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1 Introduction 

This document is the first deliverable of the Task 2 of the DAMASK project. Task T2 is focused on the 
goal O2 of the project: design of a clustering method based on ontologies. The inputs of this task will be (1) 
a data matrix object × attribute (e.g. touristic destinations) and (2) a domain ontology. Based on those inputs, 
a method will be designed for automatically building clusters with the help of the contextual knowledge pro-
vided by the domain ontology. Moreover, an automatic interpretation process of the clusters will also be 
studied, in order to obtain a semantic description of the clusters that can help the user in his/her decision 
making tasks. 

This deliverable is the output of the subtask (T2-1): State of the art about the techniques for automatic 
clustering of data and about the existing methods for similarity measurement for semantic concepts. The 
complete schedule of the tasks is given in Figure 1.  

This document is divided into three main parts: 

1. A study of the traditional clustering methods, which do not use contextual semantic knowledge to 
guide the process of classification. Advantages and drawbacks have been reported. 

2. A study of the similarity measures that are being used for comparing a pair of concepts from a do-
main-specific ontology or general-purpose semantic structures like WordNet.  

3. Evaluation of the applicability of those semantic similarity measures into the clustering algorithms. 

  

 
Figure 1: Tasks of DAMASK 
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2 Survey of clustering algorithms 

The goal of this section is to provide a review of clustering techniques. Clustering is generally seen as the 
task of finding groups of similar individuals based on information found in data, which means that the data 
individuals in the same group are more similar to each other than to individuals in other groups. So, cluster-
ing algorithms partition data into a certain number of clusters (groups, subsets, or categories) (Xu and 
Wunsch, 2005). Clustering algorithms try to minimize the dispersion inside each group. Thus, the goal is to 
build clusters with a great similarity (homogeneity) within the members that form the group and a great dis-
tance between members of different groups.  

Clustering methods are unsupervised techniques that aim to discover the structure of a data set. This ap-
proach must be distinguished from Classification or supervised methods, which learn how to assign instances 
to predefined classes or categories. In the latter model, the classifier is trained using data from the different 
classes. So, a (training or learning) set of labeled objects is used to build a classifier for the categorization of 
future observations. A third typology is denoted as semi-supervised clustering. These algorithms try to im-
prove the results of the unsupervised methods adding some extra knowledge of the experts. Those methods 
explore different approaches to guide the clustering process, like the introduction of different types of con-
straints (Basu et al., 2008; H. Huang et al., 2008) (e.g. cluster size balancing, pairwise constraints for object’s 
relationships) or the use of domain-dependent rules (Gibert et al., 2010; Valls et al., 2009). It has been seen 
that the use of this additional background knowledge helps to improve the coherence of the obtained results. 

For the purposes of this project, we will work with unsupervised clustering methods. So, the rest of this 
document is focused on this type of methods. 

Clustering is a masterpiece in many data mining methodologies, because it helps to discover new 
knowledge from unstructured data sets. A definition of data mining and knowledge discovery, made in 
(Fayyad et al., 1996), is: “The non-trivial process of identifying valid, novel, potentially useful and ultimately 
understandable patterns in data”. 

In fact, clustering has been used in many data mining problems, such as to build a structure of a complex 
data set, to reveal associations between objects or to make generalizations. Some exemplary problems illus-
trating the role of clustering in these tasks is given in (Mirkin, 2005). Clustering methods have been practi-
cally applied in a wide variety of fields, ranging from engineering (e.g. pattern recognition, mechanical engi-
neering, electrical engineering), computer sciences (e.g. web mining, spatial database analysis, image seg-
mentation, privacy), life and medical sciences (e.g. genetics, biology, microbiology, paleontology, psychia-
try, pathology), to earth sciences (e.g. geography. geology, remote sensing), social sciences (e.g. sociology, 
psychology, archeology, education), and economics (e.g. marketing, business)). Recently, new fields of ap-
plication have increased the research on this topic, specially due to the developments in information retrieval 
and text mining, spatial database applications (Fan, 2009; Han et al., 2001; Monreale et al., 2010), Web ap-
plications (Cadez et al., 2003; Carpineto et al., 2009; Kimura et al., 2010) and DNA analysis in computation-
al biology (J. Y. Chen and Lonardi, 2009; Romdhane et al., 2010; Tirozzi et al., 2007), among others. 
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2.1 Notation 

Individuals: are the objects that are being evaluated and grouped in the clustering. They can also be 
called instances, cases, patterns, tuples, …. Individuals will be referenced as I = {1,…,N}. 

Features: are the properties that describe the individuals. Each feature is treated as an independent varia-
ble (i.e. attribute or dimension) in the space of representation of the individuals. We will consider K features, 
denoted as X1, …, Xk. Different types of features can be distinguished. They have been characterized in the 
document (Batet et al., 2010).  

Data Matrix: is a matrix that contains the values of all the features for a set of N objects. This matrix has 
a dimension of (N,K) and is defined as follows: 
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Notice that each row corresponds to an individual, represented as a multidimensional vector 

( )iNii xxxX ,...,, 21= where xik is the value of the feature k taken by object i.  

 

2.2 Types of Unsupervised Clustering Algorithms 

Clustering algorithms can be divided in function of the properties of the generated clusters into hierar-
chical clustering and partitional clustering. 

• Partitional clustering is the division of the set of data objects into non-overlapping subsets 
such that each data object is exactly in one subset.  So, it attempts to find a C-partition of I where C is a 
pre-specified number indicating the amount of desired clusters (C≤N).  

• Hierarchical clustering attempts to construct a tree-like nested structure partition of I. These 
methods create a hierarchical decomposition of the given data set, producing a binary tree known as a 
dendogram. The root node of the dendrogram represents the whole data set X and each leaf node is a 
single object i; the rest of intermediate nodes correspond to clusters that group similar objects. The tree is 
a taxonomy with is-a relations. Overlapping between clusters is not admitted. The clusters in the den-
dogram can have an  associated numerical value. This value indicates the degree of proximity between 
the objects, which is related with the intra-cluster cohesion. 
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Figure 1: Dendogram. 

 

2.2.1 Partitional clustering 

Partitional clustering assigns a set of N objects into C clusters with no hierarchical structure where each 
group must contain at least one object and each object must belong to one group. It is important to note that 
in this clustering approach, the number of clusters is defined in advance. It is usually done on the basis of 
some specific criterion, so one of the important factors in partitional clustering is the criterion function 
(Hansen and Jaumard, 1997).  

Partitioning methods are divided into two major subcategories: 
• The centroid algorithms represent each cluster by using the centre of gravity of the objects, with a 

artificially created prototype. This approach has the problem of defining a method for generating this 
prototype, which is usually based on calculating some sort of average of the values of the objects. 
The definition of an averaging function hampers the application to non-numerical variables. Differ-
ent approaches have been defined using dissimilarity measures for categorical variables, such as 
Huang (Z. Huang, 1998) and Gupta et al. (Gupata et al., 1999). If an ordinal relation can be defined 
on the categorical values, then specific averaging operators are defined (Godo and Torra, 2000). 
Other solution consists in using median operators to build the prototype. (Beliakov et al., 2010; 
Domingo-Ferrer and Torra, 2003). 

• The medoid algorithms represent each cluster by means of the object of the cluster whose average 
dissimilarity to all the objects in the cluster is minimal i.e. it is a most centrally located point in the 
cluster. This approach avoids the problem of calculating an artificial prototype. It only requires the 
definition of a distance between objects.  

 
The most important algorithm for partitional clustering is called k-means. It is present in the major statis-

tical software packages, as it will be seen in section 3. Several variations of this algorithm can be found. 
They are reviewed in this section. 

 
• k-means: it is the most well-known centroid algorithm (Forgy, 1965; MacQueen, 1967). K-

means attempts to find a number k of clusters fixed a priori, which are represented by its centroid. K-
means uses the squared error criterion (MacQueen, 1967) as criterion function.   
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The steps of this clustering algorithm are the following: 
A priori:  Determine the number K of partitions. 
Step 1) Generate a k-partition randomly or based on some prior knowledge and calculate the cluster 
prototype matrix (cluster centroids). 
Step 2) Assign each object Xi to the nearest cluster (i.e. the cluster prototype or centroid). 
Step 3) Recalculate the centroid of each cluster based on the current partition. 
Step 4) Repeat steps 2)–3) until there is no change for each cluster or when a number of beforehand 
defined iterations is done. 

The advantages of this algorithm are its simplicity and its time complexity (can be used to cluster 
large data sets). Its stopping criteria usually needs a small number of iterations making this algorithm 
very efficient. The disadvantages of this method are: (1) it is sensitive to the selection of the initial parti-
tion and there is no efficient method for identifying the initial partitions and the number of clusters. Usu-
ally, the strategy followed is to run the algorithm iteratively using different random initializations. How-
ever, some authors studied the initialization of the method (Kaufman and Rousseeuw, 1990; Mirkin, 2005). 
(2) The iterative procedure of k-means cannot guarantee convergence to a global optimum (minimum 
global variance, although it can guarantee the minimum variance inside of a cluster or local optimum). 
(3) Due to its initial randomness, obtaining the same results for all the executions cannot be guaranteed. 
(4) K-means is sensitive to outliers and noise because even if an object is quite far away from the cluster 
centroid, it is still forced to be in the cluster, which distorts the cluster shapes.  

 
However, there are variants of the k-means which solve some of these limitations. In the following 

we briefly mention them: 

• PAM (Kaufman and Rousseeuw, 1990) (partitioning around medoids) is an early k-medoid al-
gorithm that uses the data points (medoids) as the cluster prototypes avoiding the effect of outliers. PAM 
has a drawback that it works inefficiently for a large data set due to its time complexity (Han et al., 
2001). 

• CLARA: (Kaufman and Rousseeuw, 1990) was developed to solve the problem of a large data 
set. CLARA applies the PAM to sampled objects instead of all objects. 

• ISODATA algorithm (iterative self-organizing data analysis technique) (Ball and Hall, 1965): it 
is a variation of the k-means that employs a technique of merging and splitting clusters.  A cluster is split 
when its variance is above a pre-specified threshold, and two clusters are merged when the distance be-
tween their centroids is below another pre-specified threshold. So, ISODATA can estimate the number 
of clusters with these merging and splitting procedures. ISODATA considers the effect of outliers in 
clustering procedures 

• GKA (genetic -means algorithm)(Krishna and Murty, 1999): it is designed in order to avoid get-
ting stuck in a local optimum, it can find a global optimum. 

• The k-modes algorithm (Z. Huang, 1998): it uses the simple matching coefficient measure to 
deal with categorical attributes.  
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• The k-prototypes algorithm (Z. Huang, 1998): this algorithm through the definition of a com-
bined dissimilarity measure, further integrates the k-means and k-modes algorithms to allow for cluster-
ing instances described by mixed attributes. 

• The X-means algorithm (Pelleg and Moore, 2000): this method automatically finds the number 
of clusters by using a binary k-means, combined with internal validity indices. At each step a k-means 
with K = 2 is executed to find a division in two clusters. If the split increases the overall value given by 
the internal validity indices, the cluster is split and the binary k-means continues execution, recursively. 
If it is no possible to divide any cluster obtaining an improved validity index, the algorithm stops and 
takes the current partition as result. 

 

2.2.2 Hierarchical clustering 

Hierarchical clustering (HC) algorithms organize data into a hierarchical structure according to a proximi-
ty matrix. A proximity matrix is a N x N symmetric matrix defined from a data set with N input objects 
whose (i,j)th element represents the similarity or dissimilarity between the ith and jth objects. 

The result of the clustering is a hierarchical classification of the objects following a taxonomy of is-a rela-
tions (i.e. class-subclass), known as dendogram. So objects belong to a set of nested clusters. A dendogram 
can be cut at a desired dissimilarity level obtaining a partition of the objects in disjoint classes. It is usual to 
perform the cut at the level that optimizes the Calinski-Harabasz index that maximizes the ratio between the 
inertia inter and intra clusters (Calinski and Harabasz, 1974). 

HC algorithms are mainly classified based on the way of constructing the dendogram as agglomerative 
clustering and divisive clustering. 

 

2.2.2.1 Agglomerative clustering  

Agglomerative clustering starts with N clusters each of them including exactly one object and then a se-
ries of merge operations are followed out to construct a cluster including all individuals. This follows a bot-
tom-up approach. 

This type of clustering is the most used and fulfills the properties of sequentiality and exclusivity, also 
known as SAHN (P. H. A. Sneath and Sokal, 1973) (Sequential, Agglomerative, Hierarchic and Nonover-
lapping). 

 
The general agglomerative clustering can be summarized by the following procedure: 
Step 1) Start with N singleton clusters and calculate the proximity matrix for the N clusters. 
Step 2) Search the minimal distance in the proximity matrix between each pair of clusters and combine 

the pair of more similar clusters to form a new cluster. 
Step 3) Update the proximity matrix by computing the distances between the new cluster and the other 

clusters to reflect this merge operation. 
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Step 4) Repeat steps 2)–3) until all objects are in the same cluster. 

Now, we present different agglomerative clustering algorithms based on different ways of computing the 
proximity between clusters. The simplest and most popular methods are: 

• Single linkage (P. Sneath, 1957): the distance between two clusters is determined  as the mini-
mum of the distances between all pairs of objects in different clusters. This method produces a reduction 
of the objects’ space since it is taking the minimum distance at each step. One interesting consequence is 
that small changes between a pair of objects do not significantly modify the dendogram, meaning that the 
process is non sensitive to small variations. Single-linkage is sensitive to noise and outliers.  Its tendency 
is to produce straggly or elongated clusters.  

• Complete linkage technique (Sorensen, 1948): the distance between two clusters is determined 
as the maximum of all pairwise distances objects in the two clusters. This approach produces an expan-
sion of the object’s space. Complete linkage is less susceptible to outliers and noise. An interesting prop-
erty is that it can break large clusters and produces compact clusters (Baeza-Yates, 1992). On the contra-
ry to Single Linkage, this method is conservative because all pairs of objects must be related before the 
objects can form a cluster.  In general this algorithm produces more useful hierarchies in many applica-
tions than Single linkage (Anil K. Jain and Dubes, 1988). 

• Average linkage: the distance between two clusters is computed as the average of the distance 
among all the objects of the two clusters. The average can be calculated in different ways, but the most 
common is to use the arithmetic mean. Another version weights each object according to the number of 
elements of the cluster to which it belongs. In this case it is called “group average”(Sokal and Michener, 
1958). There are other ways to assign weights to objects, such as depending on how the objects have 
been successively incorporated to the cluster. 

• Centroid linkage: this approach considers also an artificial object that is built as the prototype of 
a cluster. The distance between two clusters is defined as the distance between their centroids. The cen-
troid is calculated using some averaging function on each of the attributes that describe the objects.  

• Median linkage: the distance between two clusters is based on an artificial point that is taken as 
the median of the two points that are creating the new cluster (Gower, 1967). This solves a drawback of 
the centroid approach, because if two clusters with very different size are fused, the centroids will have 
different degrees of representativeness with respect to their clusters. Considering that the centroid of the 
new cluster will lie along the median of the triangle defined by the clusters that are forming a new group 
and an external one, the median is proposed for the similarity computation. 

• Minimum-variance  or Ward’s method: (Ward, 1963): the proximity between a pair of clusters is 
defined as the increase in the square error that results when two clusters are merged. This method at-
tempts to minimize the sum of the square distances of objects with respect to the cluster prototype. In 
this way, the information loss, defined in terms of within-groups sum-of-squares, is minimized. Thus, 
minimizing the inertia inter-class, we are able to obtain a more optimum partition of the objects. It is 
worth to note that, if the function used to measure the distances is a metric (i.e. it fulfills the triangle ine-
quality), the Huygens theorem of decomposition of inertia holds (Dillon and Goldstein, 1984). This 
property is related with the interpretability of the final clusters. 
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 The error sum of squares of a cluster Ci when we have K variables is computed as:  

( )
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∈ =

−=
iCj

K

l

i
ljli xxCESS  

where x i)( is the vector of averages of the elements that belong to the cluster Ci.  

Those six methods presented until now are the most well-known hierarchical clustering techniques. In 
spite of their differences, they share a common way of construction of the dendogram. Lance and Wil-
liams (Lance and Williams, 1967) proposed a parameterized updating formula to calculate distances be-
tween a new cluster and existing points, based on the distances prior to forming the new cluster. This re-
cursive approach avoids the recalculation of the distances with respect to all the objects that belong to 
the clusters that are compared. This formula has three parameters, and each of the clustering methods can 
be characterized by its own set of Lance-Williams parameters (see Table 1). 

Using the notation of Lance-Williams, let dij be the distance between points i and j and let dk(ij) be the 
updated distance of point k to the newly formed cluster (ij). Thus, dij  is a within cluster distance and dk(ij) 
becomes a distance between clusters. The recursive formula is defined as: 

||)( kjkiijkjkiiijk dddjddd −+++= λβαα  

The α, β and λ variables are the parameters that define the linkage process. The following table shows 
the values of these parameters for the methods presented before. One feature of the recurrence formula is 
that any hierarchical clustering scheme which satisfies the relation will also possess a unique set of pa-
rameter values. 

Table 1. Hierarchical Algorithms 

Method αi αj β λ Monotonic/Ultrametric 
Single Linkage 1/2 1/2 0 -1/2 Yes 
Complete Linkage  1/2 1/2 0 1/2 Yes 
Group Average ni/(ni+nj) nj/(ni+nj) 0 0 Yes 
Arithmetic Average 1/2 1/2 0 0 Yes 
Centroid ni/(ni+nj) nj/(ni+nj) -ninj/(ni+nj)2 0 No 
Median 1/2 1/2 -1/4 0 No 
Minimum Variance (Ward) (ni+nk)/(ni+nj+nk) (nj+nk)/(ni+nj+nk) -nk/(ni+nj+nk) 0 Yes 

The ni values refer to the number of elements in cluster i. 

Agglomerative clustering methods can also be divided according to the way of representing the clusters: 

• graph methods: consider all points of a pair of clusters when calculating their inter-cluster dis-
tance. 

• geometric methods: use geometric centers of the clusters in order to determine the distance be-
tween them. 
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Table 2. Classification of the hierarchical methods presented in this section.  

Graph methods Single linkage, complete linkage and average linkage. 
Geometric methods Centroid linkage, median linkage and Ward’s method 

 
 
In recent years, with the requirement for handling large-scale data, new hierarchical techniques have ap-

peared with the aim to minimize the computational cost of the classical algorithms. Some examples include: 

• BIRCH (Zhang et al., 1997) (Balanced Iterative Reducing and Clustering using Hierarchies) is 
an incremental and hierarchical clustering algorithm for very large databases. The two main building 
components in the Birch algorithm are a hierarchical clustering component, and a main memory structure 
component.  Birch uses a main memory (of limited size) data structure called CF tree. The tree is orga-
nized in such a way that (i) the leafs contain actual clusters, and (ii) the size of any cluster in a leaf is not 
larger than R. Initially, the data points are in one cluster. As the data arrives, a check is made whether the 
size of the cluster does not exceed R. If the cluster size grows too big, the cluster is split into two clus-
ters, and the points are redistributed. The points are then continuously inserted to the cluster which en-
larges less. At each node of the tree the CF tree keeps information about the mean of the cluster, and the 
mean of the sum of squares to compute the size of the clusters efficiently. The tree structure also depends 
on the branching parameter T, which determines the maximum number of children each node can have.  

• CURE (Clustering Using REpresentatives )(Guha et al., 2001): it represents a cluster by a fixed 
number h of points scattered around it. The distance between two clusters used in the agglomerative pro-
cess is equal to the minimum of distances between two scattered representatives. Therefore, CURE takes 
a middle-ground approach between the graph (all-points) methods and the geometric (one centroid) 
methods. CURE is capable of finding clusters of different shapes and sizes, and it is insensitive to outli-
ers. CURE was designed to work with numerical values. 

• ROCK (Guha et al., 2000) (The RObust Clustering using linKs) clustering algorithm is based on 
links  between data points, instead of distances when it merges clusters. These links represent the relation 
between a pair of objects and their common neighbours. The notion of links between data helps to over-
come the problems with distance based coefficients. For this reason, this method is extended to non-
metric similarity measures that are relevant in situations where a domain expert/similarity table is the on-
ly source of knowledge. ROCK works with categorical features. 

• RCH ( Relative hierarchical clustering ) considers both the internal distance (distance between a 
pair of clusters which may be merged to yield a new cluster) and the external distance (distance from the 
two clusters to the rest), and uses their ratio to decide the proximities (Mollineda and Vidal, 2000). 

• SBAC (similarity-based agglomerative clustering) which was developed by  Li and Biswas (C. 
Li and Biswas, 1999) extends agglomerative clustering techniques to deal with both numeric and nomi-
nal data. It employs a mixed data measure scheme that pays extra attention to less common matches of 
feature values (C. Li and Biswas, 2002). 

• CHAMELEON  (Karypis et al., 1999). It uses dynamic modelling in cluster aggregation. It uses 
a connectivity graph corresponding to the K-nearest neighbour model of sparsification of the proximity 
matrix, so that the edges of the k most similar points to any given point are preserved, and the rest are 
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pruned. CHAMELEON has two stages. In the first stage small tight clusters are built to ignite the second 
stage.  In the second stage an agglomerative process is performed. 

 
 

2.2.2.2 Divisive clustering 

The divisive approach proceeds in a top-down manner. Initially, the entire data set belongs to a unique 
cluster and a procedure successively divides it until all clusters are singleton clusters.  

The crucial points of this type of clustering are (1) the definition of a coherence function in order to select 
the next cluster to split, and (2) the definition of the splitting function. The former can be resolved by calcu-
lating the variance in the cluster and selecting the cluster with the highest variance for splitting, or simply 
detecting the largest cluster for splitting. About the latter, the splitting task usually consists on putting the 
data points into two different clusters. This type of methods has been less exploited because the agglomera-
tive approach is more efficient. 

Some divisive clustering algorithms are: 

• Bi-Section-Kmeans: this clustering algorithm is an extension of the basic k-means, that divides 
one cluster in two (for k=2) at each step. The process ends when the desired number of clusters has been 
generated.  

• DIANA(DIvisive ANAlysis)(Kaufman and Rousseeuw, 1990): is a heuristic method that consists 
on considering only a part of all the possible divisions at each step. Consists of a series of iterative steps 
to move the objects to the closest splinter. The splinter is initialized with the object that is farthest from 
the others. 

• MONA (monothetic analysis) (Kaufman and Rousseeuw, 1990). When all the features are used 
together the algorithm is called polythetic. Otherwise, it is called monothetic, because only one feature 
is considered at each step. In (Kaufman and Rousseeuw, 1990) this approach is used with binary fea-
tures, where the similarity is computed through association measures. 

• DIVCLUS-T (Chavent et al., 2007) is a divisive hierarchical clustering algorithm based on a 
monothetic bipartitional approach allowing the dendrogram of the hierarchy to be read as a decision 
tree. It is designed for either numerical or categorical data. Like the Ward algorithm, it is based on the 
minimization of the inertia criterion. However, it provides a simple and natural interpretation of the 
clusters.  

 
 

2.2.3 Other Clustering techniques 

In addition to the hierarchical and partitional methods there are other clustering approaches (a good sur-
vey is done in the book of Xu et al. (Xu et al. 2009)). Here we present a summarized list of those techniques:  
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• Densities-Based Clustering: Here a cluster is understood as a dense region of objects that is sur-
rounded by a region of low density. A known algorithm of this type is DBSCAN (Ester et al., 1996), 
which assigns the points that are close enough in the same cluster. Likewise, any border point that is 
close enough to a core point is put to the same cluster as the core point. However, noisy points are dis-
carded producing a non complete clustering. Others are GMDD (Gaussian mixture density decomposi-
tion (GMDD) and AutoClass. 

• Model-based methods: This approach is based on building an explicit model of each cluster (e.g. 
using a simple distribution function). The model determines which data belong to each cluster. This 
means that each cluster is considered as a model that can be described intrinsically, rather than as a col-
lection of points assigned to it. A popular method for categorical data is COBWEB (Fisher, 1987). It us-
es incremental learning instead of following divisive or agglomerative approaches.  

• Neural Networks-Based Clustering: Here objects are represented as neurons, these neurons in-
creases the neighbourhood in some regions creating clusters and decrease it with other neurons. Some 
examples of this kind of algorithms are LVQ (Learning vector quantization), SOFMs (Self-Organized 
Feature Maps) and ART (Adaptative Resonance Theory). 

• Graph Theory-Based Clustering: Here the data are represented as a graph where the nodes are 
objects and the links represent connections between objects. Then a cluster is defined as a group of ob-
jects that are connected between them but that have not connections with objects outside the group. A 
well-known graph-theoretic divisive clustering algorithm is based on the construction of the minimal 
spanning tree (MST) of the data (Zahn, 1971), and then deleting the MST edges with the largest lengths 
to generate clusters.  

• Kernel-based clustering: The basis of this approach is that with a nonlinear transformation of a 
set of objects into a higher-dimensional space, one can find easily a linear separation of these objects in-
to clusters. So, the goal is to change the space of representation of the objects. However, building a non-
linear mapping in the transformed space is usually a time-consuming task. This process can be avoided 
by calculating an appropriate inner-product kernel. The most common kernel functions include polyno-
mial kernels and Gaussian radial basis functions (RBFs) and sigmoid kernels (Corchado and Fyfe, 
2000). 

• Fuzzy clustering: while traditional clustering approaches generate partitions where each data ob-
ject belongs to one and only one cluster, fuzzy clustering extends this notion to associate each data ob-
ject with every cluster using a membership function (Zadeh, 1965). Larger membership values indicate 
higher confidence in the assignment of the object to the cluster. The most widely used algorithm is the 
Fuzzy C-Means (FCM) algorithm (Sato et al., 1997), which is based on k-means. FCM attempts to find 
the most characteristic point in each cluster, which can be considered as the “center” of the cluster and, 
then, the grade of membership of each instance to the clusters. Many extensions of FCM are still being 
developed, such as (Hamasuna et al., 2010). 

2.3 Discussion 

In this section we make an analysis of the different clustering methods introduced in this document, fo-
cusing mainly in hierarchical and partitional techniques. Several observations are commonly done about 
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these techniques, which are really relevant for the user in order to select the appropriate methodology for a 
particular problem. 

The first concern is about the fact that the selection of the clustering algorithm determines some charac-
teristics of the clusters that are obtained. For example, center-based algorithms as the k-means will produce 
compact and spherical groups. Hierarchical methods organize groups on a multi-level groups and subgroups 
structure, which can be interesting to have in some particular applications. If a partition is generated from the 
dendrogram, then different types of clusters are obtained (see details in section 2.2.2). Other characteristics 
are obtained in density classification methods, which form groups according to the objects density; therefore, 
they do not limit the size of the group and very heterogeneous forms of groups can be found. If the user has 
some knowledge about the form of the clusters, then the selection of the clustering algorithm must be done 
according to this knowledge. For example, the single-link clustering algorithm works well on data sets con-
taining non-isotropic clusters including well-separated, chain-like, and concentric clusters, whereas a typical 
partitional algorithm such as k-means works well only on data sets having isotropic clusters (Nagy, 1968). 

If there is no information about the form of the clusters, one may consider the advantages and disad-
vantages of each of the different techniques. On the one hand, hierarchical algorithms are more versatile than 
partitional algorithms. The hierarchical representation provides very informative descriptions and visualiza-
tion for the potential data clustering structures. On the other hand, the time and space complexities of the 
partitional algorithms are typically lower than those of the hierarchical algorithms(Day, 1992). In particular, 
partitional methods have advantages in applications involving large data sets for which the construction of a 
dendrogram is computationally prohibitive (A. K. Jain et al., 1999) (Everitt et al., 2001).  

The main drawback of partitional algorithms is how to make the choice of the number of desired output 
clusters. In the case of hierarchical methods, they do not require the number of clusters to be known in ad-
vance as the final clustering results are obtained by cutting the dendrogram at different levels. However, their 
main disadvantage is that they suffer from their inability to perform adjustments once the splitting or merg-
ing decision is made (i.e. once an object is assigned to a cluster, it will not be considered again), which 
means that hierarchical algorithms are not capable of correcting a possible previous misclassification. This 
rigidity is useful because it leads to a smaller computational cost, since it does not have to worry for a com-
binatorial number of possible options. Moreover, most of the hierarchical methods have the tendency to form 
spherical shapes and the reversal phenomenon, in which the normal hierarchical structure is distorted. 

Partitional algorithms perform a search on the space of features of the objects. So, they suffer from the 
problem of getting trapped in a local optimum and therefore being dependent on the initialization. Some 
approaches to find a global optimum introduce additional parameters, for which there are no theoretical 
guidelines to select the most effective value.  

It can be observed that both approaches have advantages and disadvantages in different aspects. In that 
sense, it is possible to develop hybrid algorithms that exploit the good features of both categories (Murty and 
Krishna, 1980). Finally, in crisp clustering methods, clusters are not always well-separated. Fuzzy clustering 
overcomes the limitations of hard classification. However, a problem with fuzzy clustering is that it is diffi-
cult to define the membership values of the objects. 

As a final and general remark, one can observe that there is not a best algorithm for all the cases. Depend-
ing on the purpose of the clustering, the most suitable approach must be selected.  
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3 Software tools for clustering 

Different software tools are available, some of them developed by commercial companies: 

Table 3. Data mining software tools  

Name SAS Enterprise Miner 
Link http://www.sas.com/technologies/analytics/datamining/miner/ 
Free No 
Descrip-
tion 

Is a software tool able to perform data mining processes based on analysis of vast amounts of data 
with a broad set of tools. SAS provides a variety of clustering algorithms. It provides the different 
hierarchical agglomerative algorithms (single linkage, average linkage, complete linkage, centroid 
linkage or Ward’s method). Also, it provides the K-Means algorithm, and the Self-Organizing 
Maps (SOM) algorithm (Kohonen Networks). It provides a wide range of graphic tools in order to 
study the results. 

 
Name SPSS 
Link http://www.spss.com/ 
Free No 
Descrip-
tion 

SPSS is a powerful statistical tool and is one of the most widely used programs for statistical 
analysis in social science. It include descriptive statistics (Cross tabulation, Frequencies, Descrip-
tives, Explore, Descriptive Ratio Statistics), bivariate statistics (Means, t-test, ANOVA, Correla-
tion (bivariate, partial, distances), Nonparametric tests), Prediction for numerical outcomes (Line-
ar regression), Prediction for identifying groups (Factor analysis, cluster analysis (two-step, K-
means, hierarchical), Discriminant). 

It implements different clustering methods such as average linkage, single linkage, complete 
linkage, centroid method, median method, Ward’s method and K-means. 

 
Name Clementine from SPSS 
Link http://www.spss.com/la/productos/clementine/clementine.htm 
Free  No 
Descrip-
tion 

SPSS Clementine provides two clustering algorithms, which are the K-Means algorithm, and the 
Self-Organizing Maps algorithm (Kohonen Networks). SPSS Clementine cannot cluster data 
hierarchically and it cannot cluster data set that has categorical variables. However, it can cluster 
a data set specifying the number of clusters before the process using K-Means algorithm. Also, it 
can cluster a data set without specifying the number of clusters before the process using the Ko-
honen Network algorithm. 

 
Name Intelligent Miner (IBM) 
Link http://www-306.ibm.com/software/data/iminer/ 
Free  No 
Descrip-
tion 

IBM Intelligent Miner is a set of "statistical, processing, and mining functions" to analyze data. It 
contains three main products: Intelligent Miner Modeling, Intelligent Miner Scoring, and Intelli-
gent Miner Visualization. The first one develops analytic models such are Associations, Cluster-
ing, Decision trees, and Transform Regression PMML models via SQL API. The second one 
performs scoring operation for the models created by Intelligent Miner Modeling. The last one 
presents data modeling results using one of the following Visualizers: Associations Visualizer, 
Classification Visualizer, Clustering Visualizer, and Regression Visualizer.  

IBM's Intelligent Miner provides a variety of data mining techniques: Predictive modeling, Data-
base segmentation or clustering, Link analysis (associations), Neural Classification, Neural Clus-
tering, Sequential Patterns, Similar Sequences, Radial Basis Function (RBF)-Prediction, and 
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Deviation detection (outliers). 

In particular, it provides only two clustering algorithms: the Demographic algorithm, and the 
Self-Organizing Maps algorithm (Kohonen Networks). So, IBM DB2 cannot cluster data set 
hierarchically and cannot cluster a data set based on a predefined number of clusters. However it 
can cluster a data set that has categorical variables using the Demographic algorithm. 

 
Name WEKA (Waikato Environment for Knowledge Analysis) 
Link http://www.cs.waikato.ac.nz/ml/weka/ 
Free Yes 
Descrip-
tion 

Developed in the university of Waikato, New Zealand, Weka is a collection of machine learning 
algorithms for data mining tasks, implemented in Java. This software is one of the most complete 
ones of those free software packages. It can be executed from a command-line environment, or 
from a graphical interface, or it can be called from your own Java code.  Weka contains tools for 
data pre-processing, classification, regression, clustering, association rules, and visualization, and 
is well-suited for developing new machine learning schemes.  

In particular, it contains different algorithms of clustering such as Cobweb, DBScan (Density-
Based Spatial Clustering of Applications with Noise), EM (Expectation-Maximisation), Farthest-
First, FilteredClusterer, OPTICS (Ordering Points To Identify the Clustering Structure), x-means, 
MakeDensityBased-Clusterer algorithm, SimpleKMeans, CLOPE, SiB (sequential Information 
Bottleneck). 

 
Name Pentaho 
Link http://www.pentaho.com/ 
Free No 
Descrip-
tion 

Pentaho Data Mining, provides a comprehensive set of machine learning algorithms from Weka. 
Its broad suite of classification, regression, association rules, segmentation, decision trees, ran-
dom forests, neural networks, and clustering algorithms can be used to help an analyst understand 
the business better and to improve future performance through predictive analytics. So it have the 
same clustering algorithms than weka. 

 
Name RapidMiner 
Link http://rapid-i.com/ 
Free Yes 
Descrip-
tion 

RapidMiner  (formerly YALE (Yet Another Learning Environment)) is an open source toolkit for 
data mining. RapidMiner implements different clustering methods as, DBScan, EM, the Weka 
clustering schemes, Kernel K-Means, K-Means, K-Medoids, a Random Clustering, and an  im-
plementation of Support Vector Clustering. 

 
Name R language 
Link http://www.r-project.org/ 
Free  Yes 
Descrip-
tion 

R is a programming language and environment for statistical computing and graphics. Available 
for Windows, various Unix flavors (including Linux), and Mac. Provides a wide variety of statis-
tical (linear and nonlinear modeling, classical statistical tests, time-series analysis, classification, 
clustering, ...) and graphical techniques, and is highly extensible. And it has interoperability with 
other languages as C, XML and Java. 

A number of different clustering methods are provided in this software. Ward's minimum vari-
ance method aims at finding compact, spherical clusters. The complete linkage method finds 
similar clusters. The single linkage method adopts a ‘friends of friends’ clustering strategy. The 
other methods can be regarded as aiming for clusters with characteristics somewhere between the 
single and complete link methods. Note however, that methods "median" and "centroid" are not 
leading to a monotone distance measure, or equivalently the resulting dendrograms can have so 
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called inversions (which are hard to interpret). 

 
Name Rattle, Gnome Cross Platform GUI for Data Mining using R 
Link http://rattle.togaware.com/ 
Free  Yes 
Descrip-
tion 

Rattle(R Analytical Tool To Learn Easily) is a data mining toolkit used to analyze very large 
collections of data. Rattle presents statistical and visual summaries of data, transforms data into 
forms that can be readily modeled, builds both unsupervised and supervised models from the 
data, presents the performance of models graphically, and scores new datasets. It has a simple and 
logical graphical user interface based on Gnome. 

Rattle runs under GNU/Linux, Macintosh OS/X, and MS/Windows. In addition, Rattle can be 
used by itself to deliver data mining projects. Rattle also provides an entry into sophisticated data 
mining using the open source and free statistical language R.  

 
Name Tanagra 
Link http://chirouble.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html 
Free  Yes 
Descrip-
tion 

It is a free (open-source) data-mining package that contains components for Data source (tab-
delimited text), Visualization (grid, scatterplots), Descriptive statistics (cross-tab, ANOVA, corre-
lation), Instance selection (sampling, stratified), Feature selection and construction, Regression 
(multiple linear), Factorial analysis (principal components, multiple correspondence), Clustering, 
Supervised learning (logistic regr., k-NN, multi-layer perceptron, prototype-NN, ID3, discrimi-
nant analysis, naive Bayes, radial basis function), Meta-spv learning (instance Spv, arcing, boost-
ing, bagging), Learning assessment (train-test, cross-validation), and Association (Agrawal a-
priori). It provides different clustering methods such as kMeans, Kohonen's Self Organization 
Map, LVQ (Kohonen's Learning Vector Quantizers), a "supervised" clustering algorithm, and 
HAC (Hierarchical agglomerative clustering). 

 
Name STATISTICA Data Miner 
Link http://www.statsoft.com/ 
Free  No 
Descrip-
tion 

STATISTICA Data Miner contains a selection of data mining solutions, with an easy-to-use user 
interface and deployment engine. STATISTICA Data Miner is highly customizable and can be 
tailored to meet very specific and demanding analysis requirements through its open architecture. 

Some characteristics are machine Learning ( Bayesian, Support Vectors, Nearest Neighbour), 
General Classification/Regression tree models, General CHAID models,Boosted Tree Classifiers 
and Regression, Random Forests for Regression and Classification, MARSplines ( Multivariate 
Adaptive Regression Splines), Cluster Analysis, Combining Groups (Classes) for Predictive Data 
Mining, Automatic Feature Selection, Ensembles of Neural Networks, etc. It provides different 
clustering methods such as kMeans and Generalized EM. 

 
Name CLUTO 
Link http://glaros.dtc.umn.edu/gkhome/views/cluto/ 
Free  Yes 
Descrip-
tion 

CLUTO is a family of data clustering and cluster analysis programs and libraries, that are well 
suited for low- and high-dimensional data sets. CLUTO is well-suited for clustering data sets 
arising in many diverse application areas including information retrieval, customer purchasing 
transactions, web, GIS, science, and biology. 

It has multiple classes of clustering algorithms (partitional, agglomerative (single-link, complete-
link, UPGMA), and  graph-partitioning based) and multiple similarity/distance functions (Euclid-
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ean distance, cosine, correlation coefficient, extended Jaccard, user-defined). 

 
Name Oracle Data Mining (ODM) 
Link http://www.oracle.com/technology/products/bi/odm/index.html 
Free  NO 
Descrip-
tion 

Oracle Data Mining is an option of Oracle Corporation's Relational Database Management Sys-
tem (RDBMS) Enterprise Edition (EE). It contains several data mining and data analysis algo-
rithms for classification, prediction, regression, clustering, associations, feature selection, anoma-
ly detection, feature extraction, and specialized analytics. ODM offers well known machine learn-
ing approaches such as Decision Trees, Naive Bayes, Support vector machines, Generalized line-
ar model (GLM) for predictive mining, Association rules, K-means (Enhanced k-means (EKM)) 
and Orthogonal Partitioning Clustering (O-Cluster), and Non-negative matrix factorization for 
descriptive mining. 

 
Name DBMiner 
Link http://www.pentaho.com/ 
Free  No 
Descrip-
tion 

DBMiner implements a wide spectrum of data mining functions, including generalization, charac-
terization, association, classification, and prediction. By incorporating several interesting data 
mining techniques, including attribute-oriented induction, statistical analysis, progressive deepen-
ing for mining multiple-level knowledge, and meta-rule guided mining, the system provides a 
user-friendly, interactive data mining environment with good performance.The underlying algo-
rithm used in DBMoner is the k-means method 
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4 Semantic similarity measures 

With the enormous success of the Information Society and the World Wide Web, the amount of textual elec-
tronic information available has significantly increased. As a result, computer understanding of text has ac-
quired great interest in the research community in order to enable a proper exploitation, management, classi-
fication or retrieval of textual data.  

One of the most basic problems when aiming to interpret textual data is the assessment of semantic like-
ness between words because, as it has been demonstrated in psychological experiments (Goldstone, 1994), it 
acts as a fundamental organizing principle by which humans organize and classify objects. It is important to 
note that two different concepts, which are often confounded, can be found in the literature. On one hand, 
semantic similarity states how taxonomically near two terms are, because they share some aspects of their 
meaning (e.g., dogs and cats are similar to the extent they are mammals). On the other hand, the more gen-
eral concept of semantic relatedness does not necessarily rely on a taxonomic relation (e.g., car and wheel or 
pencil and paper); other non taxonomic relationships (e.g., meronymy, antonymy, functionality, cause-effect, 
etc.) are also considered. 

Semantic similarity/relatedness computation has many direct and relevant applications. Some basic natu-
ral language processing tasks such as word sense disambiguation (Patwardhan et al., 2003),  synonym detec-
tion (Lin, 1998) or automatic spelling error detection and correction (Budanitsky and Hirst, 2001) rely on the 
assessment of words’ semantic resemblance. Direct applications can be found in the knowledge management 
field, such as thesauri generation (Curran, 2002), information extraction (Stevenson and Greenwood, 2005) 
or ontology learning (Sánchez and Moreno, 2008), in which new terms related to already existing concepts, 
should be acquired from textual resources. The Semantic Web is an especially relevant application area, 
when dealing with automatic annotation of Web pages (Cimiano et al., 2004), community mining (Mika, 
2007), and keyword extraction for inter-entity relation representation (Mori et al., 2007).  

Similarity estimation between textual entities has also an important role in the classification and structur-
ing of textual resources such as digital libraries (Sánchez and Moreno, 2007), in which resources should be 
classified according to the similarity of their main topics (expressed as textual signatures), and in information 
retrieval (IR), in which similar or related words can be used to expand user queries and improve recall 
(Sahami and Heilman, 2006). It is also exploited in the elaboration of methods for integrating the knowledge 
of different data bases into unique queries, where equivalent concepts must be identified (Schallehn et al., 
2004). 

Due to the proliferation of textual data referring to user descriptions (e.g., polls or questionnaires), word 
similarity measurement can aid to develop specific data mining algorithms that take into account the seman-
tics of the values. This is the case of clustering or classification techniques (Batet et al., 2008; Y. Chen et al., 
2009) that can be used to detect user profiles and preferences, aiding the development of decision support 
systems.  
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Applied domains such as biomedicine, chemistry or engineering are especially considered by the research 
community (H. Al-Mubaid and Nguyen, 2006; Armengol, 2009; Hliaoutakis, 2005; Morbach et al., 2007; 
Pedersen et al., 2007; Pirró, 2009) due to the proliferation and importance of terminology. In this case, simi-
larity assessment can aid to discover semantically equivalent terms corresponding to different lexicalizations, 
synonyms, abbreviations or acronyms of the same concept. This is of great interest in healthcare in order to 
be able to retrieve the desired information from a literature data base, especially tasks such as patient cohort 
identification (Bichindaritz and Akkineni, 2006; Pedersen et al., 2007). 

Some video and image understanding techniques are also based on the semantic interpretation of the tex-
tual features referred to the images for indexing or searching purposes (Allampalli-Nagaraj and Bichindaritz, 
2009). Semantic filtering of multimedia content needs to discover the relationships that exist between seman-
tic concepts. In (Naphade and Huang, 2001), some relevant concepts may not be directly observed in terms 
of media features, but are inferred based on their semantic likeness with those that are already detected.  

Despite its usefulness, robust measurement of semantic similarity/relatedness between textual terms re-
mains a challenging task (Bollegala et al., 2007). Many works have been developed in the last years, espe-
cially with the increasing interest on the Semantic Web. Proposed methods aim to automatically assess a 
numerical score between a pair of terms according to the semantic evidence observed in one or several 
knowledge sources, which are used as semantic background. According to the concrete knowledge sources 
exploited for the semantic assessment (e.g., ontologies, thesaurus, domain corpora, etc.) and the way to use 
them, different families of methods can be identified. 

According to the corpus exploited to extract semantic evidences and the principles in which similarity es-
timation relies, measures can be grouped in several families of functions. In this section, we survey, review 
and compare them according to the following classification: 

1. Ontology-based measures relying on: 

1.1. Edge-counting 

1.2. Features 

1.3. Information Content (corpora-dependent or intrinsic to an ontology) 

2. Distributional measures based on: 

2.1. First-order co-occurrence 

2.2. Second-order co-occurrence (relying on corpora or on structured thesaurus glosses) 
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4.1 Ontology-based measures 

Ontologies provide a formal specification of a shared conceptualization (Guarino, 1998). Being machine 
readable and constructed from the consensus of a community of users or domain experts, they represent a 
very reliable and structured knowledge source. Due to this reason, and thanks to initiatives such as the Se-
mantic Web, which brought the creation of thousands of domain ontologies (Ding et al., 2004), ontologies 
have been extensively exploited to compute semantic likeness.  

A paradigmatic example is WordNet (Fellbaum, 1998), a domain-independent and general purpose ontol-
ogy/thesaurus that describes and organizes more than 100,000 general English concepts, which are semanti-
cally structured in an ontological fashion. It contains words (nouns, verbs, adjectives and adverbs) that are 
linked to sets of cognitive synonyms (synsets), each expressing a distinct concept (i.e., a word sense). 
Synsets are linked by means of conceptual-semantic and lexical relations such as synonymy, hypernymy (is-
a), six types of meronymy (part-of), antonymy, complementary, etc. The backbone of the network of words 
is the subsumption hierarchy which accounts for more than 80% of all the modelled semantic links, with a 
maximum depth of 16 nodes. The result is a network of meaningfully related words, where the graph model 
can be exploited to interpret the meaning of the concept.  

In this section, we cover approaches completely or partially relying on ontologies to compute semantic 
similarity/relatedness. WordNet has been mainly used as the background ontology. 

 

4.1.1  Edge counting-based measures 

Ontologies can be seen as a directed graph in which concepts are interrelated mainly by means of taxo-
nomic (is-a) and, in some cases, non-taxonomic links. Input terms are mapped to ontological concepts by 
means of their textual labels. A straightforward method to calculate the similarity between terms is to evalu-
ate the minimum Path Length connecting their corresponding ontological nodes via is-a links (Rada et al., 
1989). The longer the path, the more semantically far the terms are.  

Let us define path(a,b)=l1,....lk as a set of links connecting the terms a and b in a taxonomy. Let 
|path(a,b)|=k be the length of this path. Then, considering all the possible paths from a to b, their semantic 
distance as defined by (Rada et al., 1989) is (1). 

( ) ( )bapatha,bdis iirad ,min∀=
           

(1) 

Several variations and improvements of this edge-counting approach have been proposed. On one hand, 
in addition to this absolute distance between terms, Wu and Palmer (Wu and Palmer, 1994) considered that 
the relative depth in the taxonomy of the concepts corresponding to the evaluated terms is an important di-
mension, because concept specializations become less distinct as long as they are recursively refined. So, 
equally distant pairs of concepts belonging to an upper level of a taxonomy should be considered less similar 
than those belonging to a lower lever. Wu and Palmer’s measure counts the number of is-a links (N1 and N2) 
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from each term to their Least Common Subsumer (LCS) (i.e., the most concrete taxonomical ancestor that 
subsumes both terms) and also the number of is-a links of the LCS to the root (N3) of the ontology (2). 
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Based on the same principle, Leadcock and Chodorow (Leacock and Chodorow, 1998) also proposed a 
measure that considers both the number of nodes Np separating the ontological nodes corresponding to terms 
a and b, included themselves, and the depth D of the taxonomy in which they occur in a non-linear fashion 
(3). 
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Li et al., (Y. Li et al., 2003) also proposed a similarity measure that combines the shortest path length and 
the depth of ontology information in a non-linear function (4). 
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, where h is the minimum depth of the LCS in the hierarchy and α ≥0 and β> 0 are parameters scaling the 
contribution of the shortest path length and depth, respectively. Based on benchmark data, authors stated that 
the optimal parameters for the measure with respect to a concrete set of human judgements were: α =0.2; β 
=0.6. However, this is just an empirical finding for a specific setting. It lacks a theoretical basis and cannot 
be generalized.  

Al-Mubaid and Nguyen (H. Al-Mubaid and Nguyen, 2006) proposed a cluster-based measure that com-
bines the minimum path length and the taxonomical depth. They define clusters for each of the branches in 
the hierarchy with respect the root node. They measure the common specificity of two terms by substracting 
the depth of their LCS from the depth Dc of the cluster (5).  

)),((),( baLCSdepthDbaCSpec c −=         (5) 

The common specificity is used to consider that lower level pairs of concept nodes are more similar than 
higher level pairs, as in Wu and Palmer’s approach. So, the proposed distance measure (sem) is defined as 
follows (6): 

( ) ))()1,log((min),( kCSpecbapathbadis iisem +×−= ∀
βα

     (6) 

, where α>0 and β>0 are the contribution factors of the path length and the common specify features and 
k is a constant. Authors use k=1 because with k≥1 they proved that the distance is positive.  Moreover, in 
their experiments, they give an equal weight to the contribution of the two components (path length and 
common specify) by using α= β = 1.  
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Both Li et al., and Al-Mubaid and Nguyen approaches are often considered in the literature (Petrakis et 
al., 2006; Pirró, 2009) as “hybrid” approaches, as they combine several structural characteristics (such as 
path length, depth and local density) and assign weights to balance the contribution of each component to the 
final similarity value. Even though their accuracy for a concrete scenario (see evaluation section) is higher 
than more basic edge-counting measures, they depend on the empirical tuning of weights according to the 
ontology and input terms.    

Hirst and St-Onge (Hirst and St-Onge, 1998) extended the notion of taxonomical edge-counting by con-
sidering also non-taxonomic semantic links in the path (full_path). All types of relations found in WordNet 
together with rules that restrict possible semantic chains are considered, along with the intuition that the 
longer the path and the more changes in relation’s direction, the lower the likeness. The following path direc-
tions are considered: upward (such as hypernymy and meronymy), downward (such as hyponymy and holon-
ymy) and horizontal (such as antonymy). The resulting formula is (7) 

),(),(_),(& baturnskbapathfullCbasim sh ×−−=       (7) 

, where C and k are constants (C = 8 and k = 1 are used by the authors), and turns(a, b) is the number of 
times the path’s direction changes.  

Due to the non-taxonomic nature of some of the relations considered during the assessment, Hirst and St-
Onge’s measure captures a more general sense of relatedness than of taxonomical similarity, assessed by the 
approaches detailed above. 

The main advantage of the presented measures is their simplicity. They only rely on the geometrical mod-
el of an input ontology whose evaluation requires a low computational cost (in comparison to approaches 
dealing with text corpora, see Section 4.2). However, several limitations hamper their performance.  

In general, any ontology-based measure depends on the degree of completeness, homogeneity and cover-
age of the semantic links represented in the ontology. So, they require rich and consistent ontologies like 
WordNet to work properly (Pirró, 2009). 

For the concrete case of taxonomic path-based measures, they only consider the shortest path between 
concept pairs. However, wide and detailed ontologies such as WordNet incorporate multiple taxonomical 
inheritance, resulting in several taxonomical paths which are not taken into account. Other features also in-
fluencing the concept semantics, such as the number and distribution of common and non-common taxonom-
ical ancestors, are not considered either. As a result, by taking only the minimum path between concepts, 
many of the taxonomical knowledge explicitly modelled in the ontology is omitted.   

Another problem of path-based measures typically admitted (Bollegala et al., 2009; Wan and Angryk, 
2007) is that they rely on the notion that all links in the taxonomy represent a uniform distance. In practice, 
the semantic distance among concept specializations/generalizations in an ontology depends on the degree of 
granularity and taxonomic detail implemented by the knowledge engineer.  
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4.1.2  Feature-based measures 

Feature-based methods try to overcome the limitations of path-based measures regarding the fact that tax-
onomical links in an ontology do not necessary represent uniform distances. This fact is addressed by con-
sidering the degree of likeness between sets of ontological features. As a result, they are more general and, 
potentially, they could be applied in cross ontology similarity estimation settings (i.e., when concept pairs 
belong to two different ontologies), a situation in which edge-counting methods cannot be directly applied 
(Petrakis et al., 2006). 

So, on the contrary to edge-counting measures which, as stated above, are based on the notion of mini-
mum path distance, feature-based approaches assess similarity between concepts as a function of their prop-
erties. This is based on Tversky’s model of similarity, which, derived from set theory, takes into account 
common and non common features of compared terms. Common features tend to increase similarity and 
non-common ones tend to diminish it (Tversky, 1977). Formally, let Ψ(a) and Ψ(b) be the features of terms a 
and b respectively, let Ψ(a) ∩ Ψ(b) be the intersection between those two sets of features, and Ψ (a)\ Ψ (b) 
the set obtained when eliminating the elements of Ψ(b) from the set of features of concept a, Ψ(a). Then, the 
similarity between a and b can be computed as a function of  Ψ(a) ∩ Ψ(b), Ψ(a)\Ψ (b) and Ψ(b)\ Ψ (a) as (8). 

))(\)(())(\)(())()((),( abFbaFbaFbasim ΨΨ⋅−ΨΨ⋅−Ψ∩Ψ⋅= γβα    (8) 

, where F is a function that reflects the salience of a set of features, and α, β and γ are parameters that 
weight the contribution of each component.  

The information provided by the input ontology is exploited by the features. For WordNet, concept syno-
nyms (i.e., synsets, which are sets of linguistically equivalent words), definitions (i.e., glosses, containing 
textual descriptions of word senses) and different kinds of semantic relationships can be considered.  

In Rodriguez and Egenhofer (Rodríguez and Egenhofer, 2003), the similarity is computed as the weighted 
sum of similarities between synsets, meronyms and neighbour concepts (those linked via semantic pointers) 
of evaluated terms (9). 

),(),(),(),(& baSvbaSubaSwbasim odsneighborhomeronymssynsetser ⋅+⋅+⋅=     (9) 

, where w, u and v weight the contribution of each component, which depends on the characteristics of the 
ontology. By meronyms, they evaluate matchings of concepts via part-of relationships.    

In Tversky (Tversky, 1977) concepts and their neighbours (according to semantic pointers) are represent-
ed by synsets. The similarity (10) is computed as:  
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, where A, B are the synsets for concepts corresponding to a and b, A\B is the set of terms in A but not in B 
and B\A the set of terms in B but not in A. Finally, γ(a, b) is computed as a function of the depth of a and b in 
the taxonomy as follows (11): 
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In Petrakis et al., (Petrakis et al., 2006) a feature-based function called X-similarity relies on the matching 
between synsets and concept glosses extracted from WordNet (i.e., words extracted by parsing term defini-
tions). They consider that two terms are similar if the synsets and glosses of their concepts and those of the 
concepts in their neighbourhood (following semantic links) are lexically similar. The similarity function is 
expressed as follows:   

⎪⎩

⎪
⎨
⎧

=

>
=− 0),()},,(),,(max{

0)(,1
),( ,

baSifbaSbaS
baSif

basim
synsetsglossesodsneighborho

synsets
SimilarityX    (12) 

, where Sneighborhoods is calculated as follows: 
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, where each different semantic relation type (i.e., is-a and part-of in WordNet) is computed separately (i 
denotes the relation type) and the maximum (joining all the synsets of all concepts up to the root of each 
hierarchy) is taken. Sglosses and Ssynsets are both computed as: 
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, where A and B denote synsets or glosses sets for terms a and b.  

Feature-based measures exploit more semantic knowledge than edge-counting approaches, evaluating 
both commonalties and differences of compared concepts. However, by relying on features like glosses or 
synsets (in addition to taxonomic and non-taxonomic relationships), those measures limit their applicability 
to ontologies in which this information is available. Only big ontologies/thesaurus like WordNet include this 
kind of information. In fact, an investigation of the structure of existing ontologies via the Swoogle ontology 
search engine (Ding et al., 2004) reveals that domain ontologies very occasionally model any semantic fea-
ture apart from taxonomical relationships. 

Another problem is their dependency on the weighting parameters that balance the contribution of each 
feature (like the hybrid approaches). In all cases, those parameters should be tuned according the nature of 
the ontology and even to the evaluated terms. This hampers their applicability as a general purpose solution. 
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Only Petrakis (Petrakis et al., 2006) does not depend on weighting parameters, as the maximum similarity 
provided by each single feature is taken. Even though this adapts the behaviour of the measure to the charac-
teristics of the ontology and to the knowledge modelling, the contribution of other features is omitted if only 
the maximum value is taken at each time. 

 

4.1.3 Information Content-based measures 

Also acknowledging some of the limitations of edge-counting approaches, Resnik (Resnik, 1995) pro-
posed to complement the taxonomical knowledge provided by an ontology with the information distribution 
of concepts evaluated in the input corpora. He exploited the notion of Information Content (IC), by associat-
ing appearance probabilities to each concept in the taxonomy, computed from their occurrences in a given 
corpus. The IC of a term a is computed as the inverse of its probability of occurrence, p(a) (15). In this man-
ner, infrequent words are considered more informative than common ones.  

)(log)( aPaIC −=           (15) 

According to Resnik, semantic similarity depends on the amount of shared information between two 
terms, a dimension which is represented by their Least Common Subsumer (LCS) in an ontology. Two terms 
are maximally dissimilar if a LCS does not exist (i.e., in terms of edge-counting, it would not be possible to 
find a path connecting them). Otherwise, their similarity is computed as the IC of the LCS (16).  

)),((),( baLCSICbasimres =         (16) 

One of the problems of Resnik’s metric is that any pair of terms having the same LCS results in exactly 
the same semantic similarity. Both Lin (Lin, 1998) and Jiang and Conrath (Jiang and Conrath, 1997) extend-
ed Resnik’s work by also considering the IC of each of the evaluated terms.  

Lin enounced that the similarity between two terms should be measured as the ratio between the amount 
of information needed to state their commonality and the information needed to fully describe them. As a 
corollary of this theorem, his measure considers, on one hand, commonality in the same manner as Resnik’s 
approach and, on the other hand, the IC of each concept alone (17).  
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The measure proposed by Jiang and Conrath is based on quantifying, in some way, the length of the taxo-
nomical links as the difference between the IC of a concept and its subsumer. When comparing term pairs, 
they compute their distance by substracting the sum of the IC of each term alone from the IC of their LCS 
(18).  
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It is important to note that IC-based measures need, in order to behave properly, that the probability of 
appearance p monotonically increases as one moves up in the taxonomy (i.e., ∀ ci | cj is hypernym of ci  => 
p(ci)≤ p(cj) ).  This is achieved by computing p(a) as the probability of encountering any instance of a in the 
given corpus. In practice, each individual occurrence of any noun in the corpus is counted as an occurrence 
of each taxonomic class containing it (19) (Resnik, 1995). 
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, where W(a) is the set of nouns in the corpus whose senses are subsumed by a, and N is the total number 
of corpus nouns that are present in the taxonomy. 

As a result, an accurate computation of concept probabilities requires a proper disambiguation and anno-
tation of each noun found in the corpus. If either the taxonomy or the corpus changes, re-computations are 
needed to be recursively executed for the affected concepts. So, it is necessary to perform a manual and time-
consuming analysis of corpora and resulting probabilities would depend on the size and nature of input cor-
pora. Moreover, the background taxonomy must be as complete as possible (i.e., it should include most of 
the specializations of each concept) in order to provide reliable results. Partial taxonomies with a limited 
scope may not be suitable for this purpose. All those aspects limit the scalability and applicability of those 
approaches.  

Considering the limitations of IC-based approaches due to their dependency on corpora, some authors 
tried to intrinsically derive IC values from an ontology. Those works rely on the assumption that the taxo-
nomic structure of ontologies like WordNet is organized in a meaningful way, according to the principle of 
cognitive saliency (Blank, 2003). This states that humans specialise concepts when they need to differentiate 
them from already existing ones. So, concepts with many hyponyms (i.e., specializations) provide less in-
formation than the concepts at the leaves of the hierarchy. From the Information Theory point of view, they 
consider that abstract ontological concepts appear more probably in a corpus as they subsume many other 
ones. In this manner, they estimate the probability of appearance of a concept and in consequence, the 
amount of information that a concept provides, as a function of the number of hyponyms and/or their relative 
depth in the taxonomy.  

Seco et al., (Seco et al., 2004) and Pirró and Seco (Pirró and Seco, 2008) base IC calculations on the 
number of hyponyms. Being hypo(a) the number of hyponyms of the concept a and max_nodes the maxi-
mum number of concepts in the taxonomy, they compute the IC of a concept in the following way (20):  
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The denominator (corresponding to the most informative concept) ensures that IC values are normalized 
in the range 0..1.  
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This approach only considers hyponyms of a given concept in the taxonomy; so, concepts with the same 
number of hyponyms but different degrees of generality appear to be equally similar. In order to tackle the 
problem, and in the same manner as for edge-counting measures, Zhou et al., (Zhou et al., 2008) proposed to 
complement the hyponym-based IC computation with the relative depth of each concept in the taxonomy. 
The IC of a concept is computed as (21):  
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In addition to hypo and max_nodes, which have the same meaning as eq. 20, deep(a) corresponds to the 
depth of the concept a in the taxonomy and max_depth is the maximum depth of the taxonomy. K is a factor 
that adjusts the weight of the two features involved in the IC assessment. They use k=0.5. 

Both ways of computing IC intrinsically have been applied directly on the similarity functions proposed 
by Resnik, Lin and Jiang and Conrath. Those approaches overcome most of the problems observed for cor-
pus-based IC approaches (specifically, the need of corpus processing and their high data-sparseness) compet-
ing and even improving with them in terms of accuracy (as it will be stated in the evaluation) when applied 
over WordNet. However, they require big, detailed and fine grained taxonomies/ontologies in order to enable 
an accurate estimation of the concept’s IC. For small or very specialized ontologies with a limited taxonomi-
cal depth and low branching factor, the resulting IC values between concepts would be too homogenous to 
enable a proper differentiation. 

 

4.2 Distributional approaches 

On the contrary to ontology-based measures, distributional approaches only use text corpora as the source 
to infer semantics. They are based on the assumption that words with similar distributional properties have 
similar meanings (Waltinger et al., 2009); so, they infer semantic likeness from word co-occurrences in text 
corpora. As words may co-occur due to many different reasons (i.e., being taxonomically related or not), 
distributional measures capture the more general sense of relatedness in contrast to taxonomically-based 
similarity measures.  

According to the way in which distributional resemblance is determined, one may distinguish two differ-
ent approaches. On one hand, some authors measure similarity from direct word co-occurrence in text (first 
order co-occurrence). On the other hand, other authors estimate relatedness as a function of the similarity of 
the contexts in which words occur (second order co-occurrence). In this section, we survey the main pro-
posals of each kind. 
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4.2.1 First order co-occurrence 

First order co-occurrence-based approaches rely on the principle that the more frequently two words ap-
pear together, the higher their relatedness. This follows the simple cognitive principle that people would 
judge two words as similar because they are exposed to them simultaneously (Lemaire and Denhière, 2006).  

Being completely corpora-dependant, the choice of input data is crucial for these methods. In order to ex-
tract reliable conclusions, the corpus should be as representative as possible with regards to the real social-
scale information distribution. For practical reasons, the analysis is restricted to textual sources, mainly due 
to the fact that people usually learn words from texts (Landauer and Dumais, 1997). As a result, the text cor-
pora size and heterogeneity are important dimensions for being able to capture global-scale knowledge.  

The Web, being the biggest electronic repository currently available, created from the interaction of a big 
community of users, represents one of the best options to apply those measures (Sánchez and Moreno, 2008). 
In fact, unsupervised models perform better when statistics are obtained from the Web rather than from other 
large corpora (Keller and Lapata, 2003). 

First order approaches estimate relatedness as a function of the probability of co-occurrence of two terms 
in relation to individual probabilities. As computing absolute term appearances in the Web is very time con-
suming, authors associate probabilities to page counts provided by Web search engines. It is important to 
note that those engines estimate the number of appearances of a given query in individual documents but not 
the total amount of appearances (e.g., in case of several appearances per document).   

Pointwise Mutual Information (PMI) was one of the first functions to be adapted to the Web to compute 
term appearance probabilities from the Web page count (Turney, 2001). It is defined as the comparison be-
tween the probability of observing a and b together (estimated from the page count of the query ‘a AND b’) 
and observing them independently (estimated from the page count when querying a and b alone). If they are 
not statistically independent, they will have a tendency to co-occur (which is the case of words in a corpus) 
and the numerator will be greater than the denominator. Therefore, the resulting ratio (22) is a measure of the 
degree of statistical dependency between a and b (Turney, 2001). For the remainder of this document we use 
the notation H(a) and H(b) to denote the page count (i.e., hits) provided by a search engine when querying 
‘a’ and ‘b’ respectively and H(a,b) the page count when query ‘a AND b’. M is the total number of pages 
indexed by the search engine. 
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Cilibrasi and Vitanyi (Cilibrasi and Vitányi, 2006), by carefully studying Information Theory, proposed a 
distance metric between words using Web search engine’s page counts. It is defined as the normalized in-
formation distance (Y. Li et al., 2003) between two words. The function, named Normalised Google Dis-
tance (NGD) is defined as follows (23): 
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Bollegala (Bollegala et al., 2007) adapted several classical co-occurrence measures: Jaccard (24), Overlap 
(Simpson) (25), Dice (26) and the mentioned PMI in a similar way as Turney did (27). 
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In order to minimize the influence of noise in Web data, they set each coefficient to zero if the page count 
for the query a AND b is less than a threshold (λ = 5 was used in (Bollegala et al., 2007)). This omits some 
cases of random co-occurrences and misspelled terms. M is estimated as 1010 according to the number of 
indexed pages reported by Google in 2007.

 
Instead of using the absolute value of page counts for a given query, Chen et al., (H.-H. Chen et al., 2006) 

rely on the amount of co-occurrences observed in the, apparently, most reliable resources: those presented in 
the first positions of the results list by the search engine. For two terms a and b, they collect a fixed number 
of snippets provided by the search engine when querying each term. Snippets are brief windows of text ex-
tracted by a search engine around the query term in a document and provide, in a direct manner, a local con-
text for the queried term. Snippet processing is very efficient when compared to the cost of accessing and 
downloading individual Web documents. Then, they count the number of occurrences of a in the snippets of 
b f(a@b) and vice-versa f(b@a). The two values are combined in a non-linear fashion to compute their relat-
edness (with a function called CODC). 
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, where f represents the number of occurrences of the corresponding term in the top N snippets returned 
by the search engine when querying the term. The constants α=0.15 and N=600 were used in their experi-
ments (H.-H. Chen et al., 2006). 

This approach heavily depends on the Web search engine ranking algorithm and the fact that only a sub-
set of snippets can be processed (i.e., most search engines only provide access to the first 1000 Web re-
sources for a given query). Therefore, there is no guarantee that the evidence needed to support the semantic 
assessment for a pair of terms will be contained in the top-ranked snippets. As a result, even though this 
method is able to provide relatively reliable results for common and related terms, it suffers from high data 
sparseness due to the locality of the analysis.  

In a more elaborated approach, Bollegala et al., (Bollegala et al., 2007) also relied on snippets obtained 
when querying both terms, a and b, at the same time. Snippets are used as co-occurrence context, and lexical 
patterns (n-grams in a window from 2 to 5 words), evidencing the co-occurrence of a and b, are extracted. 
The most reliable patterns according to a predefined list are selected, and the number of their appearances is 
normalized. They create a feature vector using 200 patterns and the Web scores for a and b computed from 
the functions Web-Dice (26), Web-overlap (25), Web-Jaccard (24) and Web-PMI (27) stated above. The 
vector is created for a pre-tagged set of synonym and non-synonym word pairs and a SVM is trained accord-
ingly. The trained SVM is then used to classify new word pairs using the same vector-based procedure. Se-
mantic relatedness (referred with the name SemSim) is computed as the posterior probability 
Prob(F|synonymous) that the obtained feature vector F belongs to the synonymous-word class (29). 

)|(),( synonymousFProbbaSemSim =
  

     (29) 

In Bollegala et al., (Bollegala et al., 2009) the same authors modified their measure by: 1) introducing an 
algorithm to select the most reliable lexical patterns according to a set of semantically related words which 
are used as training data, and 2) clustering semantically related patterns into groups in order to overcome 
data sparseness of a fine-grained pattern list and reduce the number of training parameters. As a result, two 
words are represented by a feature vector defined over the clusters of patterns. Semantic relatedness is com-
puted as the Mahalanobis distance between the points of the feature vectors.  

It is important to note that Bollegala et al.,’s supervised measures cannot be compared in the same terms 
as the simpler scores presented above, as authors rely on pre-tagged data and trained classifiers. This intro-
duces many limitations such as the fact that manually tagged training data should be available and that this 
data should be general and big enough to avoid the risk that the classifier could be overfitted by them. As a 
result, the same problems noted for the IC corpus-based measures can be noted in this case. 

In general, the main advantage of co-occurrence-based approaches is that, relying uniquely on the Web, 
they do not need any knowledge source to support the assessment. Thanks to the Web coverage of almost 
any written word, they can be applied to terms that are not typically considered in ontologies such as named 
entities. However, their unsupervised nature and their reliance on search engine page counts introduce sever-
al drawbacks. On one hand, word co-occurrence estimated by page-counts omits the semantic dimension of 
the co-occurrence. Words may co-occur because they are taxonomically related, but also because they are 
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antonyms or by pure chance. So, page counts (without considering the relative positions of words in the doc-
ument) give a rough estimation of statistical dependency. On the other hand, page counts deal with words 
rather than concepts (on the contrary to ontological features). Due to the ambiguity of language and the 
omission of word context analysis during the relatedness assessment, polysemy and synonymy may nega-
tively affect the estimation of concept probability by means of word appearance frequency. Polysemic words 
associated to a concept cause that their page counts contain a combination of all their senses. Moreover, the 
presence of synonyms for a given concept causes that word page counts underestimate the real concept prob-
ability. Finally, as stated above, page counts may not be necessarily equal to word frequency because the 
queried word might appear several times on a Web resource. Due to these reasons, some authors have ques-
tioned the usefulness of page counts alone as a measure of relatedness (Bollegala et al., 2007).  

In (Bollegala et al., 2007; Lemaire and Denhière, 2006) the effectiveness of relying on first order co-
occurrences as a measure of relatedness is also questioned. Studies on large corpora gave examples of 
strongly associated words that never co-occur (Lund and Burgess, 1996). This situation is caused, in many 
cases, by the fact that both words tend to co-occur with a third one. Psycholinguistics researchers have 
shown that, in those cases, the association between two words is done by means of a third word (Livesay and 
Burgess, 1998). This is called a second-order co-occurrence (Lemaire and Denhière, 2006), which is pre-
cisely the principle of the approaches reviewed in the following section.  

 

4.2.2 Second order co-occurrence 

Second order co-occurrence measures are based on the principle that two words are similar to the extent 
that their contexts are similar. The definition of context may vary from one measure to another and might be 
considered a small or large window around a word occurrence or an entire document. 

A classical approach based on this principle is Latent Semantic Analysis (LSA) (Deerwester et al., 2000). 
It consists on compiling a term context matrix containing the occurrences of each word in each context. A 
Singular Value Decompositions (SVD) process is performed to enhance the differences between reliable and 
unreliable extractions. Considering word context as vectors, the final distance between words is computed as 
the cosine of the angle between them. 

Using the Web as corpus, Sahami and Heilman (Sahami and Heilman, 2006) computed the likeness be-
tween two terms by means of snippets returned when querying those terms in a search engine. Authors pro-
cess each snippet and represent it as a TF-IDF weighted word vector. The centroid of the set of vectors ob-
tained by querying each term is defined, and the relatedness between two terms is computed as the inner 
product between the corresponding centroids. 

Even though using the Web as a corpus and search engines as middlewares has several advantages de-
rived from the Web’s size and heterogeneity, some authors have criticized their usefulness as a support for 
relatedness computation. While semantic relatedness is inherently a relation on concepts, Web-based ap-
proaches measure a relation on words (Budanitsky and Hirst, 2006) . A big-enough sense-tagged corpora is 
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needed to obtain reliable concept distributions from word senses, much like corpus-based IC measures need-
ed in the past. However, due to the nature of the Web, it is not feasible to have such tagged corpora, at least 
until the Semantic Web (Berners-Lee et al., 2001) becomes a reality. Moreover, ontology-based measures 
rely on pre-defined knowledge sources manually created by human experts, which one may consider to be 
true and unbiased. The Web, on the other hand, is not. As stated above, commercial bias, spam, noise and 
data sparseness are problems that may affect distributional measures when using the Web as corpora. 

In order to overcome those problems, some authors preferred to apply distributional hypotheses over 
more reliable corpora. Concept glosses from wide thesaurus like WordNet were exploited. Glosses are brief 
and explanatory notes about the meaning of a particular word sense. Words appearing in a gloss are likely to 
be more relevant for the concept’s meaning than text drawn from a generic corpus and, in consequence, may 
represent a more reliable context. Based on the distributional hypothesis, if two terms have similar glosses 
(i.e., their textual descriptions overlap), they are likely to have similar meanings.   

Banerjee and Pedersen (Banerjee and Pedersen, 2003) presented the Extended Gloss Overlap (EGO) 
measure (30), which determines the relatedness of terms as a function of the overlap of their WordNet gloss-
es. As synset glosses in WordNet tend to be rather short, they extended the gloss by including example sen-
tences (also provided by WordNet) and glosses of related concepts directly linked by means of a semantic 
relation. 

))(),(())(),(())(),((
))(),(())(),((),(

bhyperaglossscorebglossahyperscorebhypoahyposcore
bhyperahyperscorebglossaglossscorebaEGO

+++
++=

 
 (30) 

, where score() is the function that find the phrases that overlap between two glosses and returns a score 
as defined in (Banerjee and Pedersen, 2003); hypo(a) and hyper(a) represent respectively hyponyms and 
hypernyms of a in the given ontology. 

Patwardhan and Pedersen (Patwardhan and Pedersen, 2006) also used extended WordNet glosses as cor-
pora to retrieve co-occurrence information for term contexts, creating gloss vectors (GV). Gloss vectors are 
constructed considering gloss words that are not a stop word and whose occurrence is above a minimum 
frequency. Due to the size of WordNet and the extension of glosses (which consist on approximately 1.4 
million words once low frequency and stop words are removed), vectors are defined in a space of 20,000 
dimensions. The relatedness between two words is defined as the cosine of the angle between gloss vectors 
(31).  
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, where avr and bvr are the context vectors corresponding to a and b respectively. 

The Gloss Vector measure presents some advantages over the Extended Gloss Overlap, as the later looks 
for exact string overlaps as a measure of relatedness. Gloss Vector does not rely on exact matches by using 
vectors that capture the contextual representation of concepts. 
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Wan and Angryk (Wan and Angryk, 2007) identified some weaknesses of Patwardhan and Pedersen’s 
measure and proposed and new Context Vector measure based on a similar principle. They used related 
synsets instead of their glosses to augment the gloss of a term. At the end, they join the term synset and 
synsets having direct semantic relations to the concerned term synset, together with all direct and inherited 
hypernyms. In order to limit the vector space, they remove senses with a frequency of appearance in a corpus 
lower than a threshold. Finally, the cosine of the angle between vectors is used as relatedness measure as in 
the previous formula (30).  

As it will be discussed in the evaluation section, the use of reliable glosses instead of the Web as corpora 
results in a significant improvement of accuracy. However, the computational complexity is a factor that 
hampers those measures as the creation of context vectors in such a big dimensional space is considerable. 
Moreover, the quality of the words used as the dimensions of these vectors greatly influences the accuracy of 
the results. Big differences were observed by the authors (Patwardhan and Pedersen, 2006) when changing 
the frequency cut-off for scarce senses. Finally, by relying on WordNet glosses, those measures are hardly 
applicable to other ontologies in which glosses or textual descriptions are typically omitted (Ding et al., 
2004). In fact, Pedersen et al., (Pedersen et al., 2007) applied the Gloss Vector measure to the biomedical 
domain by exploiting the SNOMED-CT repository as ontology. Due to the lack of concept glosses, they 
required a time-consuming process of manual compilation and processing of a large set of medical diagnoses 
from which to extract term descriptions. In that case, the algorithm parameters, such as the choice and size of 
corpora, had a very notorious influence in the results. 
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4.3 Evaluation 

As stated in (Bollegala et al., 2009), an objective evaluation of the accuracy of a semantic similarity func-

tion is difficult because the notion of similarity is subjective. In order to enable fair comparisons, several 

authors have created evaluation benchmarks consisting of word pairs whose similarity was assessed by a set 

of humans. Rubenstein and Goodenough (Rubenstein and Goodenough, 1965) defined the first experiment in 

1965 in which a group of 51 students, all native English speakers, assessed the similarity of 65 word pairs 

selected from ordinary English nouns on a scale from 0 (semantically unrelated) to 4 (highly synonymous). 

Miller and Charles (Miller and Charles, 1991) re-created the experiment in 1991 by taking a subset of 30 

noun pairs whose similarity was reassessed by 38 undergraduate students. The correlation obtained with 

respect to Rubenstein and Goodenough’s experiment was 0.97. Resnik (Resnik, 1995) replicated again the 

same experiment in 1995, in this case, requesting 10 computer science graduate students and post-doc re-

searchers to assess similarity. The correlation with respect to Miller and Charles results was 0.96. Finally, 

Pirro (Pirró, 2009) replicated and compared the three above experiments in 2009, involving 101 human sub-

jects, both English and non-English native speakers. He obtained an average correlation of 0.97 with respect 

to Rubenstein and Goodenough’s experiment, and 0.95 with respect to Miller and Charles’ experiment. It is 

interesting to see the high correlation obtained between the experiments even though being performed in a 

period of more than 40 years and with heterogeneous sets of people. This means that the similarity between 

the selected words is stable over the years, making them a reliable source for comparing measures.  

Rubenstein and Goodenough’s and Miller and Charles’ benchmarks have become de facto tests to eval-

uate and compare the accuracy of similarity measures. The correlation values obtained against those bench-

marks can be used to numerically quantify the closeness of two ratings sets (i.e., the human judgments and 

the results of the computerized assessment). If the two rating sets are exactly the same, the correlation coeffi-

cient is 1, whereas 0 means that there is no relation. Spearman’s and Pearson’s correlations coefficients have 

been commonly used in the literature; both are equivalent if the ratings sets are ordered (which is the case). 

They are also invariant to linear transformations which may be performed over the results such as a change 

between distance and similarity by changing the sign of the value or normalizing values in a range.  

We have taken the correlation values reported by related works for Rubenstein and Goodenough’s and 

Miller and Charles’ benchmarks (when available) and summarized them in Table 4. In the case in which a 

concrete measure depends on certain parameters (such as weights or corpora selection/processing) the best 

correlation value reported according to optimum parameter tuning was compiled. It is important to note that, 

even though some of them rely on different knowledge sources (such as tagged corpora or the Web), all the 

ontology-based ones use WordNet. WordNet 2 is the most common version used in related works. In cases in 

which the original authors used an older version (WordNet 2 was released in July 2003), we took a more 

recent replication of the measure evaluation performed by another author in order to enable a fair compari-

son. As a result, we picked up results reported by authors in papers published from 2004 to 2009.   



 

 

  ITAKA Group 2010                                           - 36 - 

 

Table 4.  Correlation values. From left to right: authors, measure type, correlation with Miller and Charles’ benchmark, correlation 
with Rubenstein and Goodenough’s benchmark and reference in which those correlations where reported. 

Measure  Type M&C R&G Evaluated in 

Rada et al., (path length) Edge-counting 0.59 N/A (Petrakis et al., 2006) 

Wu and Palmer Edge-counting 0.74 N/A (Petrakis et al., 2006) 

Leacock and Chodorow Edge-counting 0.74 0.77 (Patwardhan and Pedersen, 2006) 

Li et al., Edge-counting 0.82 N/A (Petrakis et al., 2006) 

Al-Mubaid and Nguyen (sem) Edge-counting N/A 0.815 (Hisham   Al-Mubaid and 

Nguyen, 2009) 

Hirst and St-Onge Edge-counting 0.78 0.81 (Wan and Angryk, 2007) 

Rodriguez and Egenhofer Feature 0.71 N/A (Petrakis et al., 2006) 

Tversky Feature 0.73 N/A (Petrakis et al., 2006) 

Petrakis et al., (X-similarity) Feature 0.74 N/A (Petrakis et al., 2006) 

Resnik IC (corpus) 0.72 0.72 (Patwardhan and Pedersen, 2006) 

Lin IC (corpus) 0.7 0.72 (Patwardhan and Pedersen, 2006) 

Jiang and Conrath IC (corpus) 0.73 0.75 (Patwardhan and Pedersen, 2006) 

Resnik (IC computed as Seco et al.,) IC (intrinsic) N/A 0.829 (Zhou et al., 2008) 

Lin (IC computed as Seco et al.,) IC (intrinsic) N/A 0.845 (Zhou et al., 2008) 

Jiang and Conrath (IC computed as Seco et al.,) IC (intrinsic) N/A 0.823 (Zhou et al., 2008) 

Resnik (IC computed as Zhou et al.,) IC (intrinsic) N/A 0.842 (Zhou et al., 2008) 

Lin (IC computed as Zhou et al.,) IC (intrinsic) N/A 0.866 (Zhou et al., 2008) 

Jiang and Conrath (IC computed as Zhou et al.,) IC (intrinsic) N/A 0.858 (Zhou et al., 2008) 

Normalized Google Distance 1st ord. co-occ. 0.205 N/A (Bollegala et al., 2009) 

Web-Jaccard 1st ord. co-occ. 0.259 N/A (Bollegala et al., 2007) 

Web-Overlap 1st ord. co-occ. 0.382 N/A (Bollegala et al., 2007) 

Web-Dice 1st ord. co-occ. 0.267 N/A (Bollegala et al., 2007) 

Web-PMI 1st ord. co-occ. 0.548 N/A (Bollegala et al., 2007) 

Chen et al., (CODC) 1st ord. co-occ. 0.693 N/A (Bollegala et al., 2007) 

Bollegala et al., 2007 (SemSim) 1st ord. co-occ. 0.834 N/A (Bollegala et al., 2007) 

Bollegala et al., 2009 1st ord. co-occ. 0.867 N/A (Bollegala et al., 2009) 

Latent Semantic Analysis 2n ord. (Web) 0.72 N/A (Seco et al., 2004) 

Sahami and Heilman 2n ord. (Web) 0.579 N/A (Bollegala et al., 2007) 

Banerjee and Pedersen (Extended Gloss Overlap) 2n ord. (WordNet) 0.81 0.83 (Patwardhan and Pedersen, 2006) 

Patwardhan and Pedersen (Gloss Vector) 2n ord. (WordNet) 0.91 0.9 (Patwardhan and Pedersen, 2006) 

Wan and Angryk (Context Vector) 2n ord. (WordNet) 0.80 0.83 (Wan and Angryk, 2007) 
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4.4 Discussion 

For ontology-based measures, the basic path length measure (Rada et al., 1989) presents the lowest accu-

racy (0.59) due to the fact that the absolute lengths of the paths between two concepts may not accurately 

represent their specificity. This is the case of WordNet, since concepts higher in the hierarchy are more gen-

eral than those lower in the hierarchy (Pirró, 2009). As a result, other edge-counting approaches also exploit-

ing the relative depth of the taxonomy (Wu and Palmer (Wu and Palmer, 1994), Leadcock and Chodorow 

(Leacock and Chodorow, 1998)) offer a higher accuracy (0.74). The correlation values obtained by Li (Y. Li 

et al., 2003) and Al-Mubaid and Nguyen  (H. Al-Mubaid and Nguyen, 2006), which combine the length of 

the path with the depth of the concepts in a weighted and non-linear manner, are remarkable. However, they 

rely on empirical parameters whose values have been experimentally determined to optimize the accuracy 

for the evaluated benchmark, hampering their generality. Hirst and St-Onge (Hirst and St-Onge, 1998) pre-

sent a similar behaviour, also relying on tuning parameters but, in this case, using non-taxonomic relation-

ships that consider a more general concept of relatedness.  

Feature-based methods try to overcome the limitations of path-based measures by considering different 

kinds of ontological features. The problem, which has been also noted for some edge-counting measures, is 

their dependence on the parameters introduced to weight the contribution of each feature (for the approaches 

of Rodriguez and Egenhofer (Rodríguez and Egenhofer, 2003) and Tversky (Tversky, 1977) approaches). 

Correlation values are, however, very similar to those offered by edge-counting measures (0.71-0.74) in the-

se benchmarks. This can due to the fact that they rely on concept features, such as synsets, glosses or non-

taxonomic relationships which have secondary importance in ontologies like WordNet in comparison with 

taxonomical features. In fact, those kinds of features are scarce in ontologies (Ding et al., 2004), which caus-

es those approaches to be based on partially modelled knowledge. As a result, those measures, even being 

more complex, are not able to significantly outperform the state of the art of edge-counting measures.     

For IC-based measures, we observe that the approaches relying on an intrinsic computation of IC (based 

on the number of concept hyponyms) clearly outperform the approaches relying on corpora (0.72 vs. 0.84, in 

average). This is very convenient as corpora dependency seriously hampers the applicability of classical IC 

measures. The difference between both ways of computing IC is caused by two factors. Firstly, the data 

sparseness problem that appears when relying on tagged corpora (which would be necessary small due to 

manual tagging) to obtain accurate concept appearance frequencies. Secondly, the fact that WordNet’s tax-

onomy is detailed and fine-grained, which enables an accurate estimation of a term’s generality as a function 

of its number of hyponyms. With regard to the performance of each measure, Lin’s (Lin, 1998) tends to im-

prove Resnik’s (Resnik, 1995) one when IC is computed intrinsically, as the former is able to differentiate 

terms with identical LCS but different taxonomical depths. With regard to the way in which the intrinsic IC 
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is computed, more complex approaches also exploiting relative depth and relying on weighting parameters 

(Zhou et al., (Zhou et al., 2008)) offer the highest accuracy (0.86).     

With regard to distributional approaches, unsupervised approaches relying on direct term co-occurrences 

computed from Web page counts (Web-Jaccard, Web-Overlap, Web-PMI, Web-Dice and NGD) offer a lim-

ited performance (between 0.2 and 0.54). As stated in section 2.2.1, uncontextual Web page-counts are not 

accurate enough to estimate reliable term resemblance due to ambiguity and noise of word Web occurrences. 

On the contrary, Chen et al., (H.-H. Chen et al., 2006), and Bollegala et al., works (Bollegala et al., 2007, 

2009) exploit snippets as contexts in which terms co-occur. In these experiments, we can see that this ap-

proach produces a less ambiguous estimation of term co-occurrence (due to their likeness) and better accura-

cy (0.69 for Chen et al.,’s approach). Bollegala et al., works offer a noticeably high accuracy (0.83-0.86) as 

they rely on a supervised classifier (trained SVM) and lexical patterns to distinguish highly similar co-

occurrent words (such as synonyms) from less related ones. Even though those methods can be applied to 

terms that are not typically covered by ontologies (such as named entities), their dependency on manually 

tagged data and trained classifiers compromise their applicability. 

Distributional approaches based on second order co-occurrences computed from the Web (such as LSA) 

improve the results of unsupervised first order approaches (0.72 vs. 0.54). Second order co-occurrences are 

able to capture non-directly co-occurrent words (such as synonyms) that, even though being highly related, 

typically co-occur by means of a third word. When a highly reliable and structured corpus such as WordNet 

glosses is used instead of the more general and noisy Web, the accuracy is significantly improved. In this 

manner, gloss vector and gloss overlap-based approaches (Banerjee and Pedersen, 2003; Patwardhan and 

Pedersen, 2006; Wan and Angryk, 2007) are able to obtain correlation values among 0.8 and 0.91 in these 

tests. In fact, the Gloss Vector approach reported the highest correlation values ever achieved for the evalu-

ated benchmarks (0.91 and 0.9). It is worth to noting that the Context Vector measure (Wan and Angryk, 

2007), even aiming to overcome some of the theoretical limitations observed by the authors for the Gloss 

Vector measure, obtained a lower correlation (0.91 vs. 0.8). However, the Gloss Vector accuracy heavily 

depends on the way in which contexts are built. Authors (Patwardhan and Pedersen, 2006) reported a high 

variability on the results according to the filtering policy (i.e., stop words removal and TF-IDF-based cut-

offs) applied to words extracted from concept glosses. As a result, the maximum correlation value is ob-

tained under a carefully tuned setting. The accuracy lowered down to 0.7 when TF-IDF cut-offs were modi-

fied in the authors’ experiments. Another limitation is caused by their reliance on concept glosses. When this 

information is not directly available (which is the usual case in ontologies), word vectors are more difficult 

to build, requiring the compilation and processing of reliable corpora. The same authors (Pedersen et al., 

2007) discussed the difficulties and dependency on corpora and parameter tuning of their measure when 

applied to the domain of Biomedicine. These dependencies limit the applicability of those measures in con-

crete domains. 
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Summarizing, intrinsinc IC-based measures provide a high accuracy without any dependency on data 

availability, data pre-processing or tuning parameters for a concrete scenario. As they only rely on the most 

commonly available ontological feature, they ensure their generality as a domain-independent proposal. At 

the same time, they retain the low computational complexity and lack of constraints of edge-counting 

measures as they only require retrieving, comparing and counting ontological hyponyms. This ensures its 

scalability when it must be used in engineering or data mining applications, which may require dealing with 

large sets of terms (Armengol, 2009; Batet et al., 2008).  

As any other ontology-based measure, the final accuracy will depend on the detail, completeness and co-

herency of the taxonomical knowledge. Moreover, most of the improvements achieved by these approaches 

are derived from the fact that the similarity is estimated from the total set of subsumer concepts considering 

the different taxonomical hierarchies. If the input ontology offers little taxonomical detail, the accuracy im-

provements of these approaches with respect to the measures based on the minimum path are likely to be less 

noticeable. Fortunately, large and broad ontologies are being developed, like WordNet as a general purpose 

description of concepts, SNOMED-CT or MeSH in the medical context or OntoCAPE (Morbach et al., 2007) 

for the engineering domain. 
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5 Semantic similarity measures into clustering algorithms 

As it has been seen in section 2, both the partitional and hierachical approaches to clustering have a critical 
component: the way of measuring the distance or dissimilarity between a pair of individuals. The distance 
between individuals (or centroids) is a clue to decide which individuals belong to the same cluster. In fact, it 
is in the core of the goal of the clustering, which is to find a set of clusters with similar individuals. 

In this project, a data matrix with different types of values will be considered. The DAMASK project 
will include numerical, nominal (i.e. non-ordered categorical values) and semantic features. Semantic fea-
tures are an extension of categorical features, which have a non fixed and large set of possible values, with-
out any order or scale of measurement defined between terms.  

Traditionally, the comparison between two values in categorical variables is done simply based on the 
equality/inequality of the words, due to the lack of proper methods for representing the meaning of the terms. 
Some widely used distance measures for categorical values are the Chi-Squared and the Hamming distance 
(Esposito et al., 2000). However, as it has been explained in section 4, nowadays there are many ways to 
estimate the similarity between terms from a semantic point of view. In the so-called semantic features, each 
of the values in the data matrix corresponds to a concept, thus, reasoning at a conceptual level should be 
done in order to estimate the similarity between objects during the clustering process.  

When heterogeneous types of values must be taken into consideration in a joint way, two main ap-
proaches can be used: 

1. The transformation of the values into a common domain (e.g. discretization of numerical variables, or 
mapping the data into a new space using projection algorithms (Anderberg, 1973; Anil K. Jain and 
Dubes, 1988)). 

2.  The use of compatibility measures that combine different expressions according to the type of each of 
the variables (Anderberg, 1973; Gibert and Cortés, 1997; Gowda and Diday, 1991; Ichino and 
Yaguchi, 1994).  

This second approach allows the analysis of the different values maintaining the original scales, without 
making any transformation, having three main advantages: (1) data are analyzed in its original nature, (2) 
there is no a priori loss of information produced by previous transformations (i.e. discretization of numerical 
variables) and (3) it avoids taking previous arbitrary decisions that could bias results.  

In order to take advantage of the potential of semantic similarity measures, a compatibility measure is 

needed to combine the contribution of numerical, nominal and semantic features into a global function. After 

the definition of this compatibility operation, any of the semantic similarity functions could be used to deal 

with the comparison of semantic values (i.e. terms corresponding to concepts). Some preliminary work in 

such a compatibility measure has already been proposed by the research team of this project in (Batet et al., 

2008). 
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