whose domain of discourse includes their

parameters described in the table.

91

• Parameter. This identifies each component within the frame. The type of the parameter

is defined relative to a particular encoding. Encoding specifications for ACL messages

are given in their respective specifications.

• Description. This is a natural language description of the semantics of each parameter.

Notes are included to clarify typical usage.

• Reserved Values. This is a list of FIPA-defined constants associated with each

parameter. This list is typically defined in the specification referenced.

All of the FIPA message parameters share the frame and ontology shown in Table 16.

Frame fipa-acl-message

Ontology fipa-acl

Table 16. FIPA ACL Message Frame and Ontology

- Performative

Parameter Description

performative Denotes the type of the communicative act of the ACL

message

Notes: The performative parameter is a required parameter of all ACL messages.

- Sender

Parameter Description

sender Denotes the identity of the sender of the message,

that is, the name of the agent of the communicative

act.

Notes: The sender parameter will be a parameter of most ACL messages. It is possible

to omit the sender parameter if, for example, the agent sending the ACL message

wishes to remain anonymous. The sender parameter refers to the agent which performs

the communicative act giving rise to this ACL message.

- Receiver

Parameter Description

receiver Denotes the identity of the intended recipients of

the message.

Notes: Ordinarily, the receiver parameter will be a part of every ACL message. It is

92

only permissible to omit the receiver parameter if the message recipient can be

reliably inferred from context, or in special cases such as the embedded ACL message in

proxy and propagate.

The receiver parameter may be a single agent name or a non-empty set of agent

names. The latter corresponds to the situation where the message is multicast.

Pragmatically, the semantics of this multicast is that the sender intends the message for

each recipient of the CA encoded in the message. For example, if an agent performs an

inform act with a set of three agents as receiver, it denotes that the sender intends each

of these agents to come to believe the content of the message.

- Reply To

Parameter Description

reply-to This parameter indicates that subsequent messages in

this conversation thread are to be directed to the

agent named in the reply-to parameter, instead of

to the agent named in the sender parameter.

- Content

Parameter Description

content Denotes the content of the message; equivalently

denotes the object of the action. The meaning of the

content of any ACL message is intended to be

interpreted by the receiver of the message. This is

particularly relevant for instance when referring to

referential expressions, whose interpretation might

be different for the sender and the receiver.

Notes: Most ACL messages require a content expression. Certain ACL message types,

such as cancel, have an implicit content, especially in cases of using the

conversation-id or in-reply-to parameters.

- Language

Parameter Description

language Denotes the language in which the content parameter

is expressed.

Notes: The ACL content parameter is expressed in a formal language. This field may

be omitted if the agent receiving the message can be assumed to know the language of the

content expression.

93

- Encoding

Parameter Description

encoding Denotes the specific encoding of the content

language expression.

Notes: The content expression might be encoded in several ways. The encoding

parameter is optionally used to specify this encoding to the recipient agent. If the

encoding parameter is not present, the encoding will be specified in the message

envelope that encloses the ACL message.

- Ontology

Parameter Description

ontology Denotes the ontology(s) used to give a meaning to

the symbols in the content expression.

Notes: The ontology parameter is used in conjunction with the language parameter

to support the interpretation of the content expression by the receiving agent. In many

situations, the ontology parameter will be commonly understood by the agent

community and so this message parameter may be omitted.

- Protocol

Parameter Description

protocol Denotes the interaction protocol that the sending

agent is employing with this ACL message.

Notes: The protocol parameter defines the interaction protocol in which the ACL

message is generated. This parameter is optional; however, developers are advised that

employing ACL without the framework of an interaction protocol (and thus directly using

the ACL semantics to control the agent’s generation and interpretation of ACL messages)

is an extremely ambitious undertaking.

Any ACL message that contains a non-null value for the protocol parameter is

considered to belong to a conversation and it is required to respect the following rules:

• the initiator of the protocol must assign a non-null value to the

conversation-id parameter,

• all responses to the message, within the scope of the same interaction protocol,

should contain the same value for the conversation-id parameter, and,

• the timeout value in the reply-by parameter must denote the latest time by

94

which the sending agent would like to have received the next message in the

protocol flow (not be confused with the latest time by which the interaction

protocol should terminate).

- Conversation Identifier

Parameter Description

conversation-

id

Introduces an expression (a conversation identifier)

which is used to identify the ongoing sequence of

communicative acts that together form a

conversation.

Notes: An agent may tag ACL messages with a conversation identifier to manage its

communication strategies and activities. Typically this will allow an agent to identify

individual conversations with multiple agents. It will also allow agents to reason across

historical records of conversations.

It is required the usage of globally unique values for the conversation-id

parameter in order to allow the participants to distinguish between several concurrent

conversations. A simple mechanism to ensure uniqueness is the concatenation of the

globally unique identifier of the sender agent to an identifier (for example, a progressive

number) that is unique within the scope of the sender agent itself

- Reply With

Parameter Description

reply-with Introduces an expression that will be used by the

responding agent to identify this message.

Notes: The reply-with parameter is designed to be used to follow a conversation

thread in a situation where multiple dialogues occur simultaneously. For example, if

agent i sends to agent j a message which contains:

reply-with <expr>

Agent j will respond with a message containing:
in-reply-to <expr>

- In Reply To

Parameter Description

in-reply-to Denotes an expression that references an earlier

action to which this message is a reply.

95

- Reply By

Parameter Description

reply-by Denotes a time and/or date expression which

indicates the latest time by which the sending agent

would like to receive a reply.

Notes: The time will be expressed according to the sender’s view of the time on the

sender’s platform. The reply message can be identified in several ways: as the next

sequential message in an interaction protocol, through the use of the reply-with

parameter, through the use of a conversation-id and so forth. The way that the

reply message is identified is determined by the agent implementer.

8.1.3.4. Multi-Agent Systems Communication Protocols

Another important feature of the Multi-Agent Systems are the communication protocols between

agents. With these protocols the agents are capable to perform complex activities. As seen in the

last section there is a parameter in the category control of conversation which is related to the

protocol. This protocol is who defines a set of rules or steps to follow in order to perform a

conversation.

As happens in the other Multi-Agent Systems related themes the FIPA defines a set of

communicative protocols[05], that are described here:

- FIPA Request

The FIPA Request Interaction Protocol (IP) allows one agent to request another to perform some

action. The Participant processes the request and makes a decision whether to accept or refuse

the request. If a refuse decision is made, then “refused” becomes true and the Participant

communicates a refuse. Otherwise, “agreed” becomes true.

If conditions indicate that an explicit agreement is required (that is, “notification necessary” is

true), then the Participant communicates an agree. The agree may be optional depending on

circumstances, for example, if the requested action is very quick and can happen before a time

specified in the reply-by parameter. Once the request has been agreed upon, then the Participant

must communicate either:

• A failure if it fails in its attempt to fill the request,

• An inform-done if it successfully completes the request and only wishes to indicate

that it is done, or,

• An inform-result if it wishes to indicate both that it is done and notify the initiator

of the results.

96

Any interaction using this interaction protocol is identified by a globally unique, non-null

conversation-id parameter, assigned by the Initiator. The agents involved in the interaction must

tag all of its ACL messages with this conversation identifier. This enables each agent to manage

its communication strategies and activities, for example, it allows an agent to identify individual

conversations and to reason across historical records of conversations.

Figure 35. FIPA Request Interaction Protocol

FIPA Query

The Initiator requests the Participant to perform some kind of inform action using one of two

query communicative acts, query-if or query-ref. The query-if communication is

used when the Initiator wants to query whether a particular proposition is true or false and the

query-ref communication is used when the Initiator wants to query for some identified

objects. The Participant processes the query-if or query-ref and makes a decision

whether to accept or refuse the query request. If the Participant makes a refuse decision, then

“refused” becomes true and the Participant communicates a refuse. Otherwise, “agreed” becomes

true.

If conditions indicate that an explicit agreement is required (that is, “notification necessary” is

true), then the Participant communicates an agree. The agree may be optional depending on

circumstances, for example, if the requested action is very quick and can happen before a time

specified in the reply-by parameter. If the Participant fails, then it communicates a failure.

97

In a successful response, the Participant replies with one of two versions of inform:

• The Participant uses an inform-t/f communication in response to a query-if

where the content of the inform-t/f asserts the truth or falsehood of the proposition,

or,

• The Participant returns an inform-result communication in response to a query-

ref and the content of the inform-result contains a referring expression to the

objects for which the query was specified.

Any interaction using this interaction protocol is identified by a globally unique, non-null

conversation-id parameter, assigned by the Initiator. The agents involved in the interaction must

tag all of its ACL messages with this conversation identifier. This enables each agent to manage

its communication strategies and activities, for example, it allows an agent to identify individual

conversations and to reason across historical records of conversations.

Figure 36. FIPA Query Interaction Protocol

FIPA Contract Net

The Initiator solicits m proposals from other agents by issuing a call for proposals (cfp) act ,

which specifies the task, as well any conditions the Initiator is placing upon the execution of the

98

task. Participants receiving the call for proposals are viewed as potential contractors and are able

to generate n responses. Of these, j are proposals to perform the task, specified as propose
acts.

The Participant’s proposal includes the preconditions that the Participant is setting out for the

task, which may be the price, time when the task will be done, etc. Alternatively, the i=n-j

Participants may refuse to propose. Once the deadline passes, the Initiator evaluates the

received j proposals and selects agents to perform the task; one, several or no agents may be

chosen. The l agents of the selected proposal(s) will be sent an accept-proposal act and the

remaining k agents will receive a reject-proposal act. The proposals are binding on the

Participant, so that once the Initiator accepts the proposal, the Participant acquires a commitment

to perform the task. Once the Participant has completed the task, it sends a completion message

to the Initiator in the form of an inform-done or a more explanatory version in the form of an

inform-result. However, if the Participant fails to complete the task, a failure message

is sent.

Note that this IP requires the Initiator to know when it has received all replies. In the case that a

Participant fails to reply with either a propose or a refuse act, the Initiator may potentially

be left waiting indefinitely. To guard against this, the cfp act includes a deadline by which

replies should be received by the Initiator. Proposals received after the deadline are automatically

rejected with the given reason that the proposal was late. The deadline is specified by the

reply-by parameter in the ACL message.

Any interaction using this interaction protocol is identified by a globally unique, non-null

conversation-id parameter, assigned by the Initiator. The agents involved in the

interaction must tag all of its ACL messages with this conversation identifier. This enables each

agent to manage its communication strategies and activities, for example, it allows an agent to

identify individual conversations and to reason across historical records of conversations. In the

case of 1:N interaction protocols or sub-protocols the Initiator is free to decide if the same

conversation-id parameter should be used or a new one should be issued. Additionally,

the messages may specify other interaction-related information such as a timeout in the reply-
by parameter that denotes the latest time by which the sending agent would like to have received

the next message in the protocol flow.

99

Figure 37. FIPA Contract Net Interaction Protocol

FIPA Iterated Contract Net

As with the FIPA Contract Net IP, the Initiator issues m initial call for proposals with the cfp
act. Of the n Participants that respond, k are propose messages from Participants that are

willing and able to do the task under the proposed conditions and the remaining j are from

Participants that refuse.
Of the k proposals, the Initiator may decide this is the final iteration and accept p of the bids (0 ≤

p ≤ k), and reject the others. Alternatively the Initiator may decide to iterate the process by

issuing a revised cfp to l of the Participants and rejecting the remaining k-l Participants. The

intent is that the Initiator seeks to get better bids from the Participants by modifying the call and

requesting new (equivalently, revised) bids. The process terminates when the Initiator refuses all

proposals and does not issue a new cfp, the Initiator accepts one or more of the bids or the

Participants all refuse to bid.

Any interaction using this interaction protocol is identified by a globally unique, non-null

conversation-id parameter, assigned by the Initiator. The agents involved in the

interaction must tag all of its ACL messages with this conversation identifier. This enables each

100

agent to manage its communication strategies and activities, for example, it allows an agent to

identify individual conversations and to reason across historical records of conversations.

In the case of 1:N interaction protocols or sub-protocols the Initiator is free to decide if the same

conversation-id parameter should be used or a new one should be issued. Additionally,

the messages may specify other interaction-related information such as a timeout in the reply-

by parameter that denotes the latest time by which the sending agent would like to have received

the next message in the protocol flow.

Figure 38. FIPA Iterated Contract Net Interaction Protocol

FIPA Brokering

The FIPA Brokering Interaction Protocol (IP) is a macro IP since the proxy communicative act

for brokerage embeds a communicative act as its argument and so the IP for the embedded

communicative act is also embedded in this IP. This embedded IP guides some parts of the

remainder of the interaction, thus parts of this protocol are written very generically.

The Initiator of the brokering interaction begins the interaction with a proxy message which

contains the following: a referential expression denoting the target agents to which the broker

should forward the communicative act, the communicative act to forward and a set of proxy

conditions such as the maximum number of agents to which the message should be forwarded.

The Broker processes the request and makes a decision whether to agree to or refuse the request

and communicates either an agree or a refuse communicative act accordingly.

Communication of a refuse terminates the interaction.

Once the Broker has agreed to be a proxy, it then locates agents per the description from the

101

proxy message. If no such agents can be found, the Broker returns a failure-no-match

and the interaction terminates. Otherwise, the Broker may modify the list of matching agents

based on the proxy-condition parameter. It then begins m interactions with the resulting

list of n agents with each interaction in its own separate sub-protocol. At this point, the Broker

should record some of the ACL parameters, for example, conversation-id, reply-
with and sender, of the received proxy message to return in the r replies to the Initiator.

Note that the nature of the sub-protocol and the nature of the replies are driven by the interaction

protocols specified in the communicative act from the proxy message. As the sub-protocol

progresses, the Broker forwards the responses that it receives from the sub-protocol to the

Initiator. These messages are defined as the reply-message-sub-protocol

communications, and may be either successful replies as defined by the sub-protocol or

failure. If the initial proxy was an inform, there may in fact be no replies from the sub-

protocol (and in fact means that the interaction is identical to a recruited inform). When the sub-

protocol completes, the Broker forwards the final reply-message from the sub-protocol and

the brokering IP terminates. However, there can be other failures that are not explicitly returned

from the sub-protocol, for example, the agent that is executing the sub-protocol has failed. If the

Broker detects such problems, it returns a failure-brokering, which terminates the IP.

A second issue to address occurs because multiple agents may match and therefore multiple sub-

protocols (m of them) may be initiated by the Broker within the brokering IP. In this case, the

Broker may collect the n received responses and combine them into a single reply-

message-sub-protocol, or may forward the reply-message-sub-protocol

messages from the separate sub-protocols individually (1 ≤ p ≤ n.). This is complicated by

situations such as one agent responding with a failure while a second agent returns a

reply-message, or the situation where results are inconsistent. The Broker must determine

whether to resolve such situations internally or forward the responses to the Initiator. In doing

this, the Broker must also be careful to avoid disruptive acts such as directly forwarding a

failure from a sub-protocol, which would have the inadvertent effect of ending the brokering

IP.

Any interaction using this interaction protocol is identified by a globally unique, non-null

conversation-id parameter, assigned by the Initiator. The agents involved in the

interaction must tag all of its ACL messages with this conversation identifier. This enables each

agent to manage its communication strategies and activities, for example, it allows an agent to

identify individual conversations and to reason across historical records of conversations.

In the case of 1:N interaction protocols or sub-protocols the Initiator is free to decide if the same

conversation-id parameter should be used or a new one should be issued. Additionally,

the messages may specify other interaction-related information such as a timeout in the reply-
by parameter that denotes the latest time by which the sending agent would like to have received

102

the next message in the protocol flow.

Figure 39. FIPA Brokering Interaction Protocol

FIPA Recruiting

The FIPA Recruiting Interaction Protocol (IP) is a macro IP since the proxy communicative

actfor recruiting embeds a communicative act as its argument and so the IP for the embedded

communicative act is also embedded in this IP. This embedded IP guides some parts of the

remainder of the interaction, thus parts of this protocol are written very generically.

The Initiator of the recruiting interaction begins the interaction with a proxy message which

contains the following: a referential expression denoting the target agents to which the recruiter

should forward the communicative act, the communicative act to forward and a set of proxy

conditions such as the maximum number of agents to be forwarded. The Recruiter processes the

request and makes a decision whether to agree to or refuse the request, and communicates either

an agree or a refuse communicative act accordingly. Communication of a refuse

terminates the interaction.

Once the Recruiter has agreed to be a proxy, it then locates agents per the description from the

proxy message. If no such agents can be found, the Recruiter returns a failure-no-match

and the interaction terminates. Otherwise, the Recruiter may modify the list of matching agents

based on the proxy-condition parameter. It then begins m interactions with the resulting

list of n agents with each interaction in its own separate sub-protocol. The initiation of the sub-

protocol should be done with care, using the ACL parameters to correlate the responses to the

103

request. If the Recruiter has been given a message containing a separate designated-

receiver parameter from the interaction Initiator, it needs to start each sub-protocol with a

reply-to parameter containing the Designated Receiver and the conversation-id of the

original conversation. If the Recruiter instead is to indicate that the Initiator should receive the

replies, then the reply-to parameter should designate the Initiator and the conversation-

id of the recruiting conversation. Other ACL parameters may also need to be propagated.

Note that the nature of the sub-protocol and the nature of the replies are driven by the interaction

protocols specified in the communicative act from the proxy message. As the sub-protocol

progresses, it forwards its responses back either to the Designated Receiver or to the Initiator,

depending on the value of the reply-to parameter in the proxy message. These messages

are defined as reply-message-sub-protocol communications and may be either

successful replies as defined by the sub-protocol or failure. If the initial proxy was an

inform, there may in fact be no replies from the sub-protocol (and in fact means that the

interaction is identical to a brokered inform). When the sub-protocol completes, the Recruiter

forwards the final reply-message-sub-protocol from the sub-protocol and the

recruiting IP terminates.

A second issue to address occurs because multiple agents may match and therefore multiple sub-

protocols may be initiated by the Recruiter within the recruiting IP. In this case, the sub-

protocols may be communicating multiple reply-message-sub-protocol

communications from the different agents involved in the IP (for a total of m responses). This is

complicated by such situations as one sub-protocol responding with a failure while a second

sub-protocol returns a reply-message-sub-protocol, or the situation where results are

inconsistent. The agent that receives the messages must determine how to detect and resolve such

situations internally.

Any interaction using this interaction protocol is identified by a globally unique, non-null

conversation-id parameter, assigned by the Initiator. The agents involved in the

interaction must tag all of its ACL messages with this conversation identifier. This enables each

agent to manage its communication strategies and activities, for example, it allows an agent to

identify individual conversations and to reason across historical records of conversations.

In the case of 1:N interaction protocols or sub-protocols the Initiator is free to decide if the same

conversation-id parameter should be used or a new one should be issued. Additionally,

the messages may specify other interaction-related information such as a timeout in the reply-

by parameter that denotes the latest time by which the sending agent would like to have received

the next message in the protocol flow.

104

Figure 40. FIPA Recruiting Interaction Protocol

FIPA Subscribe

The Initiator begins the interaction with a subscribe message containing the reference of the

objects in which they are interested. The Participant processes the subscribe message and

makes a decision whether to accept or refuse the query request. If the Participant makes a refuse

decision, then “refused” becomes true and the Participant communicates a refuse. Otherwise,

”agreed” becomes true.

If conditions indicate that an explicit agreement is required (that is, “notification necessary” is

true), then the Participant communicates an agree. The agree may be optional depending on

circumstances, for example, if the requested action is very quick and can happen before a time

specified in the reply-by parameter.

In a successful response, the Participant replies with an inform-result communication with

the content being a referring expression to the subscribed objects. The Participant continues to

send inform-result messages as the objects denoted by the referring expression change. If

at some point after the Participant agrees, it experiences a failure, then it communicates this with

a failure message, which also terminates the interaction. Otherwise, the interaction may be

terminated by the Initiator using the cancel meta-protocol.

Any interaction using this interaction protocol is identified by a globally unique, non-null

conversation-id parameter, assigned by the Initiator. The agents involved in the

interaction must tag all of its ACL messages with this conversation identifier. This enables each

agent to manage its communication strategies and activities, for example, it allows an agent to

identify individual conversations and to reason across historical records of conversations.

105

Additionally, because it may be important to preserve the sequence of the inform-result

messages, it is important that the message transport used for this IP preserve the ordering of

messages.

Figure 41. FIPA Subscribe Interaction Protocol

FIPA Propose

The Initiator sends a propose message to the Participant indicating that it will perform some

action if the Participant agrees. The Participant responds by either accepting or rejecting the

proposal, communicating this with the accept-proposal or reject-proposal

communicative act, accordingly. Completion of this IP with an accept-proposal act would

typically be followed by the performance by the Initiator of the proposed action and then the

return of a status response.

Any interaction using this interaction protocol is identified by a globally unique, non-null

conversation-id parameter, assigned by the Initiator. The agents involved in the

interaction must tag all of its ACL messages with this conversation identifier. This enables each

agent to manage its communication strategies and activities, for example, it allows an agent to

identify individual conversations and to reason across historical records of conversations.

Figure 42. FIPA Propose Interaction Protocol

106

FIPA Request When

The initiator uses the request-when action to request that the participant do some action

once a given precondition becomes true. If the requested agent understands the request and does

not initially refuse, it will agree and wait until the precondition occurs. Then, it will attempt to

perform the action and notify the requester accordingly.

If after the initial agreement the participant is no longer able to perform the action, then it will

send a failure action to the initiator. Once the action has completed and the failure,
inform-done, or inform-result has been sent, the conversation ends.

Any interaction using this interaction protocol is identified by a globally unique, non-null

conversation-id parameter, assigned by the Initiator. The agents involved in the

interaction must tag all of its ACL messages with this conversation identifier. This enables each

agent to manage its communication strategies and activities, for example, it allows an agent to

identify individual conversations and to reason across historical records of conversations.

Figure 43. FIPA Request When Interaction Protocol

107

8.2. Annex 2. Developing Multi-Agent Systems: JADE

JADE [06] is a software development framework aimed at developing multi-agent systems and

applications conforming to FIPA standards for intelligent agents. It includes two main products:

a FIPA-compliant agent platform and a package to develop Java agents. JADE has been fully

coded in Java and an agent programmer, in order to exploit the framework, should code his/her

agents in Java.

As a middleware that facilitates the development of multi-agent systems, it includes:

• A runtime environment where JADE agents can “live” and that must be active on a given

host before one or more agents can be executed on that host.

• A library of classes that programmers have to/can use (directly or by specializing them)

to develop their agents.

• A suite of graphical tools that allows administrating and monitoring the activity of

running agents.

8.2.1. JADE Packages

JADE is composed of the following main packages:

jade.core implements the kernel of the system. It includes the Agent class that must be extended

by application programmers; besides, a Behaviour class hierarchy is contained in

jade.core.behaviours sub-package. Behaviours implement the tasks, or intentions, of an agent.

They are logical activity units that can be composed in various ways to achieve complex

execution patterns and that can be concurrently executed. Application programmers define agent

operations writing behaviours and agent execution paths interconnecting them.

The jade.lang.acl sub-package is provided to process Agent Communication Language

according to FIPA standard specifications. The jade.content package contains a set of classes to

support user-defined ontologies and content-languages. A separate tutorial describes how to use

the JADE support to message content. In particular jade.content.lang.sl contains the SL codec,

both the parser and the encoder.

The jade.domain package contains all those Java classes that represent the Agent Management

entities defined by the FIPA standard, in particular the AMS and DF agents, that provide life-

cycle, white and yellow page services. The subpackage

jade.domain.FIPAAgentManagement contains the FIPA-Agent-Management Ontology and all

the classes representing its concepts. The subpackage jade.domain.JADE.AgentManagement

108

contains, instead, the JADE extensions for Agent-Management (e.g. for sniffing messages,

controlling the life-cycle of agents, …), including the Ontology and all the classes representing

its concepts. The subpackage jade.domain.introspection contains the concepts used for the

domain of discourse between the JADE tools (e.g. the Sniffer and the Introspector) and the JADE

kernel. The subpackage jade.domain.mobility contains all concepts used to communicate about

mobility.

The jade.gui package contains a set of generic classes useful to create GUIs to display and edit

Agent-Identifiers, Agent Descriptions, ACLMessages, …

The jade.mtp package contains a Java interface that every Message Transport Protocol should

implement in order to be readily integrated with the JADE framework, and the implementation of

a set of these protocols.

jade.proto is the package that contains classes to model standard interaction protocols (i.e. fipa-

request, fipa-query, fipa-contract-net, fipa-subscribe and soon others defined by FIPA), as well as

classes to help application programmers to create protocols of their own.

The FIPA package contains the IDL module defined by FIPA for IIOP-based message transport.

Finally, the jade.wrapper package provides wrappers of the JADE higher-level functionalities

that allows the usage of JADE as a library, where external Java applications launch JADE agents

and agent containers.

JADE comes bundled with some tools that simplify platform administration and application

development. Each tool is contained in a separate sub-package of jade.tools. Currently, the

following tools are available:

➢ Remote Management Agent, RMA for short, acting as a graphical console for platform

management and control. A first instance of an RMA can be started with a command line

option ("-gui") , but then more than one GUI can be activated. JADE maintains coherence

among multiple RMAs by simply multicasting events to all of them. Moreover, the RMA

console is able to start other JADE tools.

➢ The Dummy Agent is a monitoring and debugging tool, made of a graphical user interface

and an underlying JADE agent. Using the GUI it is possible to compose ACL messages

and send them to other agents; it is also possible to display the list of all the ACL

messages sent or received, completed with timestamp information in order to allow agent

conversation recording and rehearsal.

➢ The Sniffer is an agent that can intercept ACL messages while they are in flight, and

displays them graphically using a notation similar to UML sequence diagrams. It is

useful for debugging your agent societies by observing how they exchange ACL

messages.

➢ The Introspector is an agent that allows to monitor the life cycle of an agent, its

109

exchanged ACL messages and the behaviours in execution.

➢ The DF GUI is a complete graphical user interface that is used by the default Directory

Facilitator (DF) of JADE and that can also be used by every other DF that the user might

need. In such a way, the user might create a complex network of domains and sub-

domains of yellow pages. This GUI allows in a simple and intuitive way to control the

knowledge base of a DF, to federate a DF with other DF's, and to remotely control

(register/deregister/modify/search) the knowledge base of the parent DF's and also the

children DF's (implementing the network of domains and sub-domains).

➢ The LogManagerAgent is an agent that allows setting at runtime logging information,

such as the log level, for both JADE and application specific classes that use Java

Logging.

➢ The SocketProxyAgent is a simple agent, acting as a bidirectional gateway between a

JADE platform and an ordinary TCP/IP connection. ACL messages, travelling over

JADE proprietary transport service, are converted to simple ASCII strings and sent over a

socket connection. Viceversa, ACL messages can be tunnelled via this TCP/IP

connection into the JADE platform. This agent is useful, e.g. to handle network firewalls

or to provide platform interactions with Java applets within a web browser.

8.2.2. The Agent Platform

The standard model of an agent platform, as defined by FIPA, is represented in the following

figure.

Figure 44. Reference architecture of a FIPA Agent Platform

The Agent Management System (AMS) is the agent who exerts supervisory control over access

to and use of the Agent Platform. Only one AMS will exist in a single platform. The AMS

provides white-page and life-cycle service, maintaining a directory of agent identifiers (AID) and

agent state. Each agent must register with an AMS in order to get a valid AID.

The Directory Facilitator (DF) is the agent who provides the default yellow page service in the

platform.

110

The Message Transport System, also called Agent Communication Channel (ACC), is the

software component controlling all the exchange of messages within the platform, including

messages to/from remote platforms.

JADE fully complies with this reference architecture and when a JADE platform is launched, the

AMS and DF are immediately created and the ACC module is set to allow message

communication. The agent platform can be split on several hosts. Only one Java application, and

therefore only one Java Virtual Machine (JVM), is executed on each host. Each JVM is a basic

container of agents that provides a complete run time environment for agent execution and

allows several agents to concurrently execute on the same host. The main-container, or front-end,

is the agent container where the AMS and DF lives and where the RMI registry, that is used

internally by JADE, is created. The other agent containers, instead, connect to the main container

and provide a complete run-time environment for the execution of any set of JADE agents.

Figure 45. JADE Agent Platform distributed over several containers

According to the FIPA specifications, DF and AMS agents communicate by using the FIPA-SL0

content language, the fipa-agent-management ontology, and the fipa-request interaction protocol.

JADE provides compliant implementations for all thesecomponents:

➔ the SL-0 content language is implemented by the class jade.content.lang.sl.SLCodec.

Automatic capability of using this language can be added to any agent by using the

method getContentManager().registerLanguage(new SLCodec(0));

➔ concepts of the ontology (apart from Agent Identifier, implemented by jade.core.AID)

are implemented by classes in the jade.domain.FIPAAgentManagement package.The

FIPAManagementOntology class defines the vocabulary with all the constant symbols of

111

the ontology. Automatic capability of using this ontology can be added to any agent by

using the following code:

getContentManager().registerOntology(FIPAManagementOntology.getInstance());

➔ finally, the fipa-request interaction protocol is implemented as ready-to-use behaviours in

the package jade.proto.

Every class implementing a concept of the fipa-agent-management ontology is a simple

collection of attributes, with public methods to read and write them, according to the frame based

model that represents FIPA fipa-agent-management ontology concepts. The following

convention has been used. For each attribute of the class, named attrName and of type attrType,

two cases are possible:

1. The attribute type is a single value; then it can be read with attrType getAttrName() and

written with void setAttrName(attrType a), where every call to setAttrName() overwrites

any previous value of the attribute.

2. The attribute type is a set or a sequence of values; then there is an void

addAttrName(attrType a) method to insert a new value and a void clearAllAttrName()

method to remove all the values (the list becomes empty). Reading is performed by a

Iterator getAllAttrName() method that returns an Iterator object that allows the

programmer to walk through the List and cast its elements to the appropriate type.

8.2.3. Basic concepts of the ontology

The package jade.content.onto.basic includes a set of classes that are commonly part of every

ontology, such as Action, TrueProposition, Result, , …

Notice that the Action class should be used to represent actions. It has a couple of methods to

set/get the AID of the actor (i.e. the agent who should perform the action) and the action itself

(e.g. Register/Deregister/Modify).

8.2.4. Simplified API to access DF and AMS services

JADE features described so far allow complete interactions between FIPA system agents and

user defined agents, simply by sending and receiving messages as defined by the standard.

However, because those interactions have been fully standardized and because they are very

common, the following classes allow to successfully accomplish this task with a simplified

interface.

Two methods are implemented by the class Agent to get the AID of the default DF and AMS of

the platform: getDefaultDF() and getAMS().

112

8.2.5. DFService

jade.domain.DFService implements a set of static methods to communicate with a standard FIPA

DF service (i.e. a yellow pages agent).

It includes methods to request register, deregister, modify and search actions from a DF. Each of

this method has a version with all the needed parameters, and one with a subset of them where

the omitted parameters are given default values.

Notice that these methods block every agent activity until the action is successfully executed or a

jade.domain.FIPAException exception is thrown (e.g. because a failure message has been

received by the DF), that is, until the end of the conversation.

In some cases, instead, it is more convenient to execute these tasks in a non-blocking way. In

these cases a jade.proto.AchieveREInitiator or jade.proto.SubscriptionInitiator should be used in

conjunction with the createRequestMessage(),

createSubscriptionMessage(), decodeDone(), decodeResult() and

decodeNotification() methods that facilitate the preparation and decoding of messages

to be sent/received to/from the DF. The following piece of code exemplifies that in the case of an

agent subscribing to the default DF.

DFAgentDescription template = // fill the template

AID df = getDefaultDF();

ACLMessage subs = DFService.createSubscriptionMessage(this, df, template, null))

Behaviour b = new SubscriptionInitiator(this, subs) {

 protected void handleInform(ACLMessage inform) {

 try {

 DFAgentDescription[] dfds =

 DFService.decodeNotification(inform.getContent());

 // do something

 }

 catch (FIPAException fe) {

 fe.printStackTrace();

 }

 }

};

addBehaviour(b);

8.2.6. AMSService

This class is dual of DFService class, accessing services provided by a standard FIPA AMS

agent and its interface completely corresponds the the DFService one.

Notice that JADE calls automatically the register and deregister methods with the default AMS

respectively before calling setup() method and just after takeDown() method returns; so

113

there is no need for a normal programmer to call them.

However, under certain circumstances, a programmer might need to call its methods. To give

some examples: when an agent wishes to register with the AMS of a remote agent platform, or

when an agent wishes to modify its description by adding a private address to the set of its

addresses, …

114

9. References

[01] Knowledge-Based HomeCare eServices for an Ageing Europe - Annex I - “Description

of Work”. 76 pag. 04/11/2005

[02] Fabio Campana, Roberta Annicchiarico, David Riaño et al. Knowledge-Based

HomeCare eServices for an Ageing Europe – D01 – The K4CARE Model. 182 pag. 2006,

http://www.k4care.net.

[03] David Isern, Antonio Moreno, Gianfranco Pedone, Lazslo Varga - Agent-based

provision of Home Care Services. Artificial Intelligence in Medicine 07-11 July of 2007 in

Amsterdam, http://www.aimedicine.eu/AIME07/.

[04] David Riaño – The SDA Model v1.0: a Set Theory approach, 50 pag. DEIM Report,

2007

[05] David Isern – Avaluació d'entorns de desenvolupament de SMAs, 1998-99. Projecte de

Final de Carrera, ET. Inf. Sistemes. ETSE, Universitat Rovira i Virgili.

[06] FIPA ACL Message Structure - http://www.fipa.org/specs/fipa00061/SC00061G.html

[07] FIPA Protocols Specification - http://www.fipa.org/repository/standardspecs.html

[08] JADE Programmer's Guide - http://jade.tilab.com/doc/programmersguide.pdf

[09] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides - Design Patterns:

Elements of Reusable Object-Oriented Software, 349 pag. Ed. Addison Wesley, 2003

[10] Eclipse IDE - http://www.eclipse.org

[11] Protege - http://protege.stanford.edu

[12] Google - http://www.google.com

[13] Wikipedia - http://en.wikipedia.org

[14] JUnit - http://www.junit.org

[15] Maven - http://maven.apache.org

[16] Subversion - http://subversion.tigris.org/

[17] Tony Sintes - Learn custom events with a concrete example

(http://www.javaworld.com/javaworld/javaqa/2002-03/01-qa-0315-happyevent.html)

[18] Tony Sintes - How do you create a custom event?

(http://www.javaworld.com/javaqa/2000-08/01-qa-0804-events.html)

[19] Asbru Description - http://www.openclinical.org/gmm_asbru.html

115

http://www.openclinical.org/gmm_asbru.html
http://www.javaworld.com/javaqa/2000-08/01-qa-0804-events.html
http://www.javaworld.com/javaworld/javaqa/2002-03/01-qa-0315-happyevent.html
http://subversion.tigris.org/
http://maven.apache.org/
http://www.junit.org/index.htm
http://en.wikipedia.org/
http://www.google.com/
http://protege.stanford.edu/
http://www.eclipse.org/
http://jade.tilab.com/doc/programmersguide.pdf
http://www.fipa.org/repository/standardspecs.html
http://www.fipa.org/specs/fipa00061/SC00061G.html
http://www.aimedicine.eu/AIME07/
http://www.k4care.net/

[20] PROforma Description - http://www.acl.icnet.uk/lab/proforma.html

[21] D. Isern and A. Moreno. Computer-based management of clinical guidelines: A Survey.

In Proc. of Fourth Workshop on Agents applied in Healthcare on ECAI'06. Riva del Garda

(Italy), August 28 - September 1, 2006

116

http://www.cs.dartmouth.edu/~dfk/trips/2005ItalyRiva/2005ItalyRiva.html
http://ecai2006.itc.it/cda/aree/index.php
http://www.etse.urv.es/recerca/rgai/toni/Workshops/ECAI2006.html
http://www.acl.icnet.uk/lab/proforma.html

	1.Introduction
	2.Project Context Description. The K4CARE Project
	2.1. What is K4CARE
	2.2. The K4CARE Model
	2.2.1. The Model
	2.2.2. Actors
	2.2.3. Professional Actions and Liabilities
	2.3. Services and Procedures
	2.3.1. Information Documents
	2.4. K4CARE Partners
	2.5. URV work in the K4CARE

	3.The SDA* Model
	3.1. Introduction
	3.2. The SDA* Model: Syntax and Semantics
	3.2.1. Formal description
	3.2.1.1. The Universe of Discourse
	3.2.1.2. Elements
	3.2.1.3. Connectors
	3.2.1.4. Sequences and cycles
	3.2.1.5. Non-determinism
	3.2.1.6. Time
	3.2.1.7. Parallelism

	3.3. Construction and execution of health procedures with the SDA* Model
	3.3.1. Abstract data type SDA* procedure
	3.3.2. Textual representation of the SDA* procedures
	3.3.3. Execution of SDA* procedures
	3.3.4. Examples
	3.3.4.1. Representing partial knowledge
	3.3.4.2. CSI’s Hypertension Diagnosis and Treatment
	3.3.4.3. Comprehensive Assessment K4CARE Procedure
	3.3.4.4. The use of Antidepressant Medication in the Elderly
	3.3.4.5. Management of Depression with Cognitive Impairment
	3.3.4.6. Management of Depression with Dementia
	3.3.4.7. Suicide: Risk of Assessment and Management

	4.K4CARE Multi-Agent System
	4.2. K4CARE MAS Architecture
	4.3. SDA* Agent-based execution
	4.3.1. SDA* Agent
	4.3.2. SDA*'s actions flow
	4.3.3. IIP execution message flow
	4.3.4. Procedure execution message flow

	4.4. K4CARE SDA* Ontology
	4.4.1. Concepts
	4.4.2. Actions

	5.Design and implementation of the SDA* Agent
	5.1. Code Structure
	5.2. SDA* graph data structure
	5.2.1. SDA Subpackage
	5.2.2. Connector Subpackage
	5.2.3. I2P Class

	5.3. SDA* executor
	5.3.1. Event-based Orientation
	5.3.2.Finish conditions
	5.3.3. SDA* Executor design

	5.4. SDA* Agent
	5.5. SDA* Ontology
	5.5.1. Defining and creating the Ontology
	5.5.2. The generated code

	5.6. Controlling problematic situations
	5.7. Developing in a distributed team

	6.Testing
	7.Conclusions and future work
	8.Annex
	8.1. Annex 1. What is a Multi-Agent System?
	8.1.1. Agent Properties
	8.1.2. Agent Types
	8.1.3. Multi-Agent Systems
	8.1.3.1. Multi-Agent Systems advantages
	8.1.3.2. Multi-Agent Systems management
	8.1.3.3. Multi-Agent Systems Messages Structure
	8.1.3.4. Multi-Agent Systems Communication Protocols

	8.2. Annex 2. Developing Multi-Agent Systems: JADE
	8.2.1. JADE Packages
	8.2.2. The Agent Platform
	8.2.3. Basic concepts of the ontology
	8.2.4. Simplified API to access DF and AMS services
	8.2.5. DFService
	8.2.6. AMSService

	9.References

