Francesc
Serratosa. List of Publications
https://webs-deim.urv.cat/~francesc.serratosa/
DBLP
ResearchGate
Google Scholar
(Red: In Science Citation Index)
The ultimate aims of
research are to generate measurable and testable data, gradually adding to the
accumulation of human knowledge
----2025----
189 (64).
Yarkın Çetin, Laura Escorihuela, Benjamí Martorell
and Francesc Serratosa, Revisiting Water Adsorption on TiO2 and ZnO Surfaces: An SCC-DFTB Molecular Dynamics Study, ACS
Omega, 2025. https://doi.org/10.1021/acsomega.4c07557
----2024----
188 (63).
Francesc Serratosa, GraphFingerprint: Graph Embedding of graphs with almost
constant sub-structures, Pattern Analysis and Applications, 2024. https://link.springer.com/article/10.1007/s10044-024-01366-w
187 (62).
Natàlia Segura-Alabart,
Francesc Serratosa, Alberto Fernández, A practical study of the proportion of
non-unique neighbor-joining trees of microsatellite
markers, Computational and Structural Biotechnology Reports, 2024. https://www.sciencedirect.com/science/article/pii/S295036392400022X?via%3Dihub
186 (61).
Yarkın Çetin, Benjamí Martorell, Francesc Serratosa, Mònica
Calatayud, Adsorption of Guanine on Oxygen-Deficient
TiO2 Surface: A Combined MD-DFTB/DFT Strategy, ACS Omega,
2024. https://pubs.acs.org/doi/10.1021/acsomega.4c05806
185. F. Serratosa,
Graph Regression based on Autoencoders and Graph Autoencoders, International
Congress on Pattern Recognition, ICPR2024, LNCS 15310, 2024. https://link.springer.com/chapter/10.1007/978-3-031-78192-6_23
184. F.
Serratosa, A generative algorithm to compute NanoFingerprints, Iberoamerican Congress on Pattern Recognition, CIARP2024,
LNCS 15369, pp: 90-103, 2024. https://link.springer.com/book/10.1007/978-3-031-76604-6
183. N.
Segura-Alabart, A. Fernández and F. Serratosa,
Evaluation metrics in Saliency Maps applied to Graph Regression, Syntactic and
Structural Pattern Recognition, SSPR2024, LNCS, pp:,
2024.
182 (60). Yarkın Çetin, Benjamí
Martorell, Francesc Serratosa, Prediction of Electronic Density of States in
Guanine-TiO2 Adsorption Model based on Machine Learning, Computational and
Structural Biotechnology Reports, 2024. https://www.sciencedirect.com/science/article/pii/S2950363924000085
181 (59). F. Serratosa, ATENA: A web-based tool for modelling metal oxide
nanoparticles based on the NanoFingerprint QSAR, Molecules, 29 (10), 2024. https://www.mdpi.com/1420-3049/29/10/2235
----2023----
180 (58). A. Fernández, N. Segura-Alabart and F. Serratosa, The MultiFurcating Neighbor-Joining Algorithm for Reconstructing Polytomic Phylogenetic Trees, Journal of Molecular Evolution, https://doi.org/10.1007/s00239-023-10134-z
179. F.
Serratosa, Graph Embedding
of almost constant large graphs, Iberoamerican Congress on Pattern Recognition, CIARP2023, Coimbra,
Portugal, LNCS: 14469, pp: 16–30, 2023. https://link.springer.com/chapter/10.1007/978-3-031-49018-7_2
178. S. Fadlallah, N. Segura-Alabart, C. Julià and F. Serratosa, Splitting Structural and Semantic Knowledge in Graph
Autoencoders for Graph Regression, Graph-Based Representations in Pattern Recognition 2023, Salerno, Italy,
LNCS: 14121, pp: 81-91, 2023. https://doi.org/10.1007/978-3-031-42795-4_8
177. A.
Qadir, W. González-López, N. Duncan and
F. Serratosa, Automatic fish detection and tracking for analysis of
reproductive behaviours in Senegalese sole (Solea
senegalensis) using neural networks and the DeepSORT
algorithm, 12th International Symposium on Reproductive Physiology of Fish
2023, Crete, Grece, 2023.
176 (57). S. Fadlallah, C. Julià, S. García-Vallvé, G. Pujadas and F. Serratosa, Drug Potency Prediction of SARS-CoV-2 Main Protease
Inhibitors Based on a Graph Generative Model, International
Journal of Molecular Sciences, pp:, 2023. https://www.mdpi.com/1422-0067/24/10/8779
----2022----
175. W.A
González López, A. Qadir1, N. Duncan and F. Serratosa, Fish tracking for
automatic detection of reproductive behaviour, Aquaculture Europe 2022,
Rimini, Italy, pp:, 2022.
174. S. Fadlallah, C. Julià & F.
Serratosa, Graph Regression based on Graph Autoencoders, Syntactic and
Structural Pattern Recognition, SSPR2022, LNCS 13813, pp 142:151, 2022. https://doi.org/10.1007/978-3-031-23028-8_15
173. E.
Rica, S.Álvarez & F.
Serratosa, Tarragona Graph Database for Machine Learning based on Graphs,
Syntactic and Structural Pattern Recognition, SSPR2022, LNCS 13813, pp
302:310, 2022. https://doi.org/10.1007/978-3-031-23028-8_31
172. E.
Rica, S.Álvarez & F. Serratosa,
Learning Distances between Graph nodes and edges, Syntactic and Structural
Pattern Recognition, SSPR2022, LNCS 13813, pp 103:112, 2022. https://doi.org/10.1007/978-3-031-23028-8_11
171. E.
Rica, S.Álvarez & F.
Serratosa, Zero-Error Digitisation and Contextualisation of Piping and
Instrumentation Diagrams using Node Classification and Sub-graph Search,
Syntactic and Structural Pattern Recognition, SSPR2022, LNCS 13813, pp.
274:282, 2022. https://doi.org/10.1007/978-3-031-23028-8_28
170 (56). N. Segura-Alabart, F. Serratosa, S. Gómez1 and A. Fernández,
Non-unique UPGMA clusterings of microsatellite
markers, Briefings in Bioinformatics, 2022. https://doi.org/10.1093/bib/bbac312
169. F.
Serratosa, S. Álvarez, L. Escorihuela and M. Calatayud, Subgraph NanoFingerprint for modelling metal
oxide nanoparticles based on connected atoms exploration. NanoWeek
& NanoCommons Final Conference 2022, Cyprus
2022.
168 (55). Y. Çetin, B. Martorell,
F. Serratosa, N. Aguilera-Porta, M. Calatayud,
Analysing the TiO2 surface reactivity based on oxygen vacancies computed by DFT
and DFTB methods, Journal of Physics: Condensed Matter 34, 2022. https://iopscience.iop.org/article/10.1088/1361-648X/ac7025
----2021----
167 (54). E. Rica, S.
Álvarez and F. Serratosa, Ligand-Based Virtual Screening based on The Graph
Edit Distance, International Journal of Molecular Sciences, 22, 12751,
2021. https://doi.org/10.3390/ijms222312751
166 (53). F. Serratosa,
Redefining the Graph Edit Distance, S. N. Computer Science, 2:438, 2021.
https://doi.org/10.1007/s42979-021-00792-5
165 (52). E. Rica, S.
Álvarez and F. Serratosa, Group of Components Detection in Engineering Drawings
based on Graph Matching, Engineering Applications of Artificial Intelligence,
104, 2021.
164. Y. Çetin, B. Martorell and F. Serratosa, New descriptors in
toxicology prediction of nanomaterials: Using quasi-ab initio MD simulations
for the estimation of aqueous ZnO and TiO2 surface
structure parameters, Nanotox2021, 2021.
163 (51). E. Rica, S.
Álvarez and F. Serratosa, On-line learning the graph
edit distance costs, Pattern Recognition Letters, 146, pp:52-62, 2021.
----2020----
162. J.
Contreras-García, F. Serratosa, S. Gómez, H. Y. Geng, G. J. Ackland & M.
Marqués, Predicting chemical bond at high pressure with machine learning, 58th
European High Pressure Research Group International Conference, Tenerife,
Spain, EHPRG 2020, 2020.
161. P.
Santacruz and F. Serratosa, Incorporating a graph-matching algorithm into a
muscle mechanics model, International Conference on Pattern Recognition, pp: 53
– 58, ICPR2020, 2021.
160. S. Algabli and F. Serratosa, Learning Graph Matching
Substitution Weights based on a Linear Regression, International Conference on
Pattern Recognition, pp: 39 – 46, ICPR2020, 2021.
159 (50). D. Conte, F.
Serratosa, Interactive Online Learning for Graph Matching using Active
Strategies, Knowledge-Based Systems, 105, 106275, 2020. https://doi.org/10.1016/j.knosys.2020.106275
158 (49). F. Serratosa, A
general model to define the substitution, insertion and deletion graph edit
costs based on an embedded space, Pattern Recognition Letters, 138, pp:
115-122, 2020. https://doi.org/10.1016/j.patrec.2020.07.010
157 (48). P. Santacruz
and F. Serratosa, Error-tolerant graph matching in linear computational cost
using an initial small partial matching, Pattern Recognition Letters,
134, pp:10-19 2020. https://www.sciencedirect.com/science/article/pii/S0167865518301235
156 (47). C.
Garcia-Hernandez, A. Fernández and F Serratosa, Learning the Edit Costs of the
Graph Edit Distance Applied to Ligand-Based Virtual Screening, Current
Topics in Medicinal Chemistry, 20, pp: 1-11, 2020, https://doi.org/10.2174/1568026620666200603122000
155 (46). Yasin, Haque,
Adnan, Rahnuma, Hossain, Naha, Kabir and Serratosa,
Localization of Autonomous Robot in an Urban Area Based on SURF Feature
Extraction of Images, International Journal of Technology Diffusion, 11
(4), 2020. https://doi.org/10.4018/IJTD.20201001
154. C. Garcia-Hernandez,
A. Fernandez and F. Serratosa, Training a molecular dissimilarity measure for
target specific activities, Society of Environmental Toxicology and Chemistry, SETAC
2020, Dublin, Ireland, 2020.
153 (45). E. Rica, C.
Moreno-Garcia, S. Alvarez, F. Serratosa, Reducing Human Effort in Engineering
Drawing Validation, Computers in Industry 117, pp: 103198, 2020. https://doi.org/10.1016/j.compind.2020.103198
152 (44). P. Santacruz
& F. Serratosa, Learning the graph edit costs based on a learning model
applied to sub-optimal graph matching, Neural Processing Letters, 51,
pp: 881–904, 2020. https://link.springer.com/article/10.1007/s11063-019-10121-w
151 (43). F. Serratosa, A
commentary on “Learning error-correcting graph matching with a multiclass
neural network”, Pattern Recognition Letters, 129, pp:16-18, 2020. https://doi.org/10.1016/j.patrec.2019.10.033
150 (42). C. Moreno-García, F. Serratosa & X. Jiang, Correspondence edit distance to obtain a set of weighted means of graph correspondences, Pattern Recognition Letters, 134 pp: 29-36, 2020. https://doi.org/10.1016/j.patrec.2018.08.027
----2019----
149 (41).
Junchi Yan, Minsu Cho,
Francesc Serratosa, Gui-Song Xia, Yinqiang
Zheng, Editorial. Pattern Recognition Letters, 127 pp:1-2,
2019. https://doi.org/10.1016/j.patrec.2019.03.005
148. S. Algabli, P. Santacruz & F. Serratosa, Learning the
Graph Edit Distance Parameters for Point-Set Image Registration, International
Conference on Computer Analysis of Images and Patterns, CAIP 2019,
Salerno, Italy, LNCS 11678, pp: 447-456, 2019. https://doi.org/10.1007/978-3-030-29888-3_36
147 (40). C.
Moreno-García and F. Serratosa, Generalised Median of Graph Correspondences, Pattern
Recognition Letters, 125, pp: 389-395, 2019. https://doi.org/10.1016/j.patrec.2019.05.015
146 (39). C.
Garcia-Hernandez, A. Fernandez and F. Serratosa, Ligand-Based Virtual Screening
Using Graph Edit Distance as Molecular Similarity Measure, Journal of
Chemical Information and Modelling, 59 (4), pp: 1410-1421, 2019. https://doi.org/10.1021/acs.jcim.8b00820
145. X.
Cortés, D. Conte & F. Serratosa, Sub-optimal Graph Matching by Node-to-node
Assignment Classification, Graph based Representations in Pattern Recognition, GbRPR 2019, Tours, France, LNCS 11510, pp:
35–44, 2019.
144. E.
Rica, S. Álvarez & F. Serratosa, On-line Learning
the Edit Costs based on an Embedded model , Graph
based Representations in Pattern Recognition, GbRPR
2019, Tours, France, LNCS 11510, pp: 121–130, 2019.
143. E.
Rica, S. Álvarez & F. Serratosa, Learning the
Graph edit costs: What do we want to optimise? , Graph
based Representations in Pattern Recognition, GbRPR
2019, Tours, France, LNCS 11510, pp: 25–34, 2019.
142. C.
García-Hernandez, A. Fernández & F. Serratosa, Graph edit distance as
molecular similarity measure for virtual screening, Graph based Representations
in Pattern Recognition, SETAC 2019, Helsinki, Finland, 2019.
141 (38). F. Serratosa,
Graph edit distance: Restrictions to be a metric, Pattern Recognition,
90, pp: 250-256, 2019. https://doi.org/10.1016/j.patcog.2019.01.043
----2018----
140 (37). S. Algabli & F. Serratosa, Embedding the node-to-node
mappings to learn the Graph edit distance parameters, Pattern Recognition
Letters, 112, pp: 353-360, 2018. https://doi.org/10.1016/j.patrec.2018.08.026
139. X. Cortés, D. Conte, H. Cardot
& F. Serratosa, A Deep Neural Network Architecture to Estimate Node
Assignment Costs for the Graph Edit Distance, Syntactic and Structural Pattern
Recognition, SSPR2018, LNCS 11004, pp: 326-336, 2018. https://doi.org/10.1007/978-3-319-97785-0_31
138. P.
Santacruz & F. Serratosa, Learning the Sub-optimal Graph Edit Distance edit
costs based on an embedded model, Syntactic and Structural Pattern Recognition,
SSPR2018, LNCS 11004, pp: 282-292, 2018. https://doi.org/10.1007/978-3-319-97785-0_27
137. C.
Moreno-García & F. Serratosa, Modelling the Generalised Median
Correspondence through an Edit Distance, Syntactic and Structural Pattern
Recognition, SSPR2018, LNCS 11004, pp: 271-281, 2018. https://doi.org/10.1007/978-3-319-97785-0_26
136. P.
Santacruz & F. Serratosa, Graph Edit Distance Testing through Synthetic
Graphs Generation, International Conference on Pattern Recognition, ICPR2018,
pp: 572-577, 2018.
135 (36). F. Serratosa, A
methodology to generate attributed graphs with a bounded graph edit distance
for graph-matching testing, International Journal of Pattern Recognition and
Artificial Intelligence, 32 (11), pp: 1850038 (19 pages), 2018. https://doi.org/10.1142/S0218001418500386
----2017----
134. P.
Santacruz, S. Algabli & F. Serratosa, Node
matching computation between two large graphs in linear computational cost,
Graph based Representations in Pattern Recognition, GbRPR
2017, Capri, Italy, LNCS 10310, pp: 143–153, 2017. http://dx.doi.org/10.1007/978-3-319-58961-9_13
133. C.
Moreno-García, F. Serratosa & X. Jiang, An Edit Distance between Graph
Correspondences, Graph based Representations in Pattern Recognition, GbRPR 2017, Capri, Italy, LNCS 10310, pp:
232–241, 2017. https://doi.org/10.1007/978-3-319-58961-9_21
132 (35). C.
Moreno-García & F. Serratosa, Obtaining the Consensus of Multiple
Correspondences between Graphs through Online Learning, Pattern Recognition
Letters, 87, pp: 79-86, 2017. http://dx.doi.org/10.1016/j.patrec.2016.09.003
131 (34). C.
Moreno-García & F. Serratosa, Correspondence Consensus of Two Sets of
Correspondences through Optimisation Functions, Pattern Analysis and
Applications, 20(1), pp: 201-213, 2017. http://dx.doi.org/10.1007/s10044-015-0486-y
----2016----
130. F.
Serratosa, X. Cortés & K. Riesen, On the Relevance of Local Neighbourhoods
for Greedy Graph Edit Distance, Syntactic and Structural Pattern Recognition, SSPR2016,
LNCS 10029, pp. 121-131, Merida, Mexico, 2016. http://dx.doi.org/10.1007/978-3-319-49055-7_11
129. C.
Moreno-García, F. Serratosa & X. Cortés, Generalised Median of a Set of
Correspondences based on the Hamming Distance, Syntactic and Structural Pattern
Recognition, SSPR2016, LNCS 10029, pp: 507-518, Merida, Mexico, 2016. http://dx.doi.org/10.1007/978-3-319-49055-7_45
128. C. Moreno-García, X. Cortés & F. Serratosa, A Graph Repository for Learning Error-Tolerant Graph Matching, Syntactic and Structural Pattern Recognition, SSPR2016, LNCS 10029, pp: 519-529, Merida, Mexico, 2016. http://dx.doi.org/10.1007/978-3-319-49055-7_46
127. F. Serratosa, X. Cortés & C.
Moreno-García, Graph Edit Distance or Graph
Edit Pseudo-Distance?, Syntactic and Structural Pattern Recognition, SSPR2016,
LNCS 10029, pp: 530–540, Merida, Mexico, 2016. http://dx.doi.org/10.1007/978-3-319-49055-7_47
126 X. Cortés, F.
Serratosa & C. Moreno-García, Semi-automatic pose estimation of a fleet of
robots with embedded stereoscopic cameras, IEEE International Conference on
Emerging Technologies and Factory Automation, ETFA2016, pp: 1-6, 2016. http://dx.doi.org/10.1109/ETFA.2016.7733640
125 G. Manzo, F.
Serratosa & M. Vento, Interactive pose calibration of a set of cameras for
video surveillance, IEEE International Conference on Emerging Technologies and
Factory Automation, ETFA2016, pp: 1-4, 2016. http://dx.doi.org/10.1109/ETFA.2016.7733663
124 (33) G. Manzo, F.
Serratosa & M. Vento, Online Human Assisted and Cooperative Pose Estimation
of 2D-cameras, Expert Systems With Applications,
60, pp: 258-268, 2016. http://dx.doi.org/10.1016/j.eswa.2016.05.012
123 C.
Moreno-García, M. Aceves-Martins & F. Serratosa, Unsupervised Machine
Learning Application to Perform a Systematic Review and Meta-Analysis in
Medical Research, Computación y Sistemas,
20(1), pp: 7-17, 2016. http://dx.doi.org/10.13053/CyS-20-1-2360
122 (32) G. Sanroma, A Penate-Sanchez, R. Alquezar, F. Serratosa, F. Moreno-Noguer,
J. Andrade-Cetto & M.A. Gonzalez, MSClique: Multiple Structure Discovery through the Maximum
Weighted Clique Problem, PLOS ONE, 2016. http://dx.doi.org/10.1371/journal.pone.0145846
121 (31) X. Cortés &
F. Serratosa, Cooperative Pose Estimation of a Fleet of Robots based on
Interactive Points Alignment, Expert Systems With
Applications, 45, pp: 150-160, 2016. http://dx.doi.org/10.1016/j.eswa.2015.09.049
120 (30) X. Cortés &
F. Serratosa, Learning Graph Matching Substitution Weights based on the Ground
Truth Node Correspondence, International Journal of Pattern Recognition and
Artificial Intelligence, 30(2), pp: 1650005 [22 pages], 2016. http://dx.doi.org/10.1142/S0218001416500051
119 (29) C. Moreno-García
& F. Serratosa, Consensus of Multiple Correspondences to increase the
accuracy in Image Registration, Computer Vision and Image Understanding,
142, pp: 50-64, 2016. http://dx.doi.org/10.1016/j.cviu.2015.08.008
----2015----
118 (28) C. Moreno-García & F. Serratosa, Online Learning the Consensus of Multiple Correspondences Between Sets, Knowledge based Systems, 90, pp: 49-57, 2015. http://dx.doi.org/10.1016/j.knosys.2015.09.034
Corrigendum: http://deim.urv.cat/~francesc.serratosa/2015_Moreno_Serratosa_KBS_Corrigendum.pdf
117 (27) F. Serratosa
& X. Cortés, Graph Edit Distance: moving from global to local structure to
solve the graph-matching problem, Pattern Recognition Letters, 65, pp:
204-210, 2015. http://dx.doi.org/10.1016/j.patrec.2015.08.003
116 (26). M. Ferrer, F.
Serratosa & K. Riesen, Improving Bipartite Graph Matching by Assessing the
Assignment Confidence, Pattern Recognition Letters, 65, pp: 29-36, 2015.
http://dx.doi.org/10.1016/j.patrec.2015.07.010
115 (25). F. Serratosa,
Computation of Graph Edit Distance: Reasoning about Optimality and Speed-up, Image
and Vision Computing, 40, pp: 38-48, 2015. http://dx.doi.org/10.1016/j.imavis.2015.06.005
114. X. Cortés,
F. Serratosa & C. Moreno-García, Ground truth Correspondence between nodes
to Learn Graph-Matching Edit-Costs, Computer Analysis of Images and Patterns, CAIP
2015, Valletta, Malta, LNCS 9256, pp: 113-124, 2015. http://dx.doi.org/10.1007/978-3-319-23192-1_10
113. M. Ferrer,
F. Serratosa & K. Riesen, Learning Heuristics to Reduce the Overestimation
of Bipartite Graph Edit Distance Approximation, International Conference on
Machine Learning and Data Mining, MLDM 2015, LNAI 9166, pp: 17-31,
Hamburg, Germany, 2015. (Best Paper Award). http://dx.doi.org/10.1007/978-3-319-21024-7_2
112. X.
Cortés, F. Serratosa & C. Moreno-García, On the Influence of Node
Centralities on Graph Edit Distance for Graph Classification, Graph based
Representations in Pattern Recognition, GbRPR
2015, Beijing, China, LNCS 9069, pp: 231-241, 2015. http://dx.doi.org/10.1007/978-3-319-18224-7_23
111. M.
Ferrer, F. Serratosa & K. Riesen, A First Step Towards Exact Graph Edit
Distance Using Bipartite Graph Matching, Graph based Representations in Pattern
Recognition, GbRPR 2015, Beijing,
China, LNCS 9069, pp: 77-86, 2015. http://dx.doi.org/10.1007/978-3-319-18224-7_8
110. C. Moreno-García,
F. Serratosa & X. Cortés, Consensus of Two Graph Correspondences through a
Generalisation of the Bipartite Graph Matching Algorithm, Graph based
Representations in Pattern Recognition, GbRPR
2015, Beijing, China, LNCS 9069, pp: 87-97, 2015. http://dx.doi.org/10.1007/978-3-319-18224-7_9
109. C.
Moreno-García, X. Cortés & F. Serratosa, Iterative Versus Voting Method to
Reach Consensus Given Multiple Correspondences of Two Sets, Iberian Conference
on Pattern Recognition and Image Analysis, IbPRIA
2015, Santiago de Compostela, Spain, LNCS 9117, pp: 530-540, 2015.
108 (24). X. Cortés
& F. Serratosa, Learning Graph-Matching Edit-Costs based on the Optimality
of the Oracle's Node Correspondences, Pattern Recognition Letters, 56,
pp: 22 - 29, 2015. http://dx.doi.org/10.1016/j.patrec.2015.01.009
107 (23). F.
Serratosa, Speeding up Fast Bipartite Graph Matching
trough a new cost matrix, International Journal of Pattern Recognition and
Artificial Intelligence, 29 (2), 1550010, [17 pages] 2015. http://dx.doi.org/10.1142/S021800141550010X
106 (22). F.
Serratosa & X. Cortés, Interactive Graph-Matching using Active Query
Strategies, Pattern Recognition 48 (4), pp: 1364-1373, 2015. http://dx.doi.org/10.1016/j.patcog.2014.10.033
105. X. Cortés,
F. Serratosa & C. Moreno-García, An Interactive Model for Structural
Pattern Recognition based on the Bayes Classifier, International Conference on
Pattern Recognition Applications and Methods, ICPRAM 2015, Lisbon,
Portugal, pp: 240-247, 2015. http://dx.doi.org/10.5220/0005201602400247
104 (21). X. Cortés
& F. Serratosa, An Interactive Method for the Image Alignment problem based
on Partially Supervised Correspondence, Expert Systems With
Applications 42 (1), pp: 179 - 192, 2015. http://dx.doi.org/10.1016/j.eswa.2014.07.051
----2014----
103.
C. Moreno-García & F. Serratosa, Fast and Efficient Palmprint
Identification of a Small Sample within a Full Image, Computación y Sistemas, 18 (4), pp:
683–691, 2014. http://dx.doi.org/10.13053/CyS-18-4-2059
102. X. Cortés, C. Moreno-García & F. Serratosa, Learning Graph-Matching Substitution Costs based on the Optimality of the Oracle’s Correspondence, Iberoamerican Congress on Pattern Recognition, CIARP2014, LNCS 8827, pp: 506–514, Puerto Vallarta, Mexico, 2014. http://dx.doi.org/10.1007/978-3-319-12568-8_62
101. C. Moreno-García, X. Cortés & F.
Serratosa, Partial to Full Image Registration based on Candidate Positions and Multiple Correspondences, Iberoamerican Congress on Pattern Recognition,
CIARP2014, LNCS 8827, pp: 745–753, Puerto
Vallarta, Mexico, 2014. http://dx.doi.org/10.1007/978-3-319-12568-8_90
100. F. Serratosa
& X. Cortés, Human Interaction to Improve the Image Alignment on a
Cooperative Robotic Framework, IEEE International Conference on Emerging
Technologies and Factory Automation, ETFA2014, PD-001198, Barcelona,
Spain, 2014. http://dx.doi.org/10.1109/ETFA.2014.7005104
99. C.
Moreno-García & F. Serratosa, Weighted Mean Assignment of a Pair of
Correspondences using Optimisation functions, Syntactic and Structural Pattern
Recognition, SSPR2014, LNCS 8621, pp: 301-311, Joensuu, Finland, 2014. http://dx.doi.org/10.1007/978-3-662-44415-3_31
98. F. Serratosa
& X. Cortés, Edit Distance computed by Fast Bipartite Graph Matching,
Syntactic and Structural Pattern Recognition, SSPR2014, LNCS 8621, pp:
253-262, Joensuu, Finland, 2014. http://dx.doi.org/10.1007/978-3-662-44415-3_26
97 (20). F. Serratosa, Fast Computation of Bipartite Graph Matching, Pattern Recognition Letters 45, pp: 244 - 250, 2014. http://dx.doi.org/10.1016/j.patrec.2014.04.015
Corrigendum: http://www.sciencedirect.com/science/article/pii/S0167865514003468
96 (19). A. Solé-Ribalta, D. Sánchez, M. Batet, F.
Serratosa, Towards the estimation of feature-based semantic similarity using
multiple ontologies, Knowledge-Based Systems 55, pp: 101 - 113, 2014. http://dx.doi.org/10.1016/j.knosys.2013.10.015
----2013----
95. X. Cortés, C.
Moreno & F. Serratosa, Improving the Correspondence Establishment based on
Interactive Homography Estimation, Computer Analysis
of Images and Patterns, CAIP2013, York, Unated
Kindom, LNCS 8048 , pp:
457-465, 2013. http://dx.doi.org/10.1007/978-3-642-40246-3_57
94. X. Cortés
& F. Serratosa, Active-Learning Query Strategies applied to select a Graph
Node given a Graph Labelling, Graph based Representations GbR2013,
Austria, Vienna, LNCS 7877, pp: 61-70, 2013. http://dx.doi.org/10.1007/978-3-642-38221-5_7
93 (18). A. Solé &
F. Serratosa, Graduated Assignment Algorithm for Multiple Graph Matching based
on a Common Labelling, International Journal of Pattern Recognition and
Artificial Intelligence 27 (1), pp: 1350001 [27 pages], 2013. http://dx.doi.org/10.1142/S0218001413500018
92 (17). F. Serratosa,
X. Cortés & A. Solé, Component Retrieval based on a Database of Graphs for
Hand-Written Electronic-Scheme Digitalisation, Expert Systems With Applications 40, pp: 2493 -2502, 2013. http://dx.doi.org/10.1016/j.eswa.2012.10.071
----2012----
91 (16). A. Solé, F.
Serratosa & A. Sanfeliu, On the Graph Edit Distance cost: Properties and
Applications, International Journal of Pattern Recognition and
Artificial Intelligence 26 (5), 1260004 [21 pages], 2012. http://dx.doi.org/10.1142/S021800141260004X
90. X. Cortés, F.
Serratosa & A. Solé, A comparison between Structural and Embedding methods
for Graph Classification, Syntactic and Structural Pattern Recognition, SSPR2012,
Hiroshima, Japan, LNCS 7626 , pp: 234-242, 2012. ISBN:
978-3-642-34165-6. http://dx.doi.org/10.1007/978-3-642-34166-3_26
89. N.
Rebagliati, A. Solé, M. Pelillo & F. Serratosa,
On The Relation Between The Common Labelling and The Median Graph, Syntactic
and Structural Pattern Recognition, SSPR2012, Hiroshima, Japan, LNCS 7626 , pp: 107-115, 2012. ISBN: 978-3-642-34165-6. http://dx.doi.org/10.1007/978-3-642-34166-3_12
88. F. Serratosa,
X. Cortés & A. Solé, Graph Database Retrieval based on Metric-Trees,
Syntactic and Structural Pattern Recognition, SSPR2012, Hiroshima,
Japan, LNCS 7626 , pp: 437-447, 2012. ISBN:
978-3-642-34165-6. http://dx.doi.org/10.1007/978-3-642-34166-3_48
87. X. Cortés, F.
Serratosa & A. Solé, Active Graph Matching based on Pairwise Probabilities
between nodes, Syntactic and Structural Pattern Recognition, SSPR2012,
Hiroshima, Japan, LNCS 7626 , pp: 98-106, 2012. ISBN:
978-3-642-34165-6. http://dx.doi.org/10.1007/978-3-642-34166-3_11
86. F. Serratosa, X. Cortés, A. Solé, Interactive Graph Matching by means of Imposing the Pairwise Costs, International Conference on Pattern Recognition, ICPR2012, Tsukuba, Japan, pp: 1298 - 1301, 2012. ISBN: 978-4-9906441-1-6. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6460377
85. N. Rebagliati, A. Solé, M. Pelillo, F. Serratosa, Computing the Graph Edit Distance Using Dominant Sets, International Conference on Pattern Recognition, ICPR2012, Tsukuba, Japan, pp: 1080-1083, 2012. ISBN: 978-4-9906441-1-6. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnumber=6460323
84 (15). G. Sanromà, R. Alquézar, F.
Serratosa & B. Herrera, Smooth Point-set Registration using Neighbouring
Constraints, Pattern Recognition Letters 33, pp: 2029-2037, 2012. http://dx.doi.org/10.1016/j.patrec.2012.04.008
83 (14). F. Serratosa,
R. Alquézar & N. Amézquita, A Probabilistic
Integrated Object Recognition and Tracking Framework, Expert Systems With Applications 39, pp: 7302-7318, 2012. http://dx.doi.org/10.1016/j.eswa.2012.01.088
82. A. Solé, G. Sanromà, F. Serratosa & R. Alquézar,
Group-wise sparse correspondences between images based on a common labelling
approach, International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications, VISAPP2012, Rome, Italy,
Volume 1, pp: 269-278, 2012.
81 (13). G. Sanromà, R. Alquézar, & F.
Serratosa, A New Graph Matching Method for Point-Set Correspondence using the
EM Algorithm and Softassign, Computer Vision and
Image Understanding 116(2), pp: 292-304, 2012. http://dx.doi.org/10.1016/j.cviu.2011.10.009
80 (12). D. Sánchez, A.
Solé, M. Batet & F. Serratosa, Enabling semantic
similarity estimation across multiple ontologies: an evaluation in the
biomedical domain, Journal of Biomedical Informatics 45 (1), pp:
141-155, 2012. http://dx.doi.org/10.1016/j.jbi.2011.10.005
----2011----
79. F. Serratosa,
A. Solé & X. Cortés, K-nn queries in Graph Databases
using M-Trees, Computer Analysis of Images and Patterns, CAIP2011,
Seville, Spain, LNCS 6854, pp: 202-210, 2011. http://dx.doi.org/10.1007/978-3-642-23672-3_25
78 (11). A. Solé &
F. Serratosa, Models and Algorithms for computing the Common Labelling of a set
of Attributed Graphs, Computer Vision and Image Understanding 115 (7),
pp: 929-945, 2011. http://dx.doi.org/10.1016/j.cviu.2010.12.007
77. F. Serratosa,
A. Solé & X. Cortés, Automatic Learning of Edit Costs based on Interactive
& Adaptive Graph Recognition, Graph based Representations, GbR2011,
Munster, Germany, LNCS 6658 pp: 152,163, 2011. http://dx.doi.org/10.1007/978-3-642-20844-7_16
76. G. Sanromà, R. Alquézar, & F.
Serratosa, Smooth Simultaneous Structural Graph Matching and Point-Set
Registration, Graph based Representations, GbR2011, Munster, Germany,
LNCS 6658 pp: 142,151 2011. http://dx.doi.org/10.1007/978-3-642-20844-7_15
75. A. Solé &
F. Serratosa, Exploration of the labelling Space given graph edit distance
costs, Graph based Representations, GbR2011, Munster, Germany, LNCS 6658
pp: 164,174, 2011. http://dx.doi.org/10.1007/978-3-642-20844-7_17
74. D. Ródenas, F. Serratosa & A. Solé, Parallel Graduated
Assignment Algorithm for Multiple Graph Matching based on a Common Labelling,
Graph based Representations, GbR2011, Munster, Germany, LNCS 6658 pp:
132,141, 2011. http://dx.doi.org/10.1007/978-3-642-20844-7_14
73. D. Ródenas, F. Serratosa & A. Solé, Graph Matching on a
Low-cost & Parallel Architecture, Iberian Conference on Pattern Recognition
and Image Analysis, IBPRIA2011, Gran Canaria,
Spain, LNCS 6669, pp: 508-515, 2011. http://dx.doi.org/10.1007/978-3-642-21257-4_63
72. F. Serratosa & A. Solé, A Probabilistic Framework to obtain a Common Labelling between Attributed Graphs, Iberian Conference on Pattern Recognition and Image Analysis, IBPRIA2011, Gran Canaria, Spain, LNCS 6669, pp: 180-190, 2011. http://dx.doi.org/10.1007/978-3-642-21257-4_64
----2010----
71. F. Serratosa, A. Solé & E. Vidiella, Graph Indexing and Retrieval based on Median Graphs, Mexican Conference on Pattern
Recognition, MCPR2010, Puebla, Mexico, LNCS 6256, pp: 311-321,
2010. http://dx.doi.org/10.1007/978-3-642-15992-3_33
70. A. Solé &
F. Serratosa, Graduated Assignment Algorithm for Finding the Common Labelling
of a set of Graphs, Syntactic and Structural Pattern Recognition, SSPR2010,
Izmir, Turkey, LNCS 6218, pp: 180-190, 2010. http://dx.doi.org/10.1007/978-3-642-14980-1_17
69. G. Sanromà, R. Alquézar & F.
Serratosa, Attributed Graph Matching for Image-Features Association using SIFT
Descriptors, Syntactic and Structural Pattern Recognition, SSPR2010,
Izmir, Turkey, LNCS 6218, pp: 254-263, 2010. http://dx.doi.org/10.1007/978-3-642-14980-1_24
68. G. Sanromà, R. Alquézar & F. Serratosa,
A Discrete Labelling Approach to Attributed Graph Matching using SIFT Features,
International Conference on Pattern Recognition, ICPR2010, Istanbul,
Turkey, pp: 954-957, 2010. http://dx.doi.org/10.1109/ICPR.2010.239
67. G. Sanromà, R. Alquézar & F.
Serratosa, Graph Matching using SIFT Descriptors, an application to pose
recovery of a mobile robot, International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications, VISAPP2010,
Angers, France, pp: 249-254, 2010.
66 (10). M. Ferrer, E. Valveny, F. Serratosa, K.
Riesen & H. Bunke. Generalized
Median Graph Computation by Means of Graph Embedding in Vector Spaces, Pattern
Recognition 43 (4), pp: 1642-1655, 2010. http://dx.doi.org/10.1016/j.patcog.2009.10.013
----2009----
65. F. Serratosa,
N. Amézquita & R. Alquézar, Experimental
Assessment of Probabilistic Integrated Object Recognition and Tracking Methods,
Iberoamerican Congress on Pattern Recognition, CIARP2009,
Guadalajara, México, LNCS 5859, pp: 817-824, 2009. http://dx.doi.org/10.1007/978-3-642-10268-4_96
64. A. Solé &
F. Serratosa, On the Computation of the Common Labelling of a Set of Attributed
Graphs, Iberoamerican Congress on Pattern
Recognition, CIARP2009, Guadalajara, México, LNCS 5859, pp: 137-144,
2009. http://dx.doi.org/10.1007/978-3-642-10268-4_16
63. M. Ferrer, E.
Valveny, F. Serratosa, I. Bardaj_
& H. Bunke, Graph-Based k-Means Clustering: A
Comparison of the Set Median versus the Generalized Median Graph, Computer
Analysis of Images and Patterns, CAIP2009: Munster, Germany, LNCS 5702,
pp: 342-350, 2009. http://dx.doi.org/10.1007/978-3-642-03767-2_42
62 (9). M. Ferrer, E. Valveny & F. Serratosa, Median graphs: A genetic
approach based on new theoretical properties, Pattern Recognition 42
(9), pp: 2003-2012, 2009. http://dx.doi.org/10.1016/j.patcog.2009.01.034
61 (8). M. Ferrer, E. Valveny & F. Serratosa: Median graph: A new exact
algorithm using a distance based on the maximum common subgraph, Pattern
Recognition Letters 30 (5), pp: 579-588, 2009. http://dx.doi.org/10.1016/j.patrec.2008.12.014
60. A. Solé &
F. Serratosa, A structural and semantic probabilistic model for matching and
representing a set of graphs, Graph Based Representations, GbR2009,
Venice, Italy, LNCS 5534, pp: 164-173, 2009. http://dx.doi.org/10.1007/978-3-642-02124-4_17
59. M. Ferrer, E.
Valveny & F. Serratosa, Median Graph Computation
by means of a Genetic Approach Based on Minimum Common Supergraph
and Maximum Common Subgraph, Pattern Recognition and Image Analysis, Fourth
Iberian Conference, IbPRIA2009, LNCS 5524, Oporto, Portugal, pp:
346-353, 2009. http://dx.doi.org/10.1007/978-3-642-02172-5_45
58. R. Alquézar,
N. Amézquita & F. Serratosa, Tracking Deformable Objects and
Dealing with same class Object Occlusion, International Conference on
Computer Vision Theory and Applications, VISAPP2009, Lisbon, Portugal,
pp: 590-594 , 2009.
----2008----
57. G. Sanromà, F. Serratosa & R. Alquézar,
Shape Learning with Function-Described Graphs, International Congress on Image
Analysis and Recognition, ICIAR2008, LNCS 5112, Povoa de Varzim, Portugal, pp: 475-484, 2008. http://dx.doi.org/10.1007/978-3-540-69812-8_47
56. N. Amézquita, R. Alquézar &
F. Serratosa, Dealing with Occlusion in a Probabilistic Object Tracking
Method, IEEE Computer Vision and Pattern Recognition, CVPR2008,
Anchorage, Alaska, USA, CVPRW, Print ISBN: 978-1-4244-2339-2, pp: 1-8,
2008.
55. G. Sanromà, F. Serratosa & R. Alquézar,
Hybrid Genetic Algorithm and Procrustes Analysis for Enhancing the Matching of
Graphs Generated from Shapes, Proc. Syntactic and Structural Pattern
Recognition, SSPR2008, LNCS 5342, Orlando, Florida, USA, pp: 298-307,
2008. http://dx.doi.org/10.1007/978-3-540-89689-0_34
54. M. Ferrer, E.
Valveny, F. Serratosa & H. Bunke,
Exact Median Graph Computation via Graph Embedding, Syntactic and Structural
Pattern Recognition, SSPR2008, LNCS 5342, Orlando, Florida,
pp: 15-24, 2008. http://dx.doi.org/10.1007/978-3-540-89689-0_6
53. G. Sanromà, F. Serratosa & R. Alquézar,
Improving the Matching of Graphs Generated from Shapes by the
Use of Procrustes Distances into a Clique-based MAP Formulation, 19th
International Conference on Pattern Recognition, ICPR2008, Tampa,
Florida, USA, Volume 2, pp: 1-4, 2008. http://dx.doi.org/10.1109/ICPR.2008.4761107
52. M. Ferrer, E.
Valveny, F. Serratosa, K. Riesen & H. Bunke An Approximate Algorithm for Median Graph Computation
using Graph Embedding, 19th International Conference on Pattern Recognition, ICPR2008,
Tampa, Florida, USA, Volume 2, pp: 1-4, 2008. http://dx.doi.org/10.1109/ICPR.2008.4761354
51 (7). F. Serratosa
& G. Sanromà, A Fast Approximation of the
Earth-Movers Distance between Multi-Dimensional Histograms, International
Journal of Pattern Recognition and Artificial Intelligence 22 (8), pp: 1539
-1558, 2008. http://dx.doi.org/10.1142/S0218001408006880
----2007----
50. M. Ferrer, E.
Valveny & F. Serratosa, Bounding the Size of the
Median Graph, Pattern Recognition and Image Analysis, Third Iberian Conference,
IbPRIA2007, LNCS 4478, Girona, Spain, pp: 491-498, 2007. http://dx.doi.org/10.1007/978-3-540-72849-8_62
49. M. Ferrer, F.
Serratosa & E. Valveny, Evaluation of the
Spectral Methods for Median Graph Computation, Pattern Recognition and Image
Analysis, Third Iberian Conference, IbPRIA2007, LNCS 4478, Girona,
Spain, pp: 580-587, 2007. http://dx.doi.org/10.1007/978-3-540-72849-8_73
48. M. Ferrer, F.
Serratosa & E. Valveny, On the relation between
the median and the maximum common subgraph of a set of graphs, 6th IAPR -TC-15 Workshop on Graph-based Representations in Pattern
Recognition, Gbr2007, LNCS 4538, Alacant, Spain, pp: 351-360 , 2007. http://dx.doi.org/10.1007/978-3-540-72903-7_32
47. N. Amézquita,
R. Alquézar & F. Serratosa, A New Method for
Object Tracking Based on Regions Instead of Contours, IEEE Computer
Vision and Pattern Recognition, CVPR2007, Minneapolis, Minnesota, USA,
Print ISBN: 1-4244-1180-7, pp: 1 -8 , 2007.
46. F. Serratosa,
G. Sanromà, & A. Sanfeliu, A New Algorithm to
Compute the Distance between Multi-dimensional Histograms, Iberoamerican
Congress on Pattern Recognition, CIARP2007, LNCS, 4756, Villa del
Mar-Valparaiso, Chile, pp: 115 - 123, 2007. http://dx.doi.org/10.1007/978-3-540-76725-1_13
45. F. Serratosa
& G. Sanromà, Modelling Intermittently Present
Features using non-Linear Point Distribution Models, IEEE, Pacific-Rim on Image
and Video Technology, PSIVT2007, LNCS 4872, Santigao,
Chile, pp: 260-273 , 2007. http://dx.doi.org/10.1007/978-3-540-77129-6_25
----2006----
44 (6). F. Serratosa,
A. Sanfeliu, Signatures versus histograms: Definitions, distances and
algorithms. Pattern Recognition 39 (5), pp: 921-934, 2006. http://dx.doi.org/10.1016/j.patcog.2005.12.005
43. F. Serratosa
& G. Sanromà, An Efficient Distance between
Multi-dimensional Histograms for Comparing images, Proc. Syntactic and
Structural Pattern Recognition, SSPR2006, LNCS 4109, Hong Kong China,
pp: 412-421, 2006. http://dx.doi.org/10.1007/11815921_45
42. F. Serratosa
& A. Sanfeliu, A Fast and Exact Modulo-Distance between Histograms, Proc.
Syntactic and Structural Pattern Recognition, SSPR2006, LNCS 4109, Hong
Kong, China, pp: 394-402, 2006. http://dx.doi.org/10.1007/11815921_43
41. F. Serratosa
& A. Sanfeliu, Vision-Based Robot Positioning by an Exact Distance Between
Histograms, 18th International Conference on Pattern Recognition, ICPR2006,
Hong Kong China, Volume 2, pp: 849-852, 2006. http://doi.ieeecomputersociety.org/10.1109/ICPR.2006.1179
40. M. Ferrer, E.
Valveny & F. Serratosa, Spectral median graphs
applied to graphical recognition, 11th Iberoamerican
Congress on Pattern Recognition, CIARP2006, LNCS, 4225, Cancun, Mexico,
pp: 774-783 , 2006. http://dx.doi.org/10.1007/11892755_80
39. N. Amézquita,
R. Alquézar & F. Serratosa, Object recognition
and tracking in video sequences: a new integrated methodology, 11th Iberoamerican Congress on Pattern Recognition, CIARP2006,
LNCS, 4225, Cancun, Mexico, pp: 481-490 , 2006. http://dx.doi.org/10.1007/11892755_50
38. F. Serratosa,
N. Amézquita & R. Alquézar, Combining neural
networks and clustering techniques for object recognition in indoor video
sequences, 11th Iberoamerican Congress on Pattern
Recognition, CIARP2006, LNCS, 4225, Cancun, Mexico, pp: 399-405,
2006. http://dx.doi.org/10.1007/11892755_41
----2005----
37 (5). E. Staffeti, A. Grau, F. Serratosa & A. Sanfeliu, Object
and Image indexing based on Region Connection Calculus and Oriented Matroids
theory, Discrete Applied Mathematics 147 (2-3), pp: 345-361, 2005. http://dx.doi.org/10.1016/j.dam.2004.09.019
36. F. Serratosa
& A. Sanfeliu, Matching Attributed Graphs: Second Order Probabilities for pruning
the search tree, Pattern Recognition and Image Analysis, Second Iberian
Conference, IbPRIA2005, LNCS 3523, Estoril, Portugal, pp: 131-138, 2005.
http://dx.doi.org/10.1007/11492542_17
35. M. Ferrer, F.
Serratosa & A. Sanfeliu, Synthesis of Median Spectral Graphs, Pattern
Recognition and Image Analysis, Second Iberian Conference, IbPRIA2005,
LNCS 3523, Estoril, Portugal, pp: 139-146, 2005. http://dx.doi.org/10.1007/11492542_18
34. F. Serratosa
& A. Sanfeliu, A Fast Distance Between Histograms, Progress in Pattern
Recognition, Image Analysis and Applications: 10th Iberoamerican
Congress on Pattern Recognition, CIARP2005, LNCS 3773, Havana, Cuba,
pp. 1027-1035, 2005. http://dx.doi.org/10.1007/11578079_105
----2004----
33 (4). A. Sanfeliu, F.
Serratosa & R. Alquézar, Second-Order Random
Graphs for modelling sets of Attributed Graphs and their application to object
learning and recognition, International Journal of Pattern Recognition
and Artificial Intelligence 18 (3), pp: 375-396, 2004. http://dx.doi.org/10.1142/S0218001404003253
32. F. Serratosa
& A. Sanfeliu, Distance measures between Attributed Graphs and Second-order
Random Graphs, Proc. Syntactic and Structural Pattern Recognition, SSPR2004,
LNCS 3138, pp: 1135-1144, 2004. http://dx.doi.org/10.1007/978-3-540-27868-9_125
31. F. Serratosa,
A. Grau, & A. Sanfeliu, Distance between 2D-scenes based on Oriented
Matroids theory, 17th International Conference on Pattern Recognition, ICPR2004,
Cambridge, United Kingdom, Volume 2, pp: 196-199, 2004. http://doi.ieeecomputersociety.org/10.1109/ICPR.2004.1334094
----2003----
30 (3). F. Serratosa,
R. Alquézar & A. Sanfeliu, Function-Described
Graphs for modelling objects represented by attributed graphs, Pattern
Recognition 36 (3), pp: 781-798, 2003. http://dx.doi.org/10.1016/S0031-3203(02)00107-3
29. E. Staffeti, A. Grau, F. Serratosa & A. Sanfeliu, Oriented Matroids for Shape Representation and Indexing, Pattern Recognition and Image Analysis, First Iberian Conference, IbPRIA2003, LNCS 2652, Palma de Mallorca, Spain, pp: 1012-1019, 2003. http://dx.doi.org/10.1007/978-3-540-44871-6_117
28. E. Staffeti, A. Grau, F. Serratosa & A. Sanfeliu, Indexación de Imágenes Basada en la Teoría de las Matroides Orientadas, Jornadas de Automática, León Spain, 2003.
27. A. Sanfeliu
& F. Serratosa, Learning and recognising 3D models represented by multiple
views by means of methods based on random graphs, International Congress on
Image Processing, ICIP2003, Barcelona, Spain, Volume 2 pp: 29,32, 2003.
26. E. Staffeti, A. Grau, F. Serratosa & A. Sanfeliu, Shape
Representation and Indexing based on Region Connection Calculus and Oriented
Matroids theory, Discrete Geometry for Computer Imagery, 11th International
Conference, DGCI2003, LNCS 2886, Napoli, Italy, pp: 267-276, 2003. http://dx.doi.org/10.1007/978-3-540-39966-7_25
----2002----
25 (2). A. Sanfeliu, R.
Alquézar, J. Andrade, J. Climent,
F. Serratosa & J. Vergés, Graph-based
Representations and Techniques for Image Processing and Image Analysis, Pattern
Recognition 35 (3), pp: 639-650, 2002. http://dx.doi.org/10.1016/S0031-3203(01)00066-8
24. F. Serratosa,
R. Alquézar & A. Sanfeliu, Estimating the Joint
Probability Distribution of Random Vertices and Arcs by means of Second-order
Random Graphs, Proc. Syntactic and Structural Pattern Recognition, SSPR2002,
LNCS 2396, Windsor, Canada, pp: 252-262, 2002. http://dx.doi.org/10.1007/3-540-70659-3_26
23. A. Grau, J. Climent, F. Serratosa & A. Sanfeliu, Textprint: A new algorithm to discriminate textures
structurally, Syntactic and Structural Pattern Recognition, SSPR2002,
LNCS 2396, Windsor, Canada, pp: 368-377, 2002. http://dx.doi.org/10.1007/3-540-70659-3_38
22. F. Serratosa,
R. Alquézar & A. Sanfeliu, Modelling and
recognising 3D-objects described by multiple views using Function-Described
Graphs, 16th International Conference on Pattern Recognition, ICPR2002,
Quebec, Canada, vol. 2, pp: 140-143, 2002. http://doi.ieeecomputersociety.org/10.1109/ICPR.2002.1048257
21(1). F. Serratosa, R. Alquézar & A. Sanfeliu, Synthesis of function-described graphs and clustering of attributed graphs, International Journal of Pattern Recognition and Artificial Intelligence 16 (6), pp: 621-655, 2002. http://dx.doi.org/10.1142/S0218001402001915
----2001----
20. A. Sanfeliu, J. Andrade-Cetto, R. Alquézar, J. Aranda, J. Climent, A. Grau, F. Serratosa & J. Vergés-Llahí, MARCO: A mobile robot with learning capabilities to perceive and interact with its environment, Simposium Nacional de Reconocimiento de Formas y Analisis de Im_genes, SNRFAI2001, Castelló, Spain, vol. 2, pp: 219-224, 2001.
----2000----
19. F. Serratosa,
A. Sanfeliu & R. Alquézar, Function-Described
Graphs: A measure of similarity based on probabilities, Pattern
Recognition and Applications, IOS Press, Edited by M.I. Torres and A.
Sanfeliu, pp: 59-68, 2000.
18. F. Serratosa,
R. Alquézar & A. Sanfeliu, Efficient algorithms
for matching attributed graphs and function-described graphs, Proc.15th
International Conference on Pattern Recognition, ICPR2000, Barcelona,
Spain, vol. 2, pp: 871-876, 2000. http://doi.ieeecomputersociety.org/10.1109/ICPR.2000.906212
17. Sanfeliu, F.
Serratosa & R. Alquézar, Clustering of attributed
graphs and unsupervised synthesis of function-described graphs, Proc. 15th
International Conference on Pattern Recognition, ICPR2000, Barcelona,
Spain, vol. 2, pp: 1026-1029, 2000. http://doi.ieeecomputersociety.org/10.1109/ICPR.2000.906248
16. R. Alquézar, F. Serratosa & A. Sanfeliu, Distance measures between Attributed Graphs and Function-Described Graphs relaxing 2nd-order constraints, Proc. Syntactic and Structural Pattern Recognition, SSPR2000, LNCS 1876, Alacant, Spain, pp: 277-286, 2000. http://dx.doi.org/10.1007/3-540-44522-6_29
15. A. Sanfeliu, A. Grau, J. Climent, R. Alquézar, F. Serratosa, J. Aranda, J. Vergés-Llahí & J. Andrade-Cetto, Pattern Recognition at the IRI-CSIC/ESAII Group, Pattern Recognition Advances in Iberoamerica, FORO2000, Barcelona, Spain, pp. 347-354, 2000.
14. F. Serratosa, Function-Described Graphs for Structural Pattern Recognition. Doctoral PhD, Universitat Politècnica de Catalunya, 2000. http://deim.urv.cat/~francesc.serratosa/FDG_Thesis_Dissertation.pdf
----1999----
13. F. Serratosa, A. Sanfeliu & R. Alquézar, Function-described graphs: an improvement on random graphs. IV Simposium Iberoamericano de Reconocimiento de Patrones, SIARP1999, La Habana, Cuba, pp. 655-665, 1999.
12. F. Serratosa,
A. Sanfeliu & R. Alquézar, Function-Described
Graphs: A measure of similarity based on probabilities, 8th National Symposium
on Pattern Recognition and Image Analysis, NSPRIA1999, Bilbao, Spain,
Vol. I, pp. 421-428, 1999.
11. J. Vergés-Lahí, A. Sanfeliu, F. Serratosa & R. Alquézar, Face recognition: Graph matching versus neural
techniques, 8th National Symposium on Pattern Recognition and Image Analysis, NSPRIA1999,
Bilbao, Spain, Vol. I, pp. 259-266, 1999.
10. D. Riaño & F. Serratosa, Unsupervised synthesis of
Function-Described Graphs, Proceedings of the 2ond Workshop on Graph Based
Representations GbR1999, pp: 165-171, Vienna, Austria, 1999.
9. F. Serratosa,
R. Alquézar & A. Sanfeliu, Function-Described
Graphs: A fast algorithm to compute a sub-optimal matching measure, Proceedings
of the 2ond Workshop on Graph Based Representations GbR1999, pp: 71-77,
Vienna, Austria, 1999.
8. F. Serratosa,
R. Alquézar & A. Sanfeliu, Function-Described
Graphs for structural pattern recognition, Technical
report DEIM-RR-99-006, Universitat Rovira i Virgili, Tarragona, Spain,
1999.
----1998----
7. R. Alquézar, A. Sanfeliu & F. Serratosa, Synthesis of
Function-Described Graphs, Advances in Pattern Recognition, Proc. Joint IAPR
Int. Workshops SSPR1998 and SPR1998, SSPR1998, LNCS 1451,Sydney,
Australia, pp. 112-121, 1998. http://dx.doi.org/10.1007/BFb0033229
6. F. Serratosa, A. Sanfeliu & R. Alquézar, Function-described graphs: Distance and matching. Technical Report IRI-DT-9803, Universitat Politècnica de Catalunya, Institut de Robòtica i Informàtica Industrial, Barcelona, Spain, 1998.
----1997----
5. F. Serratosa
& A. Sanfeliu, Function-Described Graphs applied to 3D object recognition.
9th Int. Conf. Image Analysis and Processing, Image Analysis and Processing, ICIAP1997,
LNCS 1310, Firenze, Italy, Vol. I, pp. 701-708, 1997. http://dx.doi.org/10.1007/3-540-63507-6_263
4. F. Serratosa & A. Sanfeliu, Function-Described Graphs. 7th National Symposium on Pattern Recognition and Image Analysis, NSPRIA1997, Barcelona, Spain, Vol. I, pp. 37-42, 1997.
----1995----
3. F. Serratosa, Comparación de cadenas para el reconocimiento de patrones, Seminario anual de automática y electrónica industrial SAAEI1995, Tarragona, Spain, pp. 469-472, 1995.
2. 1995. F. Serratosa, P. Millán & E. Montseny, Systolic processors applied to computer vision systems. Computer Architectures for Machine Perception CAMP1995, Como, Italy, pp. 178-183, 1995.
----1994----
1. P. Millán, F. Serratosa & E. Montseny, Procesadores sistólicos aplicados a visión por computador. III Jornadas de Visión por Computador JVC1994, Málaga, Spain, pp. 167-178, 1994.