
DOCTORAL THESIS

YUNIOR RAMÍREZ-CRUZ
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mundo pero siempre tan cercanos, y que también son parte de la familia.

A todos, muchas gracias. Moltes gràcies. Thank you very much.
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Introduction

Graphs may be used to model a large variety of network structures. For

instance, in computer networks, servers, hosts or hubs can be represented

as vertices in a graph and edges can represent connections between them.

Likewise, the Web, social networks or transportation infrastructures can be

modelled as graphs, where the vertices represent webpages, users and pop-

ulation centres, respectively; and the edges represent hyperlinks, personal

relations, and roads, in that order.

In the aforementioned graph-based representation of a computer net-

work, each vertex may be seen as a possible location for an intruder (fault in

the network, spoiled device, unauthorized connection) and, in this sense, a

correct surveillance of each vertex of the graph to control such a possible in-

truder would be worthwhile. According to this fact, it would be desirable to

uniquely recognize each vertex of the graph. In order to solve this problem,

Slater [78, 80] brought in the notion of locating sets and locating number

of graphs. Also, Harary and Melter [36] independently introduced the same

concept, but using the terms resolving sets and metric dimension to refer to

locating sets and locating number, respectively. Moreover, in a more recent

article, by Sebö and Tannier [76], the terminology of metric generators and

metric dimension for the concepts mentioned above, began to be used. These

terms arose from the notion of metric generators of metric spaces, introduced

by Blumenthal in [4]. In this thesis we follow this terminology, as well as the

notation introduced in [76].

Informally, a metric generator is an ordered subset S of vertices in a

graph G, such that every vertex of G is uniquely determined by its vector of

distances to the vertices in S. The cardinality of a minimum metric generator

for G is called the metric dimension of G.

After the first papers on this topic were published, some authors de-

veloped diverse theoretical works on the subject including, for example,

1



Introduction 2

[8, 9, 11, 12, 15, 19, 37, 38, 43, 48, 52, 64, 68, 71, 77, 81, 86]. Several

applications of the metric generators have also been presented. In Chem-

istry, a usual representation for the structure of a chemical compound is a

labeled graph where the vertex and edge labels specify the atom and bond

types, respectively. As described in [12, 15], metric generators allow to ob-

tain unique representations for chemical substances. In particular, they were

used in pharmaceutical research for discovering patterns common to a variety

of drugs, as described in [44, 45]. Furthermore, this topic has some appli-

cations to problems of pattern recognition and image processing, some of

which involve the use of hierarchical data structures [64]. Other applications

to navigation of robots in networks and other areas appear in [12, 39, 48].

Some interesting connections between metric generators in graphs and the

Mastermind game or coin weighing have been presented in [9]. Moreover, we

refer the reader to the work [1], where some historical evolution, non-standard

terminologies and more references to this topic can be found.

Apart from the initial concept of metric generator, numerous variations

of the concept have been studied. In general, these variations can be classified

into five types. Notice that we do not mention all of them, but just some of

the most remarkable ones, according to our point of view.

1. Metric generators which also satisfy other properties of the graph:

• resolving dominating set [6], when the metric generator is also a

dominating set;

• independent resolving set [16], when the metric generator is also

an independent set;

• connected resolving set [74, 75], when the subgraph induced by

the metric generator is connected.

2. Metric generators which have a modified condition of resolvability:

• adjacency resolving set [43], a set such that any two different ver-

tices not belonging to the set have different neighborhood in this

set;

• strong metric generator [67, 76], metric generators where a stronger

condition is set for a vertex to distinguish a vertex pair, namely

that this vertex and the two vertices of the pair (in either order)

lie in a minimum-length path;
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• local metric generator [70], a set such that every two adjacent ver-

tices of the graph have distinct vectors of distances to the vertices

in this set;

3. Metric generators featuring a combination of criteria 1 and 2:

• locating-dominating set [79, 80], locating set (any two different

vertices not belonging to the set have different neighbors in this

set) which is a dominating set;

• identifying code [34, 47], a set such that any two different vertices

of the graph have different closed neighborhoods in this set and is

also a dominating set.

4. Partitions of the vertex set of a graph having some metric properties:

• resolving partitions [17, 32, 72], a partition such that every two

different vertices of the graph have distinct vectors of distances to

the sets of the partition;

• strong resolving partition [85], a partition where every two diffe-

rent vertices of the graph belonging to the same set of the partition

are strongly resolved by some set of the partition;

• metric coloring [14], a partition such that every two adjacent ver-

tices of the graph have distinct vectors of distances to the set of

the partition.

5. Variants which are extensions of the metric generators:

• k-metric generator [24, 22], a set such that any pair of vertices of

the graph is distinguished by at least k vertices of this set.

Consider the following problem proposed in [48], which deals with the

movement of a point-robot in a “graph space”. The robot can locate itself by

the presence of distinctively labeled “landmarks” in the graph space. On a

graph, there is neither the concept of direction nor that of visibility. Instead,

it was assumed in [48] that the robot can sense the distances to a set of

landmarks. If the robot knows its distances to a sufficiently large number

of landmarks, its position on the graph can be uniquely determined. This

suggests the following question: given a graph G, what is the smallest number

of landmarks needed, and where should they be located, so that the distances
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to the landmarks uniquely determine the robot’s position on G? This problem

can be solved by determining the metric dimension and a metric basis of G.

In this thesis, we consider the following extension of the robot navigation

problem. Suppose that the topology of the navigation network may change

within a range of possible graphs, say G1, G2, ..., Gk. This scenario may

reflect, for example, the use of a dynamic network whose links change over

time. In this case, the problem mentioned above becomes that of determining

the minimum cardinality of a set S of vertices which is simultaneously a

metric generator for each graph Gi, i ∈ {1, ..., k}. So, if S is a solution to

this problem, then the position of a robot can be uniquely determined by

the distance to the elements of S, regardless of the graph Gi that models the

network along whose edges the robot moves at each moment.

To handle situations as the one described above, we introduce the notion

of simultaneous metric generator, which naturally leads to that of simulta-

neous metric basis and simultaneous metric dimension. Throughout the the-

sis, we study the behaviour of these parameters on a wide variety of graph

families and introduce analogous simultaneity notions to other variants of re-

solvability, namely adjacency generators and strong metric generators. Our

study involves both the combinatorial properties of these parameters and

complexity issues regarding their computation.

The study of simultaneous parameters in graph families was introduced

by Brigham and Dutton in [7], where they studied simultaneous domination.

This idea should not be confused with studies on families sharing a constant

value on a parameter, for instance the study presented in [40], where several

graph families such that all of its members have the same metric dimension

are studied.

The thesis is organized as follows. In Chapter 1, we recall some basic

definitions on graph theory and present the main concepts regarding resol-

vability, focusing on the three variants of interest for the thesis: metric,

adjacency and strong metric generators. Chapter 2 introduces the main

topic of the thesis, the simultaneous metric dimension of graph families, and

presents a number of important results on this parameter. The study of the

simultaneous metric dimension is continued in Chapter 3, which focuses in

families composed by product graphs. In this chapter, a second notion of

simultaneous resolvability is introduced, namely the simultaneous adjacency

dimension, which is shown to be a valuable tool for studying the simultaneous
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metric dimension of these families. We further explore into the extensibility

of the notion of simultaneity in Chapter 4, where we define and study the

simultaneous strong metric dimension. Finally, Chapter 5 discusses the is-

sues related to the computability of the simultaneous resolvability parameters

presented throughout the thesis. To conclude, we briefly discuss the most

important results presented in the thesis, the associated scientific production

and the most promising directions of future work.





Chapter 1

Basic concepts and tools

We begin by establishing the basic terminology and notation used throughout

the thesis. For the sake of completeness we refer the reader to the books

[20, 82]. Graphs considered herein are undirected, finite and contain neither

loops nor multiple edges. Let G = (V,E) be a graph of order n = |V (G)|. A

graph is nontrivial if n ≥ 2. We use the notation u ∼ v (negated as u � v)

for two adjacent vertices u and v of G, and the notation G ∼= H for two

isomorphic graphs G and H. For a vertex v of G, NG(v) denotes the set of

neighbours of v in G, i.e., NG(v) = {u ∈ V (G) : u ∼ v}. The set NG(v) is

called the open neighbourhood of the vertex v in G and NG[v] = NG(v)∪{v}
is called the closed neighbourhood of v in G. The degree of a vertex v of

G is denoted by δG(v), i.e., δG(v) = |NG(v)|. The open neighbourhood of

a set S ⊆ V (G) of vertices of G is NG(S) =
⋃
v∈S NG(v) and the closed

neighbourhood of S is NG[S] = NG(S) ∪ S. A dominating set of a graph

G is a set M ⊆ V (G) such that NG[M ] = V (G). The minimum cardinality

of a dominating set of G is its domination number, denoted by γ(G). If

there is no ambiguity, we will simply write N(v), N [v], δ(v), N(S) or N [S].

The minimum and maximum degree of a graph G are denoted by δ(G) and

∆(G), respectively. The girth of a graph G is the length of a shortest cycle

contained in G, and is defined as g(G).

We use the notation Kn, Cn, Pn, and Nn for the complete graph, cycle,

path, and empty graph, respectively, of order n. Moreover, we write Ks,t for

the complete bipartite graph of order s + t and, in particular, we write K1,n

for the star graph of order n + 1. Let T be a tree, a vertex of degree one in

T is called a leaf and the set of leaves in T is denoted by Ω(T ).

The distance between two vertices u and v, denoted by dG(u, v), is the

7
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length of a shortest path between u and v in G. The diameter of a graph G,

denoted by D(G), is the longest distance between any two vertices in G. If G

is not connected, then we assume that the distance between any two vertices

belonging to different connected components of G is infinity and, thus, its

diameter is D(G) =∞.

We recall that the complement of a graph G is a graph Gc = (V (G), Ec)

such that uv ∈ Ec if and only if uv /∈ E(G). For a set X ⊆ V (G), the

subgraph induced by X is denoted by 〈X〉G. If there is no ambiguity, we will

simply write 〈X〉, and if X = {v} we will write 〈v〉. A vertex of a graph is

a simplicial vertex if the subgraph induced by its neighbours is a complete

graph. Given a graph G, we denote by σ(G) the set of simplicial vertices of

G. Note that for a tree T , σ(T ) = |Ω(T )|. We recall that a clique in a graph

G is a set of pairwise adjacent vertices. The clique number of G, denoted

by ω(G), is the number of vertices in a maximum clique in G. Two distinct

vertices u, v are called true twins if N [u] = N [v]. Likewise, two distinct

vertices u, v are called false twins if N(u) = N(v). In general, two distinct

vertices u, v are called twins if they are true twins or they are false twins.

In this sense, a vertex x is a twin if there exists y 6= x such that they are

twins. We say that X ⊂ V (G) is a twins-free clique in G if the subgraph

induced by X is a clique and every u, v ∈ X satisfy NG[u] 6= NG[v], i.e., the

subgraph induced by X is a clique and it contains no true twins. Note that,

by definition, cliques do not contain false twins. We say that the twins-free

clique number of G, denoted by $(G), is the maximum cardinality among

all twins-free cliques in G. Clearly, ω(G) ≥ $(G). We refer to a twins-free

clique of a graph G of cardinality $(G) as a $(G)-set of G. Finally, recall

that an independent set is a set of pairwise non-adjacent vertices and that

the independence number of a graph G, denoted by α(G), is the number of

vertices in a maximum independent set of G. Figure 1.1 shows examples of

basic concepts such as twins and twins-free cliques.

The Cartesian product G�H of two graphs G = (V1, E1) and H =

(V2, E2) is the graph whose vertex set is V (G�H) = V1 × V2 and any two

distinct vertices (x1, x2), (y1, y2) ∈ V1 × V2 are adjacent in G�H if and only

if either x1 = y1 and x2 ∼ y2, or x1 ∼ y1 and x2 = y2. The hypercube of

order 2r, r ≥ 0, denoted by Qr, is defined recursively as
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G

a

b

c

d

e

fg

H

a b

cd

e

f g

h

Figure 1.1: The set {d, e, f} ⊂ V (G) is composed by true twin vertices in G.

Notice that b and g are true twin vertices in G which are not simplicial, while

f and d are true twin and simplicial vertices. The set {e, f, g, h} ⊂ V (H) is

a twins-free clique in H.

Qr =

{
K1 if r = 0

K2�Qr−1 otherwise.

A graph G is 2-antipodal if for each vertex x ∈ V (G) there exists exactly

one vertex y ∈ V (G) such that dG(x, y) = D(G). For example, even cycles

are 2-antipodal graphs. Other definitions not defined herein will be given the

first time that the concept appears in the text.

1.1 Resolvability

A metric space is a pair of the form (X, d) where X is a set and d : X×X → R
is a function, referred to as a metric , such that for any x, y, z ∈ X,

(i) d(x, y) ≥ 0,

(ii) d(x, y) = 0 if and only if x = y,

(iii) d(x, y) = d(y, x), and

(iv) d(x, y) ≤ d(x, z) + d(z, y).

A generator for a metric space is a set S ⊆ X with the property that

every element of X is uniquely determined by its distances from the elements

of S. Given a simple and connected graph G, we consider the metric dG :
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V (G) × V (G) → N ∪ {0}, where dG(x, y) is the length of a shortest path

between x and y. The pair (V (G), dG) is readily seen to be a metric space.

A vertex v ∈ V (G) is said to distinguish two vertices x and y if dG(v, x) 6=
dG(v, y). A set S ⊂ V (G) is said to be a metric generator for G if any pair

of vertices of G is distinguished by some element of S. Assume that an order

is imposed on the elements of a set S = {w1, w2, . . . , wk}. Then, the metric

vector, or metric representation, of a vertex v ∈ V (G) relative to S is the

vector (dG(v, w1), dG(v, w2), . . . , dG(v, wk)). Thus, S is a metric generator

if distinct vertices have distinct metric vectors relative to S. A minimum

cardinality metric generator is called a metric basis and its cardinality, the

metric dimension of G, is denoted by dim(G).

A related parameter was introduced in [43] for studying the metric di-

mension of lexicographic product graphs. A set S ⊂ V (G) is said to be an

adjacency generator for G if for any pair of vertices u, v ∈ V (G) there exists

some x ∈ S such that x is adjacent to exactly one of u and v. A minimum

cardinality adjacency generator is called an adjacency basis of G, and its

cardinality the adjacency dimension of G, denoted by dimA(G) . Since any

adjacency basis is a metric generator, dim(G) ≤ dimA(G). Besides, for any

connected graph G of diameter at most two, dimA(G) = dim(G) [43]. As

pointed out in [26, 27], any adjacency generator of a graph G = (V,E) is

also a metric generator in a suitably chosen metric space. Given a positive

integer t, we define the distance function dG,t : V × V → N ∪ {0}, where

dG,t(x, y) = min{dG(x, y), t}.

Then any metric generator for (V, dG,t) is a metric generator for (V, dG,t+1)

and, as a consequence, the metric dimension of (V, dG,t+1) is less than or equal

to the metric dimension of (V, dG,t). In particular, the metric dimension of

(V, dG,1) is equal to |V | − 1, the metric dimension of (V, dG,2) is equal to

dimA(G) and, if G has diameter D(G), then dG,D(G) = dG and so the metric

dimension of (V, dG,D(G)) is equal to dim(G). Notice that when using the

metric dG,t the concept of metric generator needs not be restricted to the case

of connected graphs1. Moreover, we have that S is an adjacency generator

for G if and only if it is an adjacency generator for its complement Gc. This is

1For any pair of vertices x, y belonging to different connected components of G we can

assume that dG(x, y) = ∞ and so dG,t(x, y) = t for any t greater than or equal to the

maximum diameter of a connected component of G.
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justified by the fact that, given an adjacency generator S for G, it holds that

for every x, y ∈ V −S there exists s ∈ S such that s is adjacent to exactly one

of x and y, and this property also holds in Gc. Thus, dimA(G) = dimA(Gc).

The metric dimension has been studied for a wide variety of graphs,

e.g. trees [12, 36, 78], unicyclic graphs [12, 68], wheel graphs [37, 77], fan

graphs [37], lexicographic product graphs [43], strong product graphs [71],

Cartesian product graphs [37, 48] and corona product graphs [86]. Moreover,

integer programming models and metaheuristic approaches have been pre-

sented for computing or approximating this parameter [12, 19, 52]. As we

mentioned previously, the adjacency dimension was introduced as an aux-

iliary tool for the study of the metric dimension of lexicographic product

graphs [43]. Moreover, the adjacency dimension of corona product graphs,

as well as its relation to the simultaneous metric dimension of such products,

is studied in [26, 27].

A vertex w ∈ V (G) strongly distinguishes two different vertices u, v ∈
V (G) if dG(w, u) = dG(w, v)+dG(v, u) or dG(w, v) = dG(w, u)+dG(u, v), i.e.,

there exists some shortest w − u path containing v or some shortest w − v
path containing u. A set S of vertices in a connected graph G is a strong

metric generator for G if every pair of vertices of G is strongly distinguished

by some vertex of S. A minimum cardinality strong metric generator for G

is called a strong metric basis of G, and its cardinality is the strong metric

dimension of G, denoted by dims(G).

One can immediately see that a strong metric generator is also a metric

generator, which leads to dim(G) ≤ dims(G). It was shown in [12] that

dim(G) = 1 if and only if G is a path. It now readily follows that dims(G) = 1

if and only if G is a path. At the other extreme we see that dims(G) = n− 1

if and only if G is the complete graph of order n. For the cycle Cn of order

n, the strong metric dimension is dims(Cn) = dn/2e, and if T is a tree, then

its strong metric dimension equals |Ω(T )| − 1 (see [76]).

A number of results have been presented regarding the strong metric

dimension of Cartesian product graphs [54, 67, 73], Cayley graphs [67],

distance-hereditary graphs [63], convex polytopes [50], strong product graphs

[61, 62], corona product graphs [57], rooted product graphs [58], lexicographic

product graphs [59], Cartesian sum graphs [60] and direct product graphs

[73]. Also, some Nordhaus-Gaddum type results for the strong metric dimen-

sion of a graph and its complement are known [88]. Beside the theoretical
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results related to the strong metric dimension, a mathematical programming

model [50] and metaheuristic approaches [51, 65] for computing or estimat-

ing this parameter have been developed. For more information we refer the

reader to [53] as a short survey on the strong metric dimension.

A set S of vertices of G is a vertex cover of G if every edge of G is incident

with at least one vertex of S. The vertex cover number of G, denoted by

β(G), is the smallest cardinality of a vertex cover of G. We refer to a β(G)-set

in a graph G as a vertex cover of cardinality β(G). Oellermann and Peters-

Fransen [67] showed that the problem of finding the strong metric dimension

of a connected graph G can be transformed into the problem of finding the

vertex cover number of another related graph, which they called the strong

resolving graph. We now describe this approach in detail.

A vertex u ofG is maximally distant from v if for every vertex w ∈ NG(u),

dG(v, w) ≤ dG(u, v). We denote by MG(v) the set of vertices of G which

are maximally distant from v. The collection of all vertices of G that are

maximally distant from some vertex of the graph is called the boundary of

the graph, see [5, 10], and is denoted by ∂(G)2. If u is maximally distant from

v and v is maximally distant from u, then we say that u and v are mutually

maximally distant . If u is maximally distant from v, and v is not maximally

distant from u, then v has a neighbour v1, such that dG(v1, u) > dG(v, u), i.e.,

dG(v1, u) = dG(v, u)+1. It is easily seen that u is maximally distant from v1.

If v1 is not maximally distant from u, then v1 has a neighbour v2, such that

dG(v2, u) > dG(v1, u). Continuing in this manner we construct a sequence

of vertices v1, v2, . . . such that dG(vi+1, u) > dG(vi, u) for every i. Since G

is finite this sequence terminates with some vk. Thus for all neighbours x

of vk we have dG(vk, u) ≥ dG(x, u), and so vk is maximally distant from u

and u is maximally distant from vk. Hence every boundary vertex belongs to

the set S = {u ∈ V (G) : there exists v ∈ V (G) such that u, v are mutually

maximally distant}. Moreover, every vertex of S is a boundary vertex.

For some basic graph classes, such as complete graphs, complete bipartite

graphs, cycle graphs and hypercubes, the boundary is simply the whole vertex

set. It is not difficult to see that this property also holds for all 2-antipodal

graphs. Notice that the boundary of a tree consists of its leaves. Also, it

2In fact, the boundary ∂(G) of a graph was defined first in [13] as the subgraph of

G induced by the set mentioned in our work with the same notation. We follow the

approach of [5, 10] where the boundary of the graph is just the subset of the boundary

vertices defined in this article.
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is readily seen that σ(G) ⊆ ∂(G). As a direct consequence of the definition

of mutually maximally distant vertices, we have that every pair of mutually

maximally distant vertices x, y of a connected graph G and every strong

metric basis S of G satisfy x ∈ S or y ∈ S.

Based on the previous definitions, the strong resolving graph of a graph

G = (V,E), was defined in [67] as the graph GSR = (V,E ′) where two vertices

u, v are adjacent if and only if u and v are mutually maximally distant in

G. To illustrate these notions, Figure 1.2 shows examples of basic concepts

such as maximally distant vertices, mutually maximally distant vertices and

boundary, whereas Figure 1.3 shows the strong resolving graph GSR of the

graph G depicted in Figure 1.2.

v1

v2

v3

v4

v5

v6

v7

v8v9v10

Figure 1.2: All vertices of the set {v1, v6, v7, v8} are pairwise mutually max-

imally distant. Also, v2 and v10 (v4 and v9) are mutually maximally dis-

tant. Thus, the boundary of G is ∂(G) = {v1, v2, v4, v6, v7, v8, v9, v10}. Now,

MG(d) = {v1, v6, v7, v8, v9} is the set of vertices which are maximally dis-

tant from v4. Nevertheless, the vertex v4 is maximally distant only from the

vertex v9.

v2 v4 v3

v5

v1

v6

v7

v8

v9v10

Figure 1.3: Strong resolving graph of the graph G shown in Figure 1.2.
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The following result provides a powerful tool for finding the strong metric

dimension of a graph.

Theorem 1.1. [67] For any connected graph G,

dims(G) = β(GSR).

For some types of graphs, the strong resolving graphs can be obtained

relatively easily, as the next result exemplifies, so applying Theorem 1.1

allows to determine their strong metric dimensions.

Remark 1.2.

(a) If ∂(G) = σ(G), then GSR
∼= K∂(G) ∪N|V−∂(G)|. In particular, (Kn)SR ∼=

Kn and for any tree T , (T )SR ∼= K|Ω(T )| ∪N|V−Ω(G)|.

(b) For any 2-antipodal graph G of order n, GSR
∼=
⋃n

2
i=1 K2. Even cycles

are 2-antipodal. Thus, (C2k)SR ∼=
⋃k
i=1K2.

(c) For odd cycles (C2k+1)SR ∼= C2k+1.



Chapter 2

The simultaneous metric

dimension of graph families

In this chapter, we introduce the concept of simultaneous metric dimension

and investigate its core properties, namely its bounds, extreme values and

its relations to the metric dimensions of individual graphs composing the

families. We also analyse the behaviour of this parameter on several families

for which interesting facts may be pointed out.

Given a family G = {G1, G2, ..., Gk} of (not necessarily edge-disjoint)

connected graphs Gi = (V,Ei) with common vertex set1 V (the union of

whose edge sets is not necessarily the complete graph), we define a simulta-

neous metric generator for G to be a set S ⊆ V such that S is simultaneously

a metric generator for each Gi. We say that a minimum cardinality simul-

taneous metric generator for G is a simultaneous metric basis of G, and its

cardinality the simultaneous metric dimension of G, denoted by Sd(G) or

explicitly by Sd(G1, G2, ..., Gk). An example is shown in Figure 2.1, where

the set {v3, v4} is a simultaneous metric basis of the family {G1, G2, G3}.

2.1 General bounds

The following result is a direct consequence of the definition of simultaneous

metric generators and bases.

1Although, in general, we will denote the common vertex set simply as V , when neces-

sary we will use the notation V (G) to avoid ambiguities.

15
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v1

v2 v3

v4

v1

v2 v3

v4

v1

v2 v3

v4

G1 G2 G3

Figure 2.1: The set {v3, v4} is a simultaneous metric basis of {G1, G2, G3}.
Thus, Sd(G1, G2, G3) = 2.

Remark 2.1. For any family G = {G1, G2, ..., Gk} of connected graphs with

common vertex set V and any subfamily H of G,

Sd(H) ≤ Sd(G) ≤ min

{
|V | − 1,

k∑
i=1

dim(Gi)

}
.

In particular,

max
i∈{1,...,k}

{dim(Gi)} ≤ Sd(G).

The inequalities above are sharp. For instance, for the family of graphs

shown in Figure 2.1 we have Sd(G1, G2, G3) = 2 = dim(G1) = dim(G2) =

max
i∈{1,2,3}

{dim(Gi)}, while for the family of graphs shown in Figure 2.2 we have

that Sd(G1, G2, G3) = 3 = |V | − 1.

The following result is a direct consequence of Remark 2.1.

Corollary 2.2. Let G be a family of connected graphs on a common vertex

set. If Kn ∈ G, then

Sd(G) = n− 1.

As shown in Figure 2.2, the converse of Corollary 2.2 does not hold.

Theorem 2.3. Let G be a family of connected graphs with the same vertex

set V . Then Sd(G) = |V | − 1 if and only if for every pair u, v ∈ V , there

exists a graph Guv ∈ G such that u and v are twin vertices in Guv.

Proof. We first note that for any connected graph G = (V,E) and any vertex

v ∈ V the set V − {v} is a metric generator for G. So, if Sd(G) = |V | − 1,

then for every v ∈ V , the set V − {v} is a simultaneous metric basis of G
and, as a consequence, for every u ∈ V − {v} there exists a graph Guv ∈ G
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v1 v2

v3v4

v1 v2

v3v4

v1 v2

v3v4

G1 G2 G3

Figure 2.2: The set {v2, v3, v4} is a simultaneous metric basis of the family

{G1, G2, G3}. Thus, Sd(G1, G2, G3) = 3 = |V | − 1.

such that the set V − {u, v} is not a metric generator for Guv, i.e., for every

x ∈ V − {u, v} we have dGu,v(u, x) = dGu,v(v, x). So u and v must be twin

vertices in Gu,v.

Conversely, if for every u, v ∈ V there exists a graph Guv ∈ G such that

u and v are twin vertices in Guv, then for any simultaneous metric basis

B of G either u ∈ B or v ∈ B. Hence, all but one element of V must

belong to B. Therefore |B| ≥ |V | − 1 and, by Remark 2.1, we conclude that

Sd(G) = |V | − 1.

Notice that Corollary 2.2 is also a consequence of Theorem 2.3 as is the

next result. We recall that the centre of a star graph K1,t is the vertex of

degree t.

Corollary 2.4. Let G be a family of connected graphs with the same vertex

set V . If G contains three star graphs having different centers, then Sd(G) =

|V | − 1.

It was shown in [12] that for any connected graph G of order n and

diameter D(G),

dim(G) ≤ n−D(G). (2.1)

Given a graph family G defined on a common vertex set V , we define

the parameter ρ(G) = |W | − 1, where W ⊆ V is a maximum cardinality set

such that for every G ∈ G the subgraph 〈W 〉G induced by W in G is a path

and there exists w ∈ W which is a common leaf of all these paths. With this

definition in mind, we give our next result, which is an extension of (2.1) to

the case of the simultaneous metric dimension.
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Theorem 2.5. Let G be a family of graphs defined on a common vertex set

V . Then,

Sd(G) ≤ |V | − ρ(G).

Proof. Let W = {v0, v1, . . . , vρ(G)} ⊆ V be a set for which ρ(G) is obtained.

Assume, without loss of generality, that v0 is a common leaf of 〈W 〉G, for

every G ∈ G, and let W ′ = W − {v0}. Since dG(v0, vi) 6= dG(v0, vj), for

i, j ∈ {1, ..., ρ(G)}, i 6= j, and any G ∈ G, we conclude that W ′ is a metric

generator for G. Hence, Sd(G) ≤ |W ′| = |V | − ρ(G).

Let r ≥ 3 be an integer. Label the vertices of Kr and K1,r−1 with the

same set of labels and suppose c is the label of the centre of the star K1,r−1.

Let Pd, d ≥ 2, be an a–b path of order d whose vertex set is disjoint from that

of Kr. Let G1 be the graph obtained from the complete graph Kr = (V ′, E ′),

r ≥ 3, and the path graph Pd, d ≥ 2, by identifying the leaf a of Pd, with

the vertex c of Kr and calling it c, and let G2 be the graph obtained by

identifying the leaf a of Pd with the center c of the star K1,r−1 and also calling

it c. Figure 2.3 illustrates this construction. In this case, G1 and G2 have the

same vertex set V (where |V | = d+ r−1). For any v ∈ V (Kr)−{c} we have

dG1(b, v) = dG2(b, v) = d and V (Pd) ∪ {v} is a shortest path of length d in

both graphs G1 and G2. Moreover, W = (V ′−{v, c})∪{b} is a simultaneous

metric basis of {G1, G2} and so Sd(G1, G2) = |V |−d = |V |−ρ(G). Therefore,

the bound described above is sharp.

bu3u2u1c

v1

v2

v3

v4

G1

bu3u2u1c

v1

v2

v3

v4

G2

Figure 2.3: The family G = {G1, G2} satisfies Sd(G) = |V | − ρ(G).

2.2 Families of graphs with small metric di-

mension

In this section we focus on families of graphs on the same vertex set each of

which have dimension 1 or 2. As we mentioned previously, it was shown in
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[12] that dim(G) = 1 if and only if G is a path. The first result in this section

deals with families of graphs for which the simultaneous metric dimension is

as small as possible.

Theorem 2.6. Let G be a family of connected graphs on a common vertex

set. Then

(i) Sd(G) = 1 if and only if G is a collection of paths that share a common

leaf.

(ii) If G is a collection of paths, then 1 ≤ Sd(G) ≤ 2.

Proof. If Sd(G) = 1, then the family G is a collection of paths. Moreover, if v

is a vertex of degree 2 in a path P , then v does not distinguish its neighbours

and, as a consequence, {v} is a metric basis of P if and only if v is a leaf of

P . Therefore, (i) follows.

Since any path has metric dimension 1, and any pair of distinct vertices

of a path P is a metric generator for P , we conclude that (ii) follows.

Theorem 2.7. Let G be a family of graphs on a common vertex set V such

that G does not only consist of paths. Let H be the collection of elements of

G which are not paths. Then

Sd(G) = Sd(H).

Proof. Since H is a non-empty subfamily of G we conclude that Sd(G) ≥
Sd(H). From Theorem 2.6 (i), it follows that Sd(H) ≥ 2. Moreover, as any

pair of vertices of a path P is a metric generator for P , it follows that if

B ⊆ V is a simultaneous metric basis of H, then B is a simultaneous metric

generator for G and, as a result, Sd(G) ≤ |B| = Sd(H).

Theorem 2.8. Let G = {G1, G2, ..., Gk} be a family of paths and cycles on a

common vertex set V , which contains at least one cycle. Then the following

assertions hold:

(i) If |V | is odd, then Sd(G) = 2.

(ii) If |V | is even, then 2 ≤ Sd(G) ≤ 3. Moreover, Sd(G) = 2 if and only

if there exist two vertices u, v ∈ V which are not mutually antipodal in

any cycle Gi ∈ G.
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(iii) If |V | is even and G contains fewer than n− 1 cycles, then Sd(G) = 2.

Moreover, this result is the best possible in the sense that there exists

a family of (n − 1) cycles of order n on the same vertex set whose

simultaneous metric dimension is 3.

Proof. By Theorem 2.7, we have that Sd(G) = Sd(C), where C is the sub-

family of G containing all cycles. With this fact in mind, for the remainder

of the proof we will assume that G is composed only by cycles.

The result is clear for |V | = 3. Let Cn be a cycle of order |V | = n ≥ 4. We

first assume that n is odd. In this case, given four different vertices u, v, x, y ∈
V (Cn) we have dCn(u, x) 6= dCn(u, y) or dCn(v, x) 6= dCn(v, y). Hence, we

conclude that {u, v} is a metric generator for Cn and, since dim(Cn) > 1, we

conclude that {u, v} is a metric basis for Cn. Thus, {u, v} is a simultaneous

metric basis for G. Therefore, in this case Sd(G) = 2. Thus (i) holds.

From now on we assume that |V | = n is even. Note that in this case

every Gi is a 2-antipodal graph. Let u, v ∈ V (Cn) be two vertices which

are not mutually antipodal in Cn. Since for every pair of distinct vertices

x, y ∈ V (Cn), we have dCn(u, x) 6= dCn(u, y) or dCn(v, x) 6= dCn(v, y), we

conclude that {u, v} is a metric generator for Cn and, since dim(Cn) > 1, we

conclude that {u, v} is a metric basis. Clearly, no pair of mutually antipodal

vertices form a metric basis for Cn. Therefore, Sd(G) = 2 if and only if there

are two vertices u, v ∈ V which are not mutually antipodal in Gi for every

i ∈ {1, ..., k}. Suppose that, for every pair of distinct vertices u, v ∈ V , there

exists Gi ∈ G such that u and v are mutually antipodal in Gi. In this case

we have Sd(G) ≥ 3. Now, since for three different vertices u, v, w ∈ V , only

two of them may be mutually antipodal in Gi, we conclude that {u, v, w} is

a simultaneous metric generator for G. Therefore, in this case, Sd(G) = 3.

This completes the proof of (ii).

Since each of the k cycles in G has n/2 antipodal pairs it follows that

if k < n − 1 or equivalently nk
2
<
(
n
2

)
, then Sd(G) = 2. This inequality is

best possible in the sense that there is a collection of (n − 1) cycles G =

{C ′1, C ′2, . . . , C ′n−1} with vertex set {1, 2, . . . , n} such that each of the
(
n
2

)
possible pairs from {1, 2, . . . , n} is an antipodal pair on exactly one of these

cycles and hence Sd(G) = 3. We construct the labeling of these cycles by

assigning pairs of labels to antipodal pairs in such a way that a given pair is

assigned to exactly one of these (n−1) cycles. Consider the upper triangular

array whose (i, j)th entry is (i, j) for 1 ≤ i < j ≤ n. Select the first non-
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empty entry in row 1. This entry is the ordered pair (1, 2). Begin by assigning

the labels 1 and 2 to the vertices in positions 1 and n/2 on C ′1. Now mark

rows and columns 1 and 2 used and mark the pair (1, 2) as unavailable. Find

the first unused row and subject to this the first unused column and let the

corresponding entry in the array be say (i12 , j12). Assign i12 and j12 to vertices

in positions 2 and 1+n/2 on C ′1 and mark both rows and columns i12 and j12

as used and the pair (i12 , j12) as unavailable. Next find the first available pair

in the first unused row and subject to this in an unused column, say (i13 , j13).

Assign the labels i13 and j13 to the vertices in C ′1 in positions 3 and 2 + n/2,

respectively. We continue this process until all rows and columns of the array

have been marked used. Moreover, whenever the entries of an ordered pair

are used as labels of vertices in C ′1 we mark that pair as unavailable. Now

reset the labels on all rows and columns in the array as unused but do not

reset the labels on the ordered pairs. Next find the first available entry, say

(i21 , j21) in row 1 and assign i21 and j21 to the vertices in positions 1 and n/2,

respectively, of C ′2. Mark rows and columns i21 and j21 as used and mark the

pair (i21 , j21) as unavailable. Now find the first non-empty available entry in

the first unmarked row and subject to this in the first unmarked column, say

(i22 , j22), and assign i22 and j22 to vertices in positions 2 and 1 + n/2 in C ′2.

Continue in this manner until entries of each ordered pair in the triangular

array have been assigned as labels to antipodal vertices in one of the cycles in

G, backtracking when necessary to the pair of labels following the one chosen

in the previous successful step (according to the imposed ordering) if some

cycle cannot be fully labelled with unused label pairs. Then Sd(G) = 3. This

completes the proof of (iii).

2.3 Bounds for the simultaneous metric di-

mension of families of trees

We first introduce some necessary definitions. A vertex of degree at least 2

in a graph G is called an interior vertex. The set of interior vertices of graph

G is denoted by I(G) . A vertex of degree at least 3 is called a major vertex

of G. Any leaf u of G is said to be a terminal vertex of a major vertex v

of G if d(u, v) < d(u,w) for every other major vertex w of G. The terminal

degree terG(v) of a major vertex v in G is the number of terminal vertices of

v in G, i.e., the number of paths in G− v, while TERG(v) represents the set
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of terminal vertices of v in G. If there is no ambiguity, we will simply write

ter(v) and TER(v). A major vertex v of G is an exterior major vertex of G

if it has positive terminal degree. The set of exterior major vertices of graph

G is denoted by M(G) . It was shown in [12] that a metric generator W of

a tree T may be constructed as follows: for each exterior major vertex of T

select a vertex from each of the paths of T − v except from exactly one such

path and place it in W . So dim(T ) =
∑

w∈M(T )(ter(w)− 1).

The following result shows an upper bound on the simultaneous metric

dimension of families composed by trees.

Proposition 2.9. Let T = {T1, T2, . . . , Tk} be a family of trees, which are

different from paths, defined on a common vertex set V , and let SI =
k⋂
i=1

I(Ti)

be the set of vertices that are simultaneously interior vertices of every tree

Ti ∈ T . Then

Sd(T ) ≤ |V | − |SI | − 1.

Proof. Using the ideas that underly the validity of the algorithm for con-

structing a (minimum) resolving set of a tree described in [12], it is possible

to construct a set S, which is simultaneously a metric generator for every tree

Ti ∈ T by constructing metric generators Wi for every tree Ti as described

and letting S =
k⋃
i=1

Wi. Any such set S will not contain a vertex that is not

in SI , so

Sd(T ) ≤ |S| ≤ |V | − |SI |

Moreover, for every vertex u ∈ V − SI and every tree Ti ∈ T , either:

(i) u is a terminal vertex of an exterior major vertex x of Ti, in which case

every other terminal vertex of x, other than u, may be selected when

constructing Wi, and hence Wi may be constructed in such a way that

u /∈ Wi; or

(ii) u is not a terminal vertex of any exterior major vertex of Ti, in which

case Wi may be constructed in such a way that u /∈ Wi.

Thus, for every vertex u ∈ V −SI , the set S may be constructed in such

a way that u /∈ S and, as a result, Sd(T ) ≤ |S| ≤ |V | − |SI | − 1.

The bound presented above is sharp. For instance, equality is achieved

for the graph family shown in Figure 2.4, where SI = {m1,m2, i1}, any triple
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of leaves is a simultaneous metric generator, e.g. {l1, l2, l3}, whereas no pair of

vertices is a simultaneous metric generator. Thus Sd(T ) = 3 = |V |−|SI |−1.

m1

m2

i1

l1

l2

l3

l4

m1

m2

i1

l1 l2

l3 l4

m1

m2 i1

l1

l2

l3

l4

T1 T2 T3

Figure 2.4: A family of trees T = {T1, T2, T3} such that Sd(T ) = 3 =

|V | − |SI | − 1.

However, there are families T of trees on the same vertex set for which

the ratio Sd(T )
|V |−|SI |−1

can be made arbitrarily small. To see this let r, s ≥ 3 be

integers and let V = {(i, j)|1 ≤ i ≤ r, 1 ≤ j ≤ s}∪{x}. So |V | = rs+1. Let

T1 be the tree obtained from the paths Qi = (i, 1)(i, 2) . . . (i, s)x for 1 ≤ i ≤ r

by identifying the vertex x from each of the paths. So T1 is isomorphic to

the tree obtained from the star K1,r by subdividing each edge s − 1 times.

For 2 ≤ j < s let Tj be obtained from T1 by adding the edge (i, 1)(i, j + 1)

and deleting the edge (i, j)(i, j + 1) for 1 ≤ i ≤ r. Finally let Ts be obtained

from T1 by adding the edge (i, 1)x and deleting the edge (i, s)x for 1 ≤ i ≤ r.

Let T = {Tj|1 ≤ j ≤ s}. Then SI = {x}. So |V | − |SI | − 1 = rs − 1. It

is not difficult to see that {(i, 1)|1 ≤ i ≤ r − 1} is a minimum resolving set

for each Tj. Hence Sd(T ) = r − 1. So Sd(T )
|V |−|SI |−1

= r−1
rs−1

. By choosing s large

enough this can be made as small as we wish. Note also that this family of

trees achieves the lower bound given in Remark 2.1.

2.4 Families composed by a graph and a min-

imally differing variation

Here, we focus on the following question: given a graph G whose metric

dimension is known, if a small modification is performed on G, thus obtaining

a new graph G′, what is the behaviour of Sd(G,G′) with respect to dim(G)?

Answering this question in the general case is hard. Here, we will analyse a

number of particular cases. We say that a graph G2 is obtained from a graph
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G1 by an edge exchange if there is an edge e not in G1 and an edge f in G1

such that G2 = G1 + e− f . Throughout this section, we will study families

composed by two graphs such that each one of them is obtained from the

other by an edge exchange.

For any tree T we shall denote by B(T ) the set of its metric bases con-

structed as described in Section 2.3.

Remark 2.10. Let T be a tree obtained from a path graph by an edge ex-

change. If T is not a path, then

dim(T ) = 2.

Proof. We assume that T is a tree different from a path. In that case, either T

has exactly one exterior major vertex having exactly three terminal vertices,

or it has exactly two exterior major vertices having exactly two terminal

vertices each. In both cases we obtain dim(T ) = σ(T )− ex(T ) = 2.

Remark 2.11. Let T be a tree obtained from a path graph P by an edge

exchange. If T is a path graph having a leaf in common with P , then

Sd(P, T ) = 1,

otherwise

Sd(P, T ) = 2.

Proof. If T is a path graph having a leaf in common with P , then Sd(P, T ) =

1 by Theorem 2.6 (i). Now, if T is a path graph which has no common leaves

with P , then by Theorem 2.6 (ii) it holds that Sd(P, T ) = 2.

Finally, suppose that T is a tree different from a path. In that case, by

Remark 2.10, dim(T ) = 2 and so Theorem 2.7 leads to Sd(P, T ) = 2.

Let G = (V,E) be a graph and let e1, e2 be two different edges of its

complement. Let G1 = G + e1 = (V,E1) and G2 = G + e2 = (V,E2) be the

graphs whose edge sets are E1 = E ∪ {e1} and E2 = E ∪ {e2}, respectively.

Clearly, G2 is obtained from G1 by an edge exchange and vice versa.

Remark 2.12. Let P be a path graph of order at least four and let e1, e2 be

two different edges of its complement. Then,

Sd(P + e1, P + e2) = 2.
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Proof. Since P + e1 and P + e2 are not path graphs, Sd(P + e1, P + e2) ≥ 2

and so we only need to show that Sd(P + e1, P + e2) ≤ 2. To this end, we

denote by V = {v1, ..., vn} the vertex set of P , where vi is adjacent to vi+1,

for every i ∈ {1, ..., n− 1}. Also, let e1 = vpvq, 1 ≤ p < q ≤ n, and e2 = vrvs,

1 ≤ r < s ≤ n. In order to show that {v1, vn} is a metric generator for

P + e1, we differentiate the following four cases:

(1) e1 = v1vn. In this case, P + e1 is a cycle graph where v1 and vn are

adjacent, so {v1, vn} is a metric generator.

(2) 1 < p < q = n. In this case, P + e1 is a unicyclic graph where vp has

degree three, v1 has degree one and the remaining vertices have degree

two. Consider two different vertices u, v ∈ V −{v1, vn}. If u or v belong

to the path from v1 to vp, then v1 distinguishes them. If both, u and

v, belong to the cycle of P + e1, then d(u, v1) = d(u, vp) + d(vp, v1) and

d(v, v1) = d(v, vp) + d(vp, v1). Thus, if vp distinguishes u and v so does

v1, otherwise vn does.

(3) 1 = p < q < n. This case is analogous to case 2.

(4) 1 < p < q < n. In this case, P + e1 is a unicyclic graph where vp and vq

have degree three, v1 and vn have degree one and the remaining vertices

have degree two. Consider two different vertices u, v ∈ V − {v1, vn}.
If u or v belong to the path from v1 to vp (or to the path from vq to

vn), then v1 (or vn) distinguishes them. If both u and v belong to the

cycle, then d(u, v1) = d(u, vp) + d(vp, v1), d(v, v1) = d(v, vp) + d(vp, v1),

d(u, vn) = d(u, vq) + d(vq, vn) and d(v, vn) = d(v, vq) + d(vq, vn). Thus,

if vp distinguishes u and v so does v1, otherwise vq distinguishes them,

which means that vn also does.

According to the four cases above, we conclude that {v1, vn} is a metric

generator for P +e1 and, by analogy, we deduce that {v1, vn} is also a metric

generator for P + e2. Thus, Sd(P + e1, P + e2) ≤ 2 and, as a consequence,

the result follows.

We now present results analogous to those of Remarks 2.11 and 2.12 for

the case of cycles.
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Remark 2.13. For any graph G obtained from a cycle graph C by an edge

exchange,

Sd(G,C) = 2.

Proof. Since G and C are not path graphs, Sd(G,C) ≥ 2 and so it remains

to show that Sd(G,C) ≤ 2. Assume that G = C + e− f and f = vivj. As vi

and vj are adjacent in C, they are not antipodal vertices and so {vi, vj} is a

metric generator for C. Now, since G is isomorphic to the graphs of the form

P + e1, as described in Remark 2.12, by analogy to the proof of Remark 2.12

(cases 2, 3 and 4) we deduce that {vi, vj} is also a metric generator for G.

Consequently, Sd(G,C) ≤ 2.

Remark 2.14. Let C be a cycle graph of order at least four and let e be an

edge of its complement. Then,

dim(C + e) = 2.

Proof. Since C + e is not a path graph, dim(C + e) ≥ 2, so we only need to

show that dim(C + e) ≤ 2.

If C has order four, then there is only one graph of the form C + e, for

which it is straightforward to verify that dim(C + e) = 2.

Now, suppose C has order n ≥ 5 and take e = vivj. Note that C + e is a

bicyclic graph where vi and vj are vertices of degree three and the remaining

vertices have degree two. We denote by Cn1 and Cn−n1+2 the two graphs

obtained as induced subgraphs of C + e which are isomorphic to a cycle of

order n1 and a cycle of order n− n1 + 2, respectively. Since n ≥ 5, we have

that n1 > 3 or n − n1 + 2 > 3. We assume, without loss of generality, that

n1 > 3. Let a, b ∈ V (Cn1) be two vertices such that:

• if n1 is even, a ∼ b and d(vi, a) = d(vj, b),

• if n1 is odd, a ∼ x ∼ b, where x ∈ V (Cn1) is the only vertex such that

d(x, vi) = d(x, vj).

We claim that {a, b} is a metric generator for C + e. Consider two

different vertices u, v ∈ V (C + e) − {a, b}. We differentiate the following

cases, where the distances are taken in C + e:

(1) u, v ∈ V (Cn1). It may be verified that {a, b} is a metric generator for

Cn1 , hence d(u, a) 6= d(v, a) or d(u, b) 6= d(v, b).
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(2) u ∈ V (Cn1) and v ∈ V (Cn−n1+2)−{vi, vj}. In this case, d(u, a) < d(v, a)

or d(u, b) < d(v, b).

(3) u, v ∈ V (Cn−n1+2) − {vi, vj}. In this case, if d(u, a) = d(v, a), then

d(u, vi) = d(v, vi), so d(u, vj) 6= d(v, vj) and, consequently, d(u, b) 6=
d(v, b).

According to the three cases above, {a, b} is a metric generator for C+e

and, as a result, the proof is complete.

Corollary 2.15. Let C be a cycle graph of order n ≥ 4 and let e1, e2 be two

different edges of its complement. Then,

2 ≤ Sd(C + e1, C + e2) = Sd(C,C + e1, C + e2) ≤ 4.

To illustrate the different cases of Corollary 2.15, consider the cycle C10

where V (C10) = {v1, ..., v10}, vi is adjacent to vi+1 for every i ∈ {1, ..., 9}
and v1 is adjacent to v10. If we make e1 = v4v9 and e2 = v5v8, it may be

verified that the sets {v1, v2} and {v6, v7} are the simultaneous metric bases

of G = {C10 +e1, C10 +e2}, so Sd(G) = 2. Alternatively, if we make e1 = v4v9

and e2 = v3v8, it may be verified that the sets {v1, v2, v10} and {v5, v6, v7}
are the simultaneous metric bases of G, so Sd(G) = 3. Finally, by making

e1 = v4v9 and e2 = v1v8, we have that the sets {v1, v2, v4, v5}, {v1, v2, v9, v10},
{v4, v5, v6, v7} and {v6, v7, v9, v10} are the simultaneous metric bases of G, so

Sd(G) = 4.

We now study the case of families composed by two trees, both different

from a path, one of which is obtained from the other by an edge exchange.

Theorem 2.16. Let T1 be a tree of order n ≥ 4 and let T2 be a tree obtained

from T1 by an edge exchange. Then,

dim(T1) ≤ Sd(T1, T2) ≤ dim(T1) + 2.

Proof. The lower bound is a direct consequence of Remark 2.1. Consider that

T2 = T1 + e− f , where e = vrvs and f = vivj. To deduce the upper bound,

we will show that for any metric basis B ∈ B(T1), the set S = B ∪ {vi, vj}
is a metric generator for T2, and thus it is a simultaneous metric generator

for {T1, T2}. First of all, notice that Ω(T2) ⊆ Ω(T1)∪ {vi, vj}. Depending on

the positions of vi and vj in T1, we differentiate the following cases:
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(1) vi and vj lie on the path L that connects vp ∈M(T1) to vx ∈ TERT1(vp).

We consider, without loss of generality, that vi is closer to vp than vj. In

this case, we have that TERT2(vp)−TERT1(vp) ∈ {∅, {vi}, {vj}, {vi, vj}}.
Due to the connectivity of T2, either vr or vs lies on the path L′ connecting

vj to vx, so we assume, without loss of generality, that vr lies on L′.

On one hand, if vr ∈ M(T2), then TERT2(vr) = {vj, vx} and, for ev-

ery v ∈ (M(T2) − {vr}) −M(T1), terT2(v) = 1. Furthermore, under

this assumptions, for every v ∈ (M(T1) − {vp}) ∩M(T2), we have that

TERT2(v) ⊆ TERT1(v).

Alternatively, if vr /∈M(T2) and vs ∈M(T2), then either vj ∈ TERT2(vs)

or vj is a vertex of degree 2 lying on the path that connects vs to vx in

T2. Furthermore, for every v ∈ (M(T2) − {vs}) −M(T1), we have that

terT2(v) = 1, and for every v ∈ (M(T1) − {vp, vs}) ∩M(T2), we have

that TERT2(v) ⊆ TERT1(v).

Finally, if vr /∈ M(T2) and vs /∈ M(T2), then vs ∈ TERT1(vp) ∪ {vi}
or vs ∈ TERT1(w), where w ∈ M(T1) − {vp}. In the first case, vj ∈
TERT2(vp) or vx ∈ TERT2(vp) and vj is a vertex of degree 2 lying on

the path that connects vp to vx in T2, whereas in the second case either

vj ∈ TERT2(w) or vx ∈ TERT2(w) and vj is a vertex of degree 2 lying on

the path that connects w to vx in T2. Furthermore,M(T2) =M(T1) and

for every v ∈M(T2)− {vp, w}, we have that TERT2(v) = TERT1(v).

In consequence, for any metric basis B ∈ B(T1), the set B ∪ {vi, vj} is

a metric generator for T2, and thus a simultaneous metric generator for

{T1, T2}.

(2) vi and vj lie on the path L which connects two major vertices vp and

vq of T1 and contains no other major vertex. Here we assume, without

loss of generality, that vi is closer to vp than vj. In this case, if vr ∈
M(T2)−M(T1), then terT2(vr) = 1. Likewise, if vs ∈ M(T2)−M(T1),

we have that terT2(vs) = 1. Furthermore, TERT2(vp) − TERT1(vp) ∈
{∅, {vi}} and TERT2(vq) − TERT1(vq) ∈ {∅, {vj}}. Finally, for every

v ∈ (M(T2)−{vr, vs})−M(T1), we have that terT2(v) = 1, and for every

v ∈ (M(T1)− {vp, vq}) ∩M(T2), we have that TERT2(v) ⊆ TERT1(v).

In consequence, for any metric basis B ∈ B(T1), the set B ∪ {vi, vj} is

a metric generator for T2, and thus a simultaneous metric generator for

{T1, T2}.
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Summing up the cases discussed above, we may conclude that for any

metric basis B of T1, the set S = B ∪ {vi, vj} is a simultaneous metric

generator for {T1, T2}, so Sd(T1, T2) ≤ |S| ≤ |B|+ 2 = dim(T1) + 2.

Corollary 2.17. Let T1 be a tree of order n ≥ 4 and let T2 be a tree obtained

from T1 by an edge exchange. Then,

dim(T1)− 2 ≤ dim(T2) ≤ dim(T1) + 2.

Proof. Let f be an edge of T1 and let e be an edge of its complement. Then

T2 = T1 + e− f if and only if T1 = T2 + f − e. Hence, the result is a direct

consequence of Theorem 2.16, according to which dim(T2) ≤ Sd(T1, T2) ≤
dim(T1) + 2 and dim(T1) ≤ Sd(T1, T2) ≤ dim(T2) + 2.

Finally, we address other type of families composed by two graphs fea-

turing larger differences from one another. The notation AOB represents the

symmetric difference of the sets A and B.

Remark 2.18. Let V = {v1, v2, . . . , vn} and V ′ = V ∪ {vn+1}. Let G1 =

(V,E1) and G2 = (V,E2) be two connected graphs on the common vertex set

V and let G′1 = (V ′, E ′1) and G′2 = (V ′, E ′2) be two graphs whose edge sets

are E ′1 = E1 ∪ {vivn+1} and E ′2 = E2 ∪ {vjvn+1}, for some vi, vj ∈ V . If

there exist two simultaneous metric bases B1 and B2 of {G1, G2} such that

B1OB2 = {vi, vj}, then

Sd(G′1, G
′
2) = Sd(G1, G2),

otherwise,

Sd(G1, G2) ≤ Sd(G′1, G
′
2) ≤ Sd(G1, G2) + 1.

Proof. Any pair of different vertices u, v ∈ V distinguished in G′1 or G′2 by

vn+1 is also distinguished in G1 by vi or by vj in G2, so a simultaneous metric

basis of {G′1, G′2} must contain at least as many vertices as a simultaneous

metric basis of {G1, G2}. Thus, Sd(G′1, G
′
2) ≥ Sd(G1, G2).

First assume that there exist two simultaneous metric bases B1 and B2

of {G1, G2} such that B1OB2 = {vi, vj}. Let S = (B1 ∩ B2) ∪ {vn+1}. We

claim that S is a simultaneous metric generator for {G′1, G′2}. We assume,

without loss of generality, that vi ∈ B1. If a pair of different vertices is

distinguished in G1 by vi, it is also distinguished in G′1 by vn+1, otherwise it

is distinguished by some x ∈ B1 − {vi} ⊆ S. The same reasoning is valid for
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vj on G2, so S is simultaneously a metric generator for G′1 and G′2. Thus,

Sd(G′1, G
′
2) ≤ |S| = Sd(G1, G2), so the equality holds.

For the general case, let B be a simultaneous metric basis of {G1, G2}.
Clearly, B ∪ {vn+1} is simultaneously a metric generator for G′1 and G′2, so

Sd(G′1, G
′
2) ≤ Sd(G1, G2) + 1.

A particular case of Remark 2.18 deals with another case of a family of

graphs {G1, G2} where G2 is obtained from G1 by an edge exchange and vice

versa.

Corollary 2.19. Let G = (V,E) be a connected graph of order n ≥ 2 and

let V ′ = V ∪ {vn+1}. Let G1 = (V ′, E1) and G2 = (V ′, E2) be two graphs

whose edge sets are E1 = E ∪ {vivn+1} and E2 = E ∪ {vjvn+1}, for some

vi, vj ∈ V , i 6= j. If there exist two metric bases B1 and B2 of G such that

B1OB2 = {vi, vj}, then

Sd(G1, G2) = dim(G),

otherwise,

dim(G) ≤ Sd(G1, G2) ≤ dim(G) + 1.

2.5 Large families of graphs with a fixed si-

multaneous metric basis and a large com-

mon induced subgraph

Intuitively, it is expectable that the simultaneous metric dimension of large

families is considerably larger than the metric dimension of any of its indi-

vidual member graphs. However, as we will show in this section, there exist

large families of graphs where this difference is as small as desired. We ac-

complish this by describing a general approach for constructing large graph

families for which the simultaneous metric dimension attains the lower bound

given in Remark 2.1. Moreover, we show that the graphs in such families

contain large isomorphic common induced subgraphs.

Let G = (V,E) be a graph and let Perm(V ) be the set of all permutations

of V . Given a subset X ⊆ V , the stabilizer of X is the set of permutations

S(X) = {f ∈ Perm(V ) : f(x) = x, for every x ∈ X} . As usual, we denote

by f(X) the image of a subset X under f , i.e., f(X) = {f(x) : x ∈ X}.
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Let B be metric basis of a graph G = (V,E) of diameter D(G). For any

r ∈ {0, 1, ..., D(G)} we define the set

Br(B) =
⋃
x∈B

{y ∈ V : dG(x, y) ≤ r}.

In particular, B0(B) = B and B1(B) =
⋃
x∈B

NG[x]. Moreover, since B is a

metric basis of G, |BD(G)−1(B)| ≥ |V | − 1.

Let G be a connected graph that is not complete. Given a permutation

f ∈ S(B) of V we say that a graph G′ = (V,E ′) belongs to the family

GB,f (G) if and only if NG′(f(v)) = f(NG(v)), for every v ∈ BD(G)−2(B).

In particular, if D(G) = 2 and f ∈ S(B), then G′ = (V,E ′) belongs to the

family GB,f (G) if and only if NG′(x) = f(NG(x)), for every x ∈ B. Moreover,

if G is a complete graph, we define GB,f (G) = {G}.

Remark 2.20. Let B be a metric basis of a connected non-complete graph G,

let f ∈ S(B) and G′ ∈ GB,f (G). Then for any b ∈ B and k ∈ {1, ..., D(G)−
1}, a sequence b = v0, v1, ..., vk−1, vk = v is a path in G if and only if the

sequence b = f(v0), f(v1), ..., f(vk−1), f(vk) = f(v) is a path in G′.

Proof. Let b ∈ B. Since G′ ∈ GB,f (G) and b = v0 ∈ BD(G)−2(B), we have

that f(v1) ∈ NG′(f(v0)) if and only if v1 ∈ NG(v0) and, in general, if vi ∈
BD(G)−2(B), then f(vi+1) ∈ NG′(f(vi)) if and only if vi+1 ∈ NG(vi). There-

fore, for any k ∈ {1, ..., D(G) − 1}, a sequence (b =)f(v0), f(v1), ..., f(vk−1),

f(vk)(= f(v)) is a path in G′ if and only if (b =)v0, v1, ..., vk−1, vk(= v) is a

path in G.

Corollary 2.21. Let B be a metric basis of a connected graph G, let f ∈
S(B) and G′ ∈ GB,f (G). Then for any b ∈ B and v ∈ BD(G)−1(B), dG(b, v) =

k if and only if dG′(b, f(v)) = k.

Corollary 2.22. Let B be a metric basis of a connected graph G, let f ∈
S(B) and G′ ∈ GB,f (G). Then 〈BD(G)−2(B)〉 ∼= 〈BD(G′)−2(B)〉.

Proof. Since G′ ∈ GB,f (G), the function f is a bijection from V (G) onto

V (G′). It remains to show that the restriction of f to 〈BD(G)−2(B)〉 is an

isomorphism, i.e., we need to show that uv is an edge of 〈BD(G)−2(B)〉 if and

only if f(u)f(v) is an edge of 〈BD(G′)−2(B)〉. Let u, v ∈ BD(G)−2(B). Let

k be the length of a shortest path from the set {u, v} to the set B. Then
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there is a b ∈ B such that k = min{dG(b, u), dG(b, v)} ≤ D(G)− 2. We may

assume that dG(b, u) = k. So there is a path (b =)v0, v1, ..., vk−1, vk(= u) in

〈BD(G)−2(B)〉. By Remark 2.20 (b =)v0, v1, ..., vk−1, vk(= u), v is a path in G

if and only if (b =)f(v0), f(v1), ..., f(vk−1), f(vk)(= f(u)), f(v) is a path in G′.

So uv ∈ E(〈BD(G)−2(B)〉) if and only if f(u)f(v) ∈ E(〈BD(G′)−2(B)〉).

Now we define a family of graphs GB(G), associated to B in G, as follows:

GB(G) =
⋃

f∈S(B)

GB,f (G).

Notice that if BD(G)−2(B) ( V , then any graph G′ ∈ GB(G) is isomor-

phic to a graph G∗ = (V,E∗) whose edge set E∗ can be partitioned into two

sets E∗1 , E∗2 , where E∗1 consists of all edges of G having at least one vertex

in BD(G)−2(B) and E∗2 is a subset of edges of a complete graph whose ver-

tex set is V − BD(G)−2(B). Hence, GB(G) contains 2
l(l−1)

2 |V − B|! different

labeled graphs, where l = |V −BD(G)−2(B)|. Clearly, if |BD(G)−1(B)| = |V |,
then all these graphs are connected and if |BD(G)−1(B)| = |V | − 1, then

2
(l−1)(l−2)

2 (2l−1 − 1)|V −B|! of these graphs are connected.

Now, if BD(G)−2(B) = V , then GB(G) consists of graphs isomorphic to

each other, having the basis B in common and, as a consequence, for any

non-empty subfamily H ⊆ GB(G) we have Sd(H) = dim(G). As the next

result shows, this conclusion on Sd(H) need not be restricted to the case

BD(G)−2(B) = V .

Theorem 2.23. Any metric basis B of a connected graph G is a simultaneous

metric generator for any family of connected graphs H ⊆ GB(G). Moreover,

if G ∈ H, then

Sd(H) = dim(G).

Proof. Assume that B is a metric basis of a connected graph G = (V,E),

f ∈ S(B) and G′ ∈ GB,f (G). We shall show that B is a metric generator

for G′. To this end, we take two different vertices u′, v′ ∈ V − B of G′ and

the corresponding vertices u, v ∈ V of G such that f(u) = u′ and f(v) = v′.

Since u 6= v and u, v 6∈ B, there exists b ∈ B such that dG(u, b) 6= dG(v, b).

Now, consider the following two cases for u, v:

(1) u, v ∈ BD(G)−1(B). In this case, since dG(u, b) 6= dG(v, b), Corollary 2.21

leads to dG′(u
′, b) 6= dG′(v

′, b).
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Figure 2.5: The set B = {v1, v5} is a metric basis of G, f ∈ S(B) and

{G1, ..., G8} ⊆ GB,f (G).

(2) u ∈ BD(G)−1(B) and v 6∈ BD(G)−1(B). By Corollary 2.21, dG′(u
′, b) ≤

D(G)− 1 and, if dG′(v
′, b) ≤ D(G)− 1, then dG(v, b) ≤ D(G)− 1, which

is not possible since v 6∈ BD(G)−1(B). Hence, dG′(v
′, b) ≥ D(G) and so

dG′(u
′, b) 6= dG′(v

′, b).

Notice that since B is a metric basis of G, the case u, v 6∈ BD(G)−1(B) is

not possible. According to the two cases above, B is a metric generator for

G′ and, as a consequence, B is also a simultaneous metric generator for any

family of connected graphs H ⊆ GB(G). Thus Sd(H) ≤ |B| = dim(G) and,

if G ∈ H, then Sd(H) ≥ dim(G). Therefore, the result follows.

Figure 2.5 shows a graph G for which B = {v1, v5} is a metric basis.

The map f belongs to the stabilizer of B and {G1, ..., G8} is a subfamily of

GB,f (G). In this case, the family GB(G) contains 1344 different connected
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graphs, 48 of which are paths, and B is a metric basis of the remaining 1296

connected graphs.



Chapter 3

Families composed by product

graphs

In this chapter, we study the simultaneous metric dimension of families com-

posed by product graphs. In particular, we focus on families composed by

lexicographic and corona product graphs. Within the first case, we study

the particular subcase of families composed by join graphs. Throughout the

chapter, a second notion of simultaneous resolvability, namely the simulta-

neous adjacency dimension, is used as a tool for characterizing the simulta-

neous metric dimension of the studied families. The chapter is organized as

follows. Section 3.1 gives an overview of the graph products we treat. Then,

Section 3.2 introduces the simultaneous adjacency dimension and studies its

properties. Finally, we introduce our results on families composed by join

graphs, standard lexicographic product graphs, and corona product graphs

in Sections 3.3, 3.4 and 3.5, respectively.

3.1 Overview

Let G be a graph of order n, and let (H1, H2, . . . , Hn) be an ordered n-

tuple of graphs of orders n′1, n′2, . . . , n′n, respectively. The lexicographic

product of G and (H1, H2, . . . , Hn) is the graph G ◦ (H1, H2, . . . , Hn), such

that V (G◦ (H1, H2, . . . , Hn)) =
⋃
ui∈V (G)({ui}×V (Hi)) and (ui, vr)(uj, vs) ∈

E(G◦(H1, H2, . . . , Hn)) if and only if uiuj ∈ E(G) or i = j and vrvs ∈ E(Hi).

As we mentioned previously, we will restrict our study to two particular cases.

First, given two vertex-disjoint graphs G = (V1, E1) and H = (V2, E2), the

join of G and H, denoted as G+H, is the graph with vertex set V (G+H) =

35
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V1 ∪ V2 and edge set E(G + H) = E1 ∪ E2 ∪ {uv : u ∈ V1, v ∈ V2}. Join

graphs are lexicographic product graphs, as G+H ∼= P2 ◦ (G,H). The other

particular case we will focus on is the most traditionally studied standard

lexicographic product graph, where Hi
∼= H for every i ∈ {1, . . . , n}, which

is denoted as G ◦H for simplicity.

In the literature we can also find the names the composition or the sub-

stitution for the lexicographic product. The lexicographic product is clearly

not commutative, while it is associative [35, 41]. Moreover, a lexicographic

product graph G ◦ H is connected if and only if G is connected. Figure

3.1 illustrates two examples of lexicographic products and at the same time

emphasizes the fact that the lexicographic product is not commutative.

Figure 3.1: Lexicographic products K1,3 ◦ P3 and P3 ◦K1,3.

The lexicographic product of graphs has been studied from several points

of view. The investigation includes, for instance, the metric and strong met-

ric dimensions [43, 56], independence number [31], domination number [66],

chromatic number [18, 31], connectivity [83], and hamiltonicity [2, 55]. For

more details see [35, 41].

Let G and H be two graphs of order n and n′, respectively. The corona

product of G and H, denoted G�H, is defined as the graph obtained from

G and H by taking one copy of G and n copies of H and joining by an edge

each vertex from the i-th copy of H with the i-th vertex of G. Notice that

the corona product graph K1 �H is isomorphic to the join graph K1 +H.

Observe that G � H is connected if and only if G is connected. More-

over, it is readily seen from the definition that this product is neither an

associative nor a commutative operation. Figure 3.2 shows some examples

of corona products and also underscores the fact that the corona product is

not commutative.
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Figure 3.2: Corona products P4 � C3 and C3 � P4.

The concept of corona product of two graphs was first introduced by

Frucht and Harary [28]. Despite the fact that the corona product is a simple

operation on two graphs and some mathematical properties are merely direct

consequences of its factors, it is interesting to study metric dimension-related

parameters on this product, as those presented in [3, 22, 23, 25, 26, 27, 33, 42,

56, 57, 69, 72, 86]. Besides, several studies have been presented on domination

[33], some topological indices [84, 87] and the equitable chromatic number

[29] of corona product graphs.

3.2 The simultaneous adjacency dimension of

graph families

Let G = {G1, G2, ..., Gk} be a family of (not necessarily edge-disjoint) con-

nected graphs Gi = (V,Ei) with common vertex set V (the union of whose

edge sets is not necessarily the complete graph). By analogy to the defi-

nitions of simultaneous metric generator, basis and dimension presented in

Chapter 2, we define a simultaneous adjacency generator for G to be a set

S ⊂ V such that S is simultaneously an adjacency generator for each Gi. We

say that a minimum cardinality simultaneous adjacency generator for G is a

simultaneous adjacency basis of G, and its cardinality the simultaneous adja-

cency dimension of G, denoted by SdA(G) or explicitly by SdA(G1, G2, ..., Gk).

For instance, the set {v1, v3, v6, v7, v8} is a simultaneous adjacency basis of

the family G = {G1, G2, G3} shown in Figure 3.3, while the set {v1, v6, v7, v8}
is a simultaneous metric basis, so SdA(G) = 5 and Sd(G) = 4.

We now analyse the main properties of the simultaneous adjacency di-

mension and, in a manner analogous as we did for the simultaneous metric
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v1v2v3v4v5

v6

v7

v8

v9

G1

v1v2v3v4v5v6

v7

v8

v9

G2

v1v2v3v4v5v6v7

v8

v9

G3

Figure 3.3: The set {v1, v3, v6, v7, v8} is a simultaneous adjacency basis of

{G1, G2, G3}, whereas {v1, v6, v7, v8} is a simultaneous metric basis.

dimension, we analyse how it is possible to obtain large families of graphs

having a fixed adjacency basis and a large common induced subgraph.

Remark 3.1. For any family G = {G1, G2, ..., Gk} of connected graphs on a

common vertex set V , the following results hold:

(i) SdA(G) ≥ max
i∈{1,...,k}

{dimA(Gi)}.

(ii) SdA(G) ≥ Sd(G).

(iii) SdA(G) ≤ |V | − 1.

Proof. (i) is deduced directly from the definition of simultaneous adjacency

dimension, while (iii) is obtained from the fact that for any non-trivial graph

G = (V,E) it holds that for any v ∈ V the set V − {v} is an adjacency

generator. Let B be a simultaneous adjacency basis of G and let u, v ∈ V −B,

be two different vertices. For every graph Gi, there exists x ∈ B such that

dGi,2(u, x) 6= dGi,2(v, x), so dGi(u, x) 6= dGi(v, x). Thus, B is a simultaneous

metric generator for G and, as a consequence, (ii) follows.

As pointed out in [43], dimA(G) = n−1 if and only if G = Kn or G = Nn.

The following result follows directly from Remark 3.1.

Corollary 3.2. Let G be a graph family on a common vertex set V . If

K|V | ∈ G or N|V | ∈ G, then SdA(G) = |V | − 1.
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The converse of Corollary 3.2 does not hold, as we will exemplify in

Corollary 3.4. We first note the following result, which is a direct consequence

of Theorem 2.3 and Remark 3.1 (ii), (iii) and characterizes a large number

of cases where the upper bound of (iii) is reached.

Remark 3.3. Let G be a graph family on a common vertex set V . If for

every pair u, v ∈ V there exists a graph Guv ∈ G such that u and v are twins

in Guv, then SdA(G) = |V | − 1.

For a star graph K1,r, r ≥ 3, it is known that dimA(K1,r) = r − 1

and every adjacency basis is composed by all but one of its leaves. For a

finite set V = {v1, v2, . . . , vn}, n ≥ 4, let Ki
1,n−1 be the star graph having

vi as its central vertex and V − {vi} as its leaves. We define the family

K(V ) = {Ki
1,n−1 : vi ∈ V }. Any pair of vertices vp, vq ∈ V are twins in

every Ki
1,n−1 ∈ K(V ) − {Kp

1,n−1, K
q
1,n−1}, so the following result is a direct

consequence of Remark 3.3.

Corollary 3.4. For every finite set V of size |V | ≥ 4, SdA(K(V )) = |V |−1.

Let P
(1)
3 = (V,E1), P

(2)
3 = (V,E2) and P

(3)
3 = (V,E3) be the three

different path graphs defined on the common vertex set V = {v1, v2, v3},
where vi is the vertex of degree two in P

(i)
3 , for i ∈ {1, 2, 3}. It was shown in

[43] that dimA(G) = 1 if and only if G ∈ {P1, P2, P3, P
c
2 , P

c
3}. The following

result follows directly from this fact.

Remark 3.5. The following statements hold:

(i) SdA(G) = 1 if and only if G ⊆ {P2, P
c
2}, G ⊆

{
P

(1)
3 , P

(2)
3 ,
(
P

(1)
3

)c
,
(
P

(2)
3

)c}
,

G ⊆
{
P

(1)
3 , P

(3)
3 ,
(
P

(1)
3

)c
,
(
P

(3)
3

)c}
or G ⊆

{
P

(2)
3 , P

(3)
3 ,
(
P

(2)
3

)c
,
(
P

(3)
3

)c}
.

(ii) SdA

(
P

(1)
3 , P

(2)
3 , P

(3)
3 ,
(
P

(1)
3

)c
,
(
P

(2)
3

)c
,
(
P

(3)
3

)c)
= 2.

The following result is derived from the fact that any graph and its

complement have the same set of adjacency bases.

Remark 3.6. Let G = {G1, G2, . . . , Gk} be a family of graphs with the same

vertex set V , and let Gc = {Gc
1, G

c
2, . . . , G

c
k} be the family composed by the

complements of every graph in G. The following assertions hold:

(i) SdA(G) = SdA(Gc) = SdA(G ∪ Gc). Moreover, the simultaneous adja-

cency bases of G and Gc coincide.
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(ii) For any subfamily of graphs G ′ ⊆ Gc, SdA(G) = SdA(G ∪ G ′).

In Section 2.5, we described an approach for, given a graph G and a met-

ric basis B of G, constructing the family GB(G), composed by graphs having a

large common induced subgraph, which satisfies Sd(GB(G)) = dim(G). Now,

we will present an analogous approach for, given a graph G and an adjacency

basis B of G, constructing the family G̃B(G), composed by graphs that have

a large common induced subgraph, which satisfies SdA(G̃B(G)) = dimA(G).

To begin with, recall that for a graph G = (V,E) and a set X ⊆ V ,

S(X) denotes the stabilizer of X and f(X) denotes the image of X under f .

Let G = (V,E) be a graph and let B ⊂ V be a non-empty set. For any

permutation f ∈ S(B) of V we say that a graph G′ = (V,E ′) belongs to

the family G̃B,f (G) if and only if NG′(x) = f(NG(x)), for every x ∈ B. We

define the subgraph 〈BG〉w = (NG[B], Ew) of G, weakly induced by B, where

NG[B] = ∪x∈BNG[x] and Ew is the set of all edges having at least one vertex

in B. See Figure 3.4 for an example of this construction.

v1

v2

v3

v4

v5

v6

v7

v8

G

v1

v2

v3

v4

v6

v7

v8

〈BG〉w

Figure 3.4: The graph G = C8, and the subgraph 〈BG〉w of G, weakly induced

by the adjacency basis B = {v1, v3, v7}. In this case, NG[B] = {v1, v2, v3,

v4, v6, v7, v8}.

Remark 3.7. Let G = (V,E) be a graph and let B ⊂ V be a non-empty set.

For any f ∈ S(B) and any graph G′ ∈ G̃B,f (G),

〈BG〉w ∼= 〈BG′〉w.

Proof. Since G′ ∈ G̃B,f (G), the function f is a bijection from V (G) onto

V (G′). Now, since NG′(x) = f(NG(x)), for every x ∈ B, we conclude that uv

is an edge of 〈BG〉w if and only if f(u)f(v) is an edge of 〈BG′〉w. Therefore,

the restriction of f to 〈BG〉w is an isomorphism.
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Now we define the family G̃B(G), associated to B, as follows:

G̃B(G) =
⋃

f∈S(B)

G̃B,f (G).

With this notation in mind we can state our next result.

Theorem 3.8. Any adjacency basis B of a graph G is a simultaneous adja-

cency generator for any family of graphs H ⊆ G̃B(G). Moreover, if G ∈ H,

then

SdA(H) = dimA(G).

Proof. Assume that B is an adjacency basis of a graph G = (V,E). Let

f ∈ S(B) and let G′ = (V,E ′) such that NG′(x) = f(NG(x)), for every x ∈ B.

We will show that B is an adjacency generator for any graph G′. To this

end, we take two different vertices u′, v′ ∈ V −B of G′ and the corresponding

vertices u, v ∈ V of G such that f(u) = u′ and f(v) = v′. Since u 6= v and

u, v 6∈ B, there exists x ∈ B such that dG,2(u, x) 6= dG,2(v, x). Now, since

NG′(x) = f(NG(x)) = {f(w) : w ∈ NG(x)}, we obtain that dG′,2(u′, x) =

dG,2(u, x) 6= dG,2(u, x) = dG′,2(v′, x). Hence, B is an adjacency generator

for G′ and, in consequence, is also a simultaneous adjacency generator for

H. Then we conclude that SdA(H) ≤ |B| = dimA(G) and, if G ∈ H, then

SdA(H) ≥ dimA(G). Therefore, the result follows.

Notice that if G 6∈ {Kn, Nn}, then the edge set of any graph G′ ∈
G̃B(G) can be partitioned into two sets E1, E2, where E1 consists of all

edges of G having at least one vertex in B and E2 is a subset of edges

of a complete graph whose vertex set is V − B. Hence, G̃B(G) contains

2
|V−B|(|V−B|−1)

2 |V −B|! different labelled graphs. As an example of large graph

families that may be obtained according to this procedure, consider the cycle

graph C8, where dimA(C8) = 3. For each adjacency basis B of C8, we have

that |G̃B(C8)| = 122880. To illustrate this, Figure 3.5 shows a graph family

H = {H1, . . . , H8} ⊆ G̃B(C8), where B = {v1, v3, v7}, {H1, H2, H3, H4} ⊆
G̃B,f1(C8) and {H5, H6, H7, H8} ⊆ G̃B,f2(C8).

The next result follows directly from Theorem 3.8 and the fact that

dimA(G) = 1 if and only if G ∈ {P2, P3, P
c
2 , P

c
3}.
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Figure 3.5: A subfamily H of G̃B(C8) for B = {v1, v3, v7}, where

{H1, H2, H3, H4} ⊆ G̃B,f1(C8) and {H5, H6, H7, H8} ⊆ G̃B,f2(C8). For every

H ∈ H, dimA(H) = dimA(C8) = 3. Moreover, B is a simultaneous adjacency

basis of H, so SdA(H) = 3.

Corollary 3.9. Let G be a graph of order n ≥ 4. If dimA(G) = 2, then for

any adjacency basis B of G and any non-empty subfamily H ⊆ G̃B(G),

SdA(H) = 2.

The following result, obtained in [21], shows that Corollary 3.9 is only

applicable to families of graphs of order 4, 5 or 6.

Remark 3.10. [21] If G is a graph of order n ≥ 7, then dimA(G) ≥ 3.

Theorem 3.8 and Remark 3.10 immediately lead to the next result.
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Theorem 3.11. Let B be an adjacency basis of a graph G of order n ≥ 7.

If dimA(G) = 3, then for any family H ⊆ G̃B(G),

SdA(H) = 3.

The family H shown in Figure 3.5 is an example of Theorem 3.11.

3.3 Families of join graphs

For a graph family H = {H1, H2, . . . , Hk}, defined on common vertex set V ,

and the graph K1 = 〈v〉, v /∈ V , we define the family

K1 +H = {K1 +H : H ∈ H}.

Notice that, since for any H ∈ H the graph K1 +H has diameter two,

Sd(K1 +H) = SdA(K1 +H).

Theorem 3.12. Let G be a family of non-trivial graphs on a common vertex

set V . If for every simultaneous adjacency basis B of G there exist G ∈ G
and x ∈ V such that B ⊆ NG(x), then

Sd(K1 + G) = SdA(G) + 1.

Otherwise,

Sd(K1 + G) = SdA(G).

Proof. Let V (K1) = {v0}. Suppose that for every simultaneous adjacency

basis B of G there exist G ∈ G and x ∈ V such that B ⊆ NG(x). In this

case, first notice that for every pair of different vertices u, v ∈ V we have

that dK1+G,2(u, v0) = dK1+G,2(v, v0) = 1, so v0 does not distinguish any pair

of vertices. In consequence, a simultaneous metric basis of K1 + G must

contain at least as many vertices as a simultaneous adjacency basis of G.

Secondly, since B ⊆ NK1+G(v0) and B ⊆ NK1+G(x), a simultaneous metric

basis of K1 + G must additionally contain some vertex v ∈ (V − NG(x)) ∪
{v0}, so Sd(K1 + G) ≥ SdA(G) + 1. Let B be a simultaneous adjacency

basis of G and let B′ = B ∪ {v0} and G′ ∈ G. For every pair of different

vertices u, v ∈ V (K1 + G′) − B′, there exists a vertex z ∈ B ⊂ B′ such

that dK1+G′,2(u, z) = dG′,2(u, z) 6= dG′,2(v, z) = dK1+G′,2(v, z), so B′ is a
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simultaneous metric generator for K1 + G and, as a result, Sd(K1 + G) ≤
|B′| = |B|+ 1 = SdA(G) + 1. Consequently, Sd(K1 + G) = SdA(G) + 1.

Now suppose that there exists a simultaneous adjacency basis B of G
such that B * NG(x) for every G ∈ G and every x ∈ V . In this case,

first recall that a simultaneous metric basis of K1 + G must contain as many

vertices as a simultaneous adjacency basis of G, so Sd(K1 +G) ≥ SdA(G). As

above, for every pair of different vertices u, v ∈ V − B, there exists a vertex

z ∈ B such that dK1+G,2(u, z) = dG,2(u, z) 6= dG,2(v, z) = dK1+G,2(v, z). Now,

for any u ∈ V − B there exists u′ ∈ B − NG(u) such that dK1+G,2(u, u′) =

2 6= 1 = dK1+G,2(v0, u
′). Hence, B is also a simultaneous metric generator

for K1 + G and, consequently Sd(K1 + G) ≤ |B| = SdA(G). Therefore,

Sd(K1 + G) = SdA(G).

Since Kt + G = K1 + (Kt−1 + G) for any t ≥ 2, the previous result can

be generalized as follows.

Corollary 3.13. Let G be a family of non-trivial graphs on a common vertex

set V and let Kt be a complete graph of order t ≥ 1. If for every simultaneous

adjacency basis B of G there exist G ∈ G and x ∈ V such that B ⊆ NG(x),

then

Sd(Kt + G) = SdA(G) + t.

Otherwise,

Sd(Kt + G) = SdA(G) + t− 1.

By Remark 3.7 and Theorems 3.8 and 3.12 we deduce the following

result.

Theorem 3.14. Let B be an adjacency basis of a graph G and let H ⊆ G̃B(G)

such that G ∈ H. The following assertions hold:

(i) If for any adjacency basis B′ of G, there exists v ∈ V (G) such that

B′ ⊆ NG(v), then

Sd(K1 +H) = dimA(G) + 1.

(ii) If B 6⊆ NG(v) for all v ∈ V (G), then

Sd(K1 +H) = dimA(G).
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Proof. First of all, by Theorem 3.8, SdA(H) = dimA(G) and, as a conse-

quence, every simultaneous adjacency basis of H, which is also a simultane-

ous metric basis, is an adjacency basis of G. Now, if for any adjacency basis

B′ of G, there exists v ∈ V (G) such that B′ ⊆ NG(v), then by Theorem

3.12, Sd(K1 +H) = SdA(H) + 1 = dimA(G) + 1. Therefore, (i) follows. On

the other hand, if B 6⊆ NG(v) for all v ∈ V (G), then by Remark 3.7 we have

that, for every G′ ∈ G̃B(G) and every v ∈ V (G), B 6⊆ NG′(v). Hence, by

Theorem 3.12, Sd(K1 + H) = SdA(H) = dimA(G). Therefore, the proof of

(ii) is complete.

To show some particular cases of the results above, we will state the

following two results.

Remark 3.15. [43] For any integer n ≥ 4,

dimA(Pn) = dimA(Cn) =

⌊
2n+ 2

5

⌋
.

Lemma 3.16. Let G be a connected graph. If D(G) ≥ 6, or G = Cn with

n ≥ 7, or G is a graph of girth g(G) ≥ 5 and minimum degree δ(G) ≥ 3, then

for every adjacency generator B for G and every v ∈ V (G), B 6⊆ NG(v).

Proof. Let B be an adjacency generator for G. First, suppose that there

exists v ∈ V (G) such that B ⊆ NG(v). Since B is an adjacency generator

for G, either B is a dominating set or there exists exactly one vertex u ∈
V (G) − B which is not dominated by B. In the first case, D(G) ≤ 4 and

in the second one, either D(G) ≤ 5 or u is an isolated vertex. Hence, if

D(G) ≥ 6, then B 6⊆ NG(v).

Now, assume that δ(G) ≥ 3. Let v ∈ V (G), u ∈ NG(v) and x, y ∈
NG(u) − {v}. If g(G) ≥ 5, then no vertex z ∈ NG[v] distinguishes x from

y and, since B is an adjacency generator for G, there exists z′ ∈ B −NG[v]

which distinguishes them. Thus, B 6⊆ NG(v).

Finally, if G = Cn with n ≥ 7, then by Remark 3.15 we have |B| ≥

dimA(G) =

⌊
2n+ 2

5

⌋
≥ 3 and, since G has maximum degree two, the result

follows.

According to Lemma 3.16, Theorem 3.12 immediately leads to the fol-

lowing result.
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Proposition 3.17. Let G be a family of graphs on a common vertex set V

of cardinality |V | ≥ 7. If every G ∈ G satisfies D(G) ≥ 6, or g(G) ≥ 5 and

δ(G) ≥ 3, or it is a cycle graph, then

Sd(K1 + G) = SdA(G).

Theorem 3.14 and Lemma 3.16 immediately lead to the following result.

Proposition 3.18. Let G be a graph of order n and let B be an adjacency

basis of G. If G is a cycle graph with n ≥ 7, or D(G) ≥ 6, or g(G) ≥ 5 and

δ(G) ≥ 3, then for any family H ⊆ G̃B(G) such that G ∈ H,

Sd(K1 +H) = dimA(G).

We now discuss particular cases where Sd(K1 + G) = SdA(G) + 1. First,

consider a graph family G = {G1, G2, . . . , Gk}, defined on a common vertex

set of cardinality n, such that Gi
∼= Kn for some i ∈ {1, . . . , k}. Since

K1 + Kn = Kn+1, we have that Sd(K1 + G) = n = SdA(G) + 1. Now recall

the families K(V ) of star graphs defined in Section 2.1. The following result

holds.

Proposition 3.19. For every finite set V of cardinality |V | ≥ 4,

Sd(K1 +K(V )) = SdA(K(V )) + 1.

Proof. Every simultaneous adjacency basis B of K(V ) has the form V −{vi},
i ∈ {1, . . . , n}. In Ki

1,n−1, we have that B ⊆ NKi
1,n−1

(vi), so the result is

deduced by Theorem 3.12.

For two graph families G = {G1, G2, . . . , Gk1} andH = {H1, H2, . . . , Hk2},
defined on common vertex sets V1 and V2, respectively, such that V1∩V2 = ∅,
we define the family

G +H = {G+H : G ∈ G, H ∈ H}.

Notice that, since for any G ∈ G and any H ∈ H the graph G + H has

diameter two,

Sd(G +H) = SdA(G +H).
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Theorem 3.20. Let G and H be two families of non-trivial graphs on com-

mon vertex sets V1 and V2, respectively. If there exists a simultaneous adja-

cency basis B of G such that for every G ∈ G and every g ∈ V1, B 6⊆ NG(g),

then

Sd(G +H) = SdA(G) + SdA(H).

Proof. Let B be a simultaneous adjacency basis of G such that B * NG(u)

for every u ∈ V1, and let B′ be a simultaneous adjacency basis of H. We

claim that the set S = B ∪B′ is a simultaneous metric generator for G +H.

Consider a pair of different vertices u, v ∈ (V1 ∪ V2) − S. If u, v ∈ V1, then

there exists x ∈ B that distinguishes them in every G ∈ G. An analogous

situation occurs for u, v ∈ V2. If u ∈ V1 and v ∈ V2, since B 6⊆ NG(u), there

exists x ∈ B such that dG+H,2(u, x) = 2 6= 1 = dG+H,2(v, x) for every G ∈ G
and H ∈ H. Thus, S is a simultaneous metric generator for G +H and, as a

consequence, Sd(G +H) ≤ |S| = |B|+ |B′| = SdA(G) + SdA(H).

To prove that Sd(G +H) ≥ SdA(G) + SdA(H), consider a simultaneous

metric basis W of G+H. Let W1 = W ∩V1 and let W2 = W ∩V2. Let G ∈ G
and H ∈ H. No pair of different vertices u, v ∈ V2 −W2 is distinguished in

G+H by any vertex from W1, whereas no pair of different vertices u, v ∈ V1−
W1 is distinguished in G+H by any vertex from W2, so W1 is a simultaneous

adjacency generator for G and W2 is a simultaneous adjacency generator for

H. Thus, Sd(G +H) = |W | = |W1|+ |W2| ≥ SdA(G) + SdA(H).

By Lemma 3.16 we deduce the following consequence of Theorem 3.20.

Corollary 3.21. Let G be a family of graphs on a common vertex set V of

cardinality |V | ≥ 7. If every G ∈ G satisfies D(G) ≥ 6, or g(G) ≥ 5 and

δ(G) ≥ 3, or it is a cycle graph, then for any family H of non-trivial graphs

on a common vertex set,

Sd(G +H) = SdA(G) + SdA(H).

Theorems 3.8 and 3.20 and Lemma 3.16 lead to the next result.

Theorem 3.22. Let G be a graph of order n and let B be an adjacency basis

of G. If G is a cycle graph with n ≥ 7, or D(G) ≥ 6, or g(G) ≥ 5 and

δ(G) ≥ 3, then for any family G ′ ⊆ G̃B(G) such that G ∈ G ′ and any family

H of non-trivial graphs on a common vertex set,

Sd(G ′ +H) = dimA(G) + SdA(H).
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The ideas introduced in Theorem 3.8 allow us to define large families

composed by subgraphs of a join graph G + H, which may be seen as the

result of a relaxation of the join operation, in the sense that not every pair

of nodes u ∈ V (G), v ∈ V (H), must be linked by an edge, yet any adjacency

basis of G+H is a simultaneous adjacency generator for the family, and thus

a simultaneous metric generator. Since for any adjacency basis B of G+H,

the family RB defined in the next result is a subfamily of G̃B(G + H), the

result follows directly from Theorem 3.8.

Corollary 3.23. Let G and H be two non-trivial graphs and let B be an

adjacency basis of G + H. Let E ′ = {uv ∈ E(G + H) : u ∈ V (G) −
B, v ∈ V (H)−B} and let RB = {R1, R2, . . . , Rk} be a graph family, defined

on the common vertex set V (G + H), such that, for every i ∈ {1, . . . , k},
E(Ri) = E(G+H)− Ei, for some edge subset Ei ⊆ E ′. Then

Sd(RB) ≤ dim(G+H).

As the next result shows, it is possible to obtain families composed by

join graphs of the form G′ +H ′, where G′ and H ′ are the result of applying

modifications to G and H, respectively, in such a way that any adjacency

basis of G+H is a simultaneous adjacency generator for the family, and thus

a simultaneous metric generator.

Corollary 3.24. Let G and H be two non-trivial graphs and let B be an

adjacency basis of G + H. Let B1 = B ∩ V (G) and B2 = B ∩ V (H). Then

for any family H ⊆ G̃B1(G) + G̃B2(H),

Sd(H) ≤ dim(G+H).

Moreover, if G+H ∈ H, then

Sd(H) = dim(G+H).

Proof. The result is a direct consequence of Theorem 3.8, as G̃B1(G)+G̃B2(H) ⊆
G̃B(G+H).

Given two families G and H of non-trivial graphs on common vertex sets

V1 and V2, respectively, we define B(G) and B(H) as the sets composed by all

simultaneous adjacency bases of G and H, respectively. For a simultaneous

adjacency basis B ∈ B(G), consider the set

P (B) = {u ∈ V1 : B ⊆ NG(u) for some G ∈ G}.
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Similarly, for a simultaneous adjacency basis B′ ∈ B(H), consider the

set

Q(B′) = {v ∈ V2 : B′ ⊆ NH(v) for some H ∈ H}.

Based on the definitions of P (B) and Q(B′), we define the parameter

ψ(G,H) as

ψ(G,H) = min
B∈B(G),

B′∈B(H)

{|P (B)|, |Q(B′)|} .

The following result holds.

Theorem 3.25. Let G and H be two families of non-trivial graphs on com-

mon vertex sets V1 and V2, respectively. If for every simultaneous adjacency

basis B1 of G there exists G ∈ G and g ∈ V1 such that B1 ⊆ NG(g) and for

every simultaneous adjacency basis B2 of H there exists H ∈ H and h ∈ V2

such that B2 ⊆ NH(h), then

SdA(G) + SdA(H) + 1 ≤ Sd(G +H) ≤ SdA(G) + SdA(H) + ψ(G,H).

Proof. We first address the proof of the lower bound. Let W be a simultane-

ous metric basis of G+H and let W1 = W ∩V1 and W2 = W ∩V2. Let G ∈ G
and H ∈ H. Since no pair of different vertices u, v ∈ V2−W2 is distinguished

by any vertex in W1, whereas no pair of different vertices u, v ∈ V1 −W1 is

distinguished by any vertex in W2, we conclude that W1 is an adjacency gene-

rator forG andW2 is an adjacency generator forH. Hence, W1 is a simultane-

ous adjacency generator for G and W2 is a simultaneous adjacency generator

for H. If W1 is a simultaneous adjacency basis of G and W2 is a simultaneous

adjacency basis ofH, then under the assumptions of this theorem, for at least

one graph G+H ∈ G +H there exist x ∈ V1−W1 and y ∈ V2−W2, such that

W ⊆ NG+H(x) and W ⊆ NG+H(y), which is a contradiction. Thus, W1 is not

a simultaneous adjacency basis of G or W2 is not a simultaneous adjacency

basis of H. Hence, |W1| ≥ SdA(G)+1 or |W2| ≥ SdA(H)+1. In consequence,

we have that Sd(G +H) = |W | = |W1|+ |W2| ≥ SdA(G) + SdA(H) + 1.

We now address the proof of the upper bound. Let B1 and B2 be si-

multaneous adjacency bases of G and H, respectively, for which ψ(G,H) is

obtained. Assume, without loss of generality, that |P (B1)| ≤ |Q(B2)|. Let

S = B1∪B2∪P (B1). We claim that S is a simultaneous metric generator for

G +H. To show this, we differentiate two cases for any G ∈ G and H ∈ H:
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(1) There exists g ∈ V1 such that B1 ⊆ NG(g). We claim that the set

S ′ = B1 ∪ B2 ∪ {g} ⊆ S is a metric generator for G + H. To see this,

we only need to check that for any u ∈ V1 − (B1 ∪ {g}) and v ∈ V2 −B2

there exists s ∈ S ′ which distinguishes them, as B1 and B2 are adjacency

generators for G and H, respectively. That is, since g is the sole vertex

in V1 satisfying NG(g) ⊇ B1, for any u ∈ V1− (B1∪{g}) and v ∈ V2−B2

there exists s ∈ B1 ⊂ S ′ such that dG+H,2(u, s) = 2 6= 1 = dG+H,2(v, s).

Hence, the set S ′ ⊆ S is a metric generator for G+H.

(2) No vertex g ∈ V1 satisfies B1 ⊆ NG(g). In this case, the set S ′ =

B1∪B2 ⊆ S is a metric generator for G+H, as B1 and B2 are adjacency

generators for G and H, respectively, and for any u ∈ V1 − B1 and

v ∈ V2 − B2 there exists s ∈ B1 ⊂ S ′ such that dG+H,2(u, s) = 2 6= 1 =

dG+H,2(v, s).

Therefore, S is a simultaneous metric generator for G+H, so Sd(G+H) ≤
|S| = |B1|+ |B2|+ |P (B1)| = SdA(G) + SdA(H) + ψ(G,H).

As the following corollary shows, the inequalities above are tight.

Corollary 3.26. Let G = {G1, G2, . . . , Gk} and G ′ = {G′1, G′2, . . . , G′k′} be

families composed by paths and/or cycle graphs on common vertex sets V

and V ′ of sizes n ≥ 7 and n′ ≥ 7, respectively. Let u, v /∈ V ∪ V ′, u 6= v,

and let H = {〈u〉 + G1, 〈u〉 + G2, . . . , 〈u〉 + Gk} and H′ = {〈v〉 + G′1, 〈v〉 +

G′2, . . . , 〈v〉+G′k′}. Then,

Sd(H +H′) = SdA(H) + SdA(H′) + 1.

Proof. By Lemma 3.16 we have that for every simultaneous adjacency gene-

rator B for G ∈ G and every v ∈ V (G), B 6⊆ NG(v). Hence, as we have shown

in the proof of Theorem 3.12, any simultaneous adjacency basis of G is a si-

multaneous adjacency basis of K1 +G ∼= 〈u〉+G = H and vice versa. So, for

any simultaneous adjacency basis B of H we have that P (B) = {u}. Analo-

gously, for any simultaneous adjacency basis B′ of H′, we have Q(B′) = {v}
and so ψ(H,H′) = 1.

Notice that the result above can be extended to any pair of graph families

G and G ′ satisfying the premises of Lemma 3.16.
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3.4 Families of standard lexicographic pro-

duct graphs

We begin by stating the following known result.

Claim 3.27. [35] Let G and H be two non-trivial graphs such that G is

connected. Then the following assertions hold for any a, c ∈ V (G) and b, d ∈
V (H) such that a 6= c.

(i) NG◦H(a, b) = ({a} ×NH(b)) ∪ (NG(a)× V (H)).

(ii) dG◦H((a, b), (c, d)) = dG(a, c)

(iii) dG◦H((a, b), (a, d)) = dH,2(b, d).

Several results on the metric dimension of the lexicographic productG◦H
of two graphs G and H, and its relation to the adjacency dimension of H, are

presented in [43]. In this section, we study the simultaneous metric dimension

of several families composed by lexicographic product graphs, exploiting the

simultaneous adjacency dimension as an important tool.

First, we introduce some necessary notation. Let S be a subset of V (G◦
H). The projection of S onto V (G) is the set {u : (u, v) ∈ S}, whereas the

projection of S onto V (H) is the set {v : (u, v) ∈ S}. We define the twins

equivalence relation T on V (G) as follows:

xT y ⇐⇒ NG[x] = NG[y] or NG(x) = NG(y).

In what follows, we will denote the equivalence class of vertex x by

x∗ = {y ∈ V (G) : yT x} . Notice that every equivalence class may be

a singleton set, a clique of size at least two of G or an independent set of

size at least two of G. We will refer to equivalence classes which are non-

singleton cliques as true-twins equivalence classes and to equivalence classes

which are non-singleton independent sets as false-twins equivalence classes.

From now on, T (G) denotes the set of all true-twins equivalence classes in

V (G), whereas F (G) denotes the set of all false-twins equivalence classes in

V (G). Finally, VT (G) and VF (G) denote the sets of vertices belonging to

true- and false-twins equivalence classes, respectively.

For two graph families G = {G1, G2, . . . , Gk1} andH = {H1, H2, . . . , Hk2},
defined on common vertex sets V1 and V2, respectively, we define the family

G ◦ H = {G ◦H : G ∈ G, H ∈ H}.
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In particular, if G = {G} we will use the notation G ◦ H.

Our first result allows to extend any result on the simultaneous adjacency

dimension of G ◦ H to the simultaneous metric dimension, and vice versa.

Theorem 3.28. Let G be a connected graph and let H be a non-trivial graph.

Then, every metric generator for G ◦H is also an adjacency generator, and

vice versa.

Proof. By definition, every adjacency generator for G ◦ H is also a metric

generator, so we only need to prove that any metric generator for G ◦ H is

also an adjacency generator. Let S be a metric generator for G ◦ H. For a

vertex ui ∈ V (G), let Ri = {ui} × V (H). Notice that Ri ∩ S 6= ∅, for every

ui ∈ V (G), as no vertex outside of {ui}×V (H) distinguishes pairs of vertices

in {ui}×V (H). We differentiate the following cases for two different vertices

(ui, vr), (uj, vs) ∈ V (G ◦H)− S:

(1) i = j. In this case, no vertex from Rx ∩ S, x 6= i, distinguishes (ui, vr)

and (uj, vs), so there exists (ui, v) ∈ Ri ∩ S such that dG◦H,2((ui, vr),

(ui, v)) = dG◦H((ui, vr), (ui, v)) 6= dG◦H((uj, vs), (ui, v)) = dG◦H,2((uj, vs),

(ui, v)).

(2) ui and uj are true twins (i 6= j). Here, no vertex from Rx ∩ S, x /∈
{i, j}, distinguishes (ui, vr) and (uj, vs), so there exists (ui, v) ∈ Ri ∩
S such that dG◦H,2((ui, vr), (ui, v)) = dG◦H((ui, vr), (ui, v)) = 2 6= 1 =

dG◦H((uj, vs), (ui, v)) = dG◦H,2((uj, vs), (ui, v)), or there exists (uj, v) ∈
Rj ∩ S such that dG◦H,2((ui, vr), (uj, v)) = dG◦H((ui, vr), (uj, v)) = 1 6=
2 = dG◦H((uj, vs), (uj, v)) = dG◦H,2((uj, vs), (uj, v)).

(3) ui and uj are false twins (i 6= j). As in the previous case, no vertex

from Rx ∩S, x /∈ {i, j}, distinguishes (ui, vr) and (uj, vs), so there exists

(ui, v) ∈ Ri ∩ S such that dG◦H,2((ui, vr), (ui, v)) = dG◦H((ui, vr), (ui, v))

= 1 6= 2 = dG◦H((uj, vs), (ui, v)) = dG◦H,2((uj, vs), (ui, v)), or there ex-

ists (uj, v) ∈ Rj ∩ S such that dG◦H,2((ui, vr), (uj, v)) = dG◦H((ui, vr),

(uj, v)) = 2 6= 1 = dG◦H((uj, vs), (uj, v)) = dG◦H,2((uj, vs), (uj, v)).

(4) ui and uj are not twins. In this case, there exists ux ∈ V (G) − {ui, uj}
such that dG,2(ui, ux) 6= dG,2(uj, ux). Hence, for any (ux, v) ∈ Rx ∩
S we have that dG◦H,2((ui, vr), (ux, v)) = dG,2(ui, ux) 6= dG,2(uj, ux) =

dG◦H,2((uj, vs), (ux, v)).
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In conclusion, S is an adjacency generator for G ◦H. The proof is complete.

Corollary 3.29. For any connected graph and any non-trivial graph H,

dim(G ◦H) = dimA(G ◦H).

In general, for every family G composed by connected graphs on a common

vertex set, and every family H composed by non-trivial graphs on a common

vertex set,

Sd(G ◦ H) = SdA(G ◦ H).

We would point out that the equalities above hold, even for lexicographic

product graphs of diameter greater than two.

The following result, presented in [43], gives a lower bound on dim(G◦H),

which depends on the order of G and dimA(H).

Theorem 3.30. [43] Let G be a connected graph of order n and let H be a

non-trivial graph. Then dim(G ◦H) ≥ n · dimA(H).

We now generalise the previous result for families composed by lexico-

graphic product graphs.

Theorem 3.31. Let G be a family of connected graphs on a common vertex

set V1 and let H be a family of non-trivial graphs on a common vertex set

V2. Then

Sd(G ◦ H) ≥ |V1| · SdA(H).

Proof. It was shown in [43] that if S ′ is a metric generator for G ◦ H, and

Ri = {ui} × V (H) for some ui ∈ V (G), then S ′ ∩Ri resolves all vertex pairs

in Ri, and the projection of S ′ ∩ Ri onto V (H) is an adjacency generator

for H. Following an analogous reasoning, consider a simultaneous metric

generator S for G ◦ H, and let Ri = {ui} × V2 for some ui ∈ V1. We have

that the projection of S ∩ Ri onto V2 is an adjacency generator for every

H ∈ H and, in consequence, a simultaneous adjacency generator for H, so

|Ri∩S| ≥ SdA(H). Thus, Sd(G◦H) = |S| =
∑
ui∈V1

|Ri ∩ S| ≥ |V1|·SdA(H).

In order to present our next results, we introduce some additional def-

initions. For a graph family G, defined on a common vertex set V , let

VM(G) = {u : u ∈ VT (G), u ∈ VF (G′) for some G,G′ ∈ G}. Moreover,
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for a family H composed by k2 non-trivial graphs on a common vertex set

V ′, let B1(H) be the set of simultaneous adjacency bases B of H satisfying

B * NH(v) for every H ∈ H and every v ∈ V ′, and let B2(H) be the set

of simultaneous adjacency bases of H that are also dominating sets of every

H ∈ H. Finally, we define the parameter

ζ(H) = min

k2, min
B1∈B1(H)

B2∈B2(H)

{|B2 −B1|}

 .

With these definitions in mind, we give the next result.

Theorem 3.32. Let G = {G1, G2, . . . , Gk1} be a family of connected graphs

on a common vertex set V1, let H = {H1, H2, . . . , Hk2} be a family of non-

trivial graphs, defined on a common vertex set V2, such that B1(H) and B2(H)

are not empty, and let Hc = {Hc
1, H

c
2, . . . , H

c
k2
}. If VM(G) = ∅ or B1(H) ∩

B2(H) 6= ∅, then

Sd(G ◦ H) = Sd(G ◦ Hc) = |V1| · SdA(H). (3.1)

Otherwise,

|V1| · SdA(H) + |VM(G)| ≤ Sd(G ◦ H) = Sd(G ◦ Hc) ≤
≤ |V1| · SdA(H) + ζ(H) · |VM(G)|.

(3.2)

Proof. We first assume that VM(G) = ∅. By Theorem 3.31, we have that

Sd(G ◦H) ≥ |V1| · SdA(H). Thus, it only remains to prove that Sd(G ◦H) ≤
|V1| · SdA(H). To this end, consider the partition {V ′1 , V ′′1 } of V1, where

V ′1 = {u : u ∈ VT (G) for some G ∈ G}, and a pair of simultaneous adjacency

bases B1 ∈ B1(H) and B2 ∈ B2(H). Consider the set

S = (V ′1 ×B1) ∪ (V ′′1 ×B2) .

It was shown in [43] that a set constructed in this manner, considering G =

{G} and H = {H}, is a metric generator for G ◦H. Following an analogous

reasoning, we shall deduce that S is also a metric generator for every G◦H ∈
G ◦ H, and thus a simultaneous metric generator for G ◦ H. For the sake of

thoroughness of our discussion, we elaborate the four cases for two different

vertices (ui, vr), (uj, vs) ∈ V (G ◦H)− S:

(1) i = j. In this case, r 6= s. Let Ri = {ui} × V2. Since S ∩ Ri =

{ui} × B1 or S ∩ Ri = {ui} × B2 and both B1 and B2 are adjacency
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generators for H, there exists v ∈ B1 such that dH,2(v, vr) 6= dH,2(v, vs),

or there exists v ∈ B2 such that dH,2(v, vr) 6= dH,2(v, vs). Since for every

(ui, vr), (ui, vs) ∈ Ri we have that dG◦H,2((ui, vr), (ui, vs)) = dH,2(vr, vs),

we conclude that at least one element from S distinguishes (ui, vr) and

(ui, vs).

(2) i 6= j and ui, uj are true twins. Here, since B1 * NH(vr), there exists v ∈
B1 such that dH,2(vr, v) = 2. Thus, dG◦H,2((ui, vr), (ui, v)) = dH,2(vr, v) =

2 6= 1 = dG,2(uj, ui) = dG◦H,2((uj, vs), (ui, v)).

(3) i 6= j and ui, uj are false twins. Here, since B2 is a dominating set of

H, there exists v ∈ B2 such that dH,2(vr, v) = 1. Thus, dG◦H,2((ui, vr),

(ui, v)) = dH,2(vr, v) = 1 6= 2 = dG,2(uj, ui) = dG◦H,2((uj, vs), (ui, v)).

(4) i 6= j and ui, uj are not twins. Here, there exists uz ∈ V1 such that

dG,2(ui, uz) 6= dG,2(uj, uz). Since S∩Rz 6= ∅, we have that dG◦H,2((ui, vr),

(uz, v)) = dG,2(ui, uz) 6= dG,2(uj, uz) = dG◦H,2((uj, vs), (uz, v)) for every

(uz, v) ∈ S.

Therefore, S is a metric generator for everyG◦H ∈ G◦H and, in consequence,

a simultaneous metric generator for G ◦ H. Hence, Sd(G ◦ H) ≤ |S| =

|V1| · SdA(H) and the equality holds.

We now address the proof of Sd(G◦Hc) = |V1|·SdA(H). As pointed out in

[43], B1 is a dominating set of every Hc ∈ Hc and B2 satisfies B2 * NHc(v) for

every Hc ∈ Hc and every v ∈ V2. Since SdA(H) = SdA(Hc), by exchanging

the roles of B1 and B2 and proceeding in a manner analogous to the one used

for proving that Sd(G ◦ H) ≤ |V1| · SdA(H), we obtain that Sd(G ◦ Hc) ≤
|V1|·SdA(Hc) = |V1|·SdA(H). Since Sd(G◦Hc) ≥ |V1|·SdA(Hc) = |V1|·SdA(H)

by Theorem 3.31, the equality holds.

From now on, we assume that VM(G) 6= ∅ and B1(H) ∩ B2(H) 6= ∅.
Consider a simultaneous adjacency basis B ∈ B1(H)∩B2(H). By a reasoning

analogous to the one previously shown, we have that the set S = V1 × B is

a metric generator for every G ◦ H ∈ G ◦ H and every G ◦ Hc ∈ G ◦ Hc.

Consequently, S is a simultaneous metric generator for G ◦H and G ◦Hc, so

Sd(G ◦ H) ≤ |S| = |V1| · SdA(H) and Sd(G ◦ Hc) ≤ |S| = |V1| · SdA(H). By

Theorem 3.31, Sd(G ◦H) ≥ |V1| · SdA(H) and Sd(G ◦Hc) ≥ |V1| · SdA(H), so

the equalities hold.

From now on, we assume that VM(G) 6= ∅ and B1(H) ∩ B2(H) = ∅. Let

B be a simultaneous metric basis of G ◦ H and let Bp = B ∩ ({up} × V2)
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for some up ∈ V1. Recall that, as shown in the proof of Theorem 3.31, the

projection of Bp onto V2 is a simultaneous adjacency generator for H. Let

B′p be the projection onto V2 of some Bp such that up ∈ VM(G). Suppose,

for the purpose of contradiction, that |B′p| = SdA(H). Let G ∈ G be a graph

where up ∈ VT (G) and let G′ ∈ G be a graph where up ∈ VF (G′). We have

that there exists v ∈ V2−B′p such that either B′p ⊆ NH′(v) for some H ′ ∈ H
or B′p ∩NH′′(v) = ∅ for some H ′′ ∈ H. In the first case, no vertex (x, y) ∈ B
distinguishes in G◦H ′ the vertex (up, v) from any vertex (ut, w) such that up

and ut are true twins in G, whereas in the second case, no vertex (x, y) ∈ B
distinguishes in G′ ◦H ′′ the vertex (up, v) from any vertex (uf , w) such that

up and uf are false twins in G′. In either case, we have a contradiction with

the fact that B is a simultaneous metric basis of G ◦ H. Thus, for every

up ∈ VM(G), we have that |Bp| = |B′p| ≥ SdA(H) + 1. In conclusion,

Sd(G ◦ H) = |B| =
∑

up∈V1−VM (G)

|Bp|+
∑

up∈VM (G)

|Bp| ≥

≥
∑

up∈V1−VM (G)

SdA(H) +
∑

up∈VM (G)

(SdA(H) + 1) =

= |V1 − VM(G)| · SdA(H) + |VM(G)| · (SdA(H) + 1) =

= |V1| · SdA(H) + |VM(G)|.

In order to prove the upper bound, consider the partition {VM(G), V ′1 , V
′′

1 }
of V1, where V ′1 = {u : u ∈ VT (G) for some G ∈ G}. Since B1(H) and B2(H)

are disjoint, for any B1 ∈ B1(H) and B2 ∈ B2(H), there exist up to k2 ver-

tices vp1 , vp2 , . . . , vpr ∈ V2 − B1 such that B1 ∩NH(vpi) = ∅ for some H ∈ H
and up to k2 vertices vq1 , vq2 , . . . , vqs ∈ V2 − B2 such that B2 ⊆ NH(vqi)

for some H ∈ H. We define the sets B′1 = B1 ∪ {vp1 , vp2 , . . . , vpr} and

B′2 = B2 ∪ {vq1 , vq2 , . . . , vqs}, which are simultaneous adjacency generators

for H that are also dominating sets of every H ∈ H and satisfy B′1 * NH(w)

and B′2 * NH(w) for every w ∈ V2 and every H ∈ H.

Consider one B1 ∈ B1(H) such that |B′1| is minimum and any B2 ∈
B2(H). We define the set S1 = (V ′1 × B1) ∪ (V ′′1 × B2) ∪ (VM(G) × B′1).

Likewise, consider one B2 ∈ B2(H) such that |B′2| is minimum and any

B1 ∈ B1(H). We define the set S2 = (V ′1 ×B1) ∪ (V ′′1 ×B2) ∪ (VM(G)×B′2).

Finally, consider a pair of simultaneous adjacency bases B1 ∈ B1(H) and

B2 ∈ B2(H) such that |B1 ∪ B2| is minimum. As |B1| = |B2|, we have

that |B2 − B1| = |B1 − B2| and is also minimum. We define the set S3 =
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(V ′1×B1)∪(V ′′1 ×B2)∪(VM(G)×(B1∪B2)). Now, recall that for every G ∈ G
the sets S = (VT (G)×B1) ∪ ((V1 − VT (G))×B2) and S ′ = ((V1 − VF (G))×
B1) ∪ (VF (G)×B2) are metric generators for every G ◦H ∈ G ◦ H. Clearly,

S ⊆ S1 or S ′ ⊆ S1, whereas S ⊆ S2 or S ′ ⊆ S2, and S ⊆ S3 or S ′ ⊆ S3, so we

have that S1, S2 and S3 are simultaneous metric generators for G ◦H. Thus,

Sd(G ◦ H) ≤ min{|S1|, |S2|, |S3|} =

= |V1 − VM(G)| · SdA(H)+

+|VM(G)| ·min

{
min

B1∈B1(H)
{|B′1|}, min

B2∈B2(H)
{|B′2|},

min
B1∈B1(H)

B2∈B2(H)

{|B1 ∪B2|}

 ≤
≤ |V1 − VM(G)| · SdA(H) + |VM(G)| · (SdA(H) + ζ(H)) =

= |V1| · SdA(H) + ζ(H) · |VM(G)|.

As in the previous cases, by exchanging the roles of B1 and B2 for Hc

and proceeding in an analogous manner as above, we obtain that

|V1| · SdA(H) + |VM(G)| ≤ Sd(G ◦ Hc) ≤ |V1| · SdA(H) + ζ(H) · |VM(G)|.

The proof is thus complete.

We now analyse the different cases described in Theorem 3.32. First, note

that if ζ(H) = 1, then Equation (3.2) becomes an equality. In particular,

ζ(H) = 1 for every H = {H}. Additionally, if there exists a simultaneous

adjacency basis B1 ∈ B1(H) such that one vertex v ∈ V2 − B1 satisfies

B1∩NH(v) = ∅ for every H ∈ H, then ζ(H) = 1. In an analogous manner, if

there exists a simultaneous adjacency basis B2 ∈ B2(H) such that one vertex

v ∈ V2 − B2 satisfies B2 ⊆ NH(v) for every H ∈ H, then ζ(H) = 1. Finally,

if there exist two simultaneous adjacency bases B1 ∈ B1(H) and B2 ∈ B2(H)

such that |B1 ∪B2| = SdA(H) + 1, then ζ(H) = 1.

Next, we discuss Equation (3.1). First, note that VM({G}) = ∅ for

every graph G. Now, we analyse several non-trivial conditions under which

a graph family G composed by connected graphs on a common vertex set

satisfies VM(G) = ∅. Consider two vertices u and v that are true twins in

some graph G, and a vertex x ∈ V (G) − {u, v} such that x ∼ u and x ∼ v.

We have that 〈{u, v, x}〉G ∼= C3. This fact allows us to characterize a large

number of families composed by true-twins-free graphs, for which VM(G) = ∅.
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Remark 3.33. Let G be a graph family on a common vertex set, such that

every G ∈ G is a tree or satisfies g(G) ≥ 4. Then, VM(G) = ∅.

In particular, for families composed by path or cycle graphs of order

greater than or equal to four, not only all members are true-twins-free, but

they are also false-twins-free. Moreover, families composed by hypercubes of

order 2r, r ≥ 2, satisfy that all their members have girth four.

We now study the behaviour of VM(H) for H ⊆ G̃B(G), where B is an

adjacency basis of G.

Remark 3.34. For every adjacency basis B of a graph G, and every family

H ⊆ G̃B(G),

VM(H) = ∅.

Proof. Let B be an adjacency basis of G. Consider a pair of vertices x, y ∈ B.

By the construction of G̃B(G), we have that in every H ∈ H either x and

y are true twins, or they are false twins, or they are not twins. Moreover,

since B is a simultaneous adjacency generator for H, no pair of vertices

x, y ∈ V (G) − B are twins in any H ∈ H. Finally, consider two vertices

x ∈ B and y ∈ V (G) − B. If there exist graphs H1, H2, . . . , Hk ∈ H where

NHi(x) = NHi(y), i ∈ {1, . . . , k}, we have that, by the construction of G̃B(G),

either x ∼ y in every Hi, i ∈ {1, . . . , k}, or x � y in every Hi, i ∈ {1, . . . , k}.
Hence, x and y are true twins in every Hi, i ∈ {1, . . . , k}, or they are false

twins in every Hi, i ∈ {1, . . . , k}. In consequence, VM(H) = ∅.

We now discuss several cases where a graph family H satisfies B1(H) ∩
B2(H) 6= ∅. First, we introduce an auxiliary result.

Lemma 3.35. Let Pn and Cn be a path and a cycle graph of order n ≥ 7. If

n ≡ 1(5) or n ≡ 3(5), then no adjacency basis of Pn or Cn is a dominating

set. Otherwise, there exist adjacency bases of Pn and Cn that are dominating

sets.

Proof. In Cn, consider the path vivi+1vi+2vi+3vi+4, where the subscripts are

taken modulo n, and an adjacency basis B. If vi, vi+2 ∈ B and vi+1 /∈
B, then {vi+1} is said to be a 1-gap of B. Likewise, if vi, vi+3 ∈ B and

vi+1, vi+2 /∈ B, then {vi+1, vi+2} is said to be a 2-gap of B and if vi, vi+4 ∈ B
and vi+1, vi+2, vi+3 /∈ B, then {vi+1, vi+2, vi+3} is said to be a 3-gap of B.

Since B is an adjacency basis of Cn, it has no gaps of size 4 or larger and it



Families composed by product graphs 59

has at most one 3-gap. Moreover, every 2- or 3-gap must be neighboured by

two 1-gaps and the number of gaps of either size is at most dimA(Cn). We

now differentiate the following cases for Cn:

(1) n = 5k, k ≥ 2. In this case, dimA(Cn) = 2k and n − dimA(Cn) = 3k.

Since any 2-gap must be neighboured by two 1-gaps, any adjacency basis

B has at most k 2-gaps. For any adjacency basis B having exactly k 2-

gaps and exactly k 1-gaps, the number of vertices of V (Cn)−B belonging

to a 1- or 2-gap is 3k = n−|B|, so B has no 3-gaps, i.e. it is a dominating

set.

(2) n = 5k + 1, k ≥ 2. In this case, dimA(Cn) = 2k and n − dimA(Cn) =

3k + 1. As in the previous case, any adjacency basis B has at most k

2-gaps. Now, assume that B has no 3-gaps. Then |V (Cn) − B| = 3k <

3k+ 1 = n− |B|, which is a contradiction. Thus, any B has a 3-gap, i.e.

it is not dominating.

(3) n = 5k+ 2, k ≥ 1. In this case, dimA(Cn) = 2k+ 1 and n− dimA(Cn) =

3k + 1. As in the previous cases, any adjacency basis B has at most k

2-gaps. For any adjacency basis B having exactly k 2-gaps and exactly

k + 1 1-gaps, the number of vertices of V (Cn) − B belonging to a 1- or

2-gap is 3k+ 1 = n−|B|, so B has no 3-gaps, i.e. it is a dominating set.

(4) n = 5k+ 3, k ≥ 1. In this case, dimA(Cn) = 2k+ 1 and n− dimA(Cn) =

3k + 2. As in the previous cases, any adjacency basis B has at most k

2-gaps. Now assume that B has no 3-gaps. Then |V (Cn)−B| = 3k+1 <

3k+ 2 = n− |B|, which is a contradiction. Thus, any B has a 3-gap, i.e.

it is not dominating.

(5) n = 5k+ 4, k ≥ 1. In this case, dimA(Cn) = 2k+ 2 and n− dimA(Cn) =

3k+ 2. Assume that some adjacency basis B has k+ 1 2-gaps. Then, B

would have at least k + 1 1-gaps, making |V (Cn) − B| ≥ 3k + 3, which

is a contradiction. So, any adjacency basis B has at most k 2-gaps.

For any adjacency basis B having exactly k 2-gaps and exactly k + 2

1-gaps, the number of vertices of V (Cn) − B belonging to a 1- or 2-gap

is 3k + 2 = n− |B|, so B has no 3-gaps, i.e. it is a dominating set.

By the set of cases above, the result holds for Cn.
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Now consider the path Pn, n mod 5 ∈ {0, 2, 4}, and let C ′n be the cycle

obtained from Pn by joining its leaves v1 and vn by an edge. Let B be an

adjacency basis of C ′n which is also a dominating set and satisfies v1, vn /∈ B
(at least one such B exists). Since the only value of dC′n,2 that differs from

dPn,2 is dC′n,2(v1, vn) = 1 6= 2 = dPn,2(v1, vn), it is simple to see that every

v ∈ V (Pn)−B has the same adjacency representation in Pn with respect to

B as in C ′n, so B is also an adjacency basis and a dominating set of Pn.

To conclude, consider the path Pn, n mod 5 ∈ {1, 3}, and let C ′n be the

cycle obtained from Pn by joining its leaves v1 and vn by an edge. Consider

V = V (Pn) = V (Cn), and let B be an adjacency basis of Pn. Since for

two different vertices x, y ∈ V , dC′n,2(x, y) 6= dPn,2(x, y) if and only if x, y ∈
{v1, vn}, we have that if v1, vn ∈ B or v1, vn /∈ B, then B is an adjacency

basis of Cn. Moreover, some vertex w ∈ V − B satisfies B ∩ NPn(w) =

B ∩NC′n(w) = ∅, so B is not a dominating set of Pn. We now treat the case

where v1 ∈ B and vn /∈ B. If vn−1 /∈ B then B is not a dominating set of

Pn. If vn−1 ∈ B and v2 /∈ B, we have that dC′n,2(v2, vn−1) = dPn,2(v2, vn−1) =

2 6= 1 = dPn,2(vn, vn−1) = dC′n,2(vn, vn−1), whereas for any other pair of

different vertices x, y ∈ V − B there exists z ∈ B such that dC′n,2(x, z) =

dPn,2(x, z) 6= dPn,2(y, z) = dC′n,2(y, z), so B is an adjacency basis of C ′n where

{vn} is a 1-gap. In consequence, some vertex w ∈ V − (B ∪ {vn}) satisfies

B∩NPn(w) = B∩NC′n(w) = ∅, so B is not a dominating set of Pn. Finally, if

v2, vn−1 ∈ B, then for any pair of different vertices x, y ∈ V −B there exists

z ∈ B −{v1} such that dC′n,2(x, z) = dPn,2(x, z) 6= dPn,2(y, z) = dC′n,2(y, z), so

B is an adjacency basis of C ′n where {vn} is a 1-gap. As in the previous case,

some vertex w ∈ V − (B ∪ {vn}) satisfies B ∩NPn(w) = B ∩NC′n(w) = ∅, so

B is not a dominating set of Pn. The proof is complete.

The following results hold.

Remark 3.36. Let Pn be a path graph of order n ≥ 7, where n mod 5 ∈
{0, 2, 4}, and let Cn be the cycle graph obtained from Pn by joining its leaves

by an edge. Let B be an adjacency basis of Pn and Cn which is also a

dominating set of both. Then, every H ⊆ G̃B(Pn)∪G̃B(Cn) such that Pn ∈ H
or Cn ∈ H satisfies B1(H) ∩ B2(H) 6= ∅.

Proof. The existence of B is a consequence of Lemma 3.35. Since Pn ∈ H
or Cn ∈ H, we have that B is a simultaneous adjacency basis of H. Let

V = V (Pn) = V (Cn). By the definition of G̃B(G), we have that
⋃
v∈B

NH(v) =
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⋃
v∈B

NPn(v) = V or
⋃
v∈B

NH(v) =
⋃
v∈B

NCn(v) = V for every H ∈ H, so B is

a dominating set of every H ∈ H. Moreover, by Lemma 3.16, we have that

B * NPn(v) and B * NCn(v) for every v ∈ V . Furthermore, by the definition

of G̃B(G), we have that B∩NH(v) = B∩NPn(v) or B∩NH(v) = B∩NCn(v)

for every H ∈ H and every v ∈ V , so B * NH(v) for every H ∈ H and every

v ∈ V . In consequence, B ∈ B1(H) ∩ B2(H), so the result holds.

The following result is a direct consequence of Theorem 3.32 and Re-

mark 3.36.

Proposition 3.37. Let G be a family of connected graphs on a common

vertex set V , let Pn be a path graph of order n ≥ 7, where n mod 5 ∈
{0, 2, 4}, and let Cn be the cycle graph obtained from Pn by joining its leaves

by an edge. Let B be an adjacency basis of Pn and Cn which is also a

dominating set of both. Then, for every H ⊆ G̃B(Pn) ∪ G̃B(Cn) such that

Pn ∈ H or Cn ∈ H,

Sd(G ◦ H) = |V | ·
⌊

2n+ 2

5

⌋
.

Remark 3.38. Let H be a graph family on a common vertex set V of car-

dinality |V | ≥ 7 such that every H ∈ H satisfies D(H) ≥ 6, or g(H) ≥ 5

and δ(H) ≥ 3, or it is a cycle graph. Let H′ be a graph family on a common

vertex set V ′ of cardinality |V ′| ≥ 7 satisfying the same conditions as H.

Then, B1(H +H′) ∩ B2(H +H′) 6= ∅.

Proof. As we discussed in the proof of Theorem 3.20, there exists a simul-

taneous metric basis B of H + H′, which is also a simultaneous adjacency

basis, such that the sets W = B ∩ V and W ′ = B ∩ V ′ satisfy W * NH(v)

for every H ∈ H and every v ∈ V , and W ′ * NH′(w) for every H ′ ∈ H′

and every w ∈ V ′. In consequence, we have that B * NH+H′(v) for every

H + H ′ ∈ H + H′ and every v ∈ V ∪ V ′. Moreover, every vertex in V is

dominated by every vertex in W ′, whereas every vertex in V ′ is dominated

by every vertex in W , so B is a dominating set for every H +H ′ ∈ H +H′.
In consequence, B ∈ B1(H +H′) ∩ B2(H +H′), so the result holds.

By an analogous reasoning, Theorems 3.8 and 3.20 lead to the next

result.
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Remark 3.39. Let H be a graph of order n which satisfies D(H) ≥ 6, or

g(H) ≥ 5 and δ(H) ≥ 3, or it is a cycle graph with n ≥ 7. Let H ′ be a

graph satisfying the same conditions as H. Let B and B′ be adjacency bases

of H and H ′, respectively. Then, any pair of families H ⊆ G̃B(H) and H′ ⊆
G̃B′(H ′) such that H ∈ H and H ′ ∈ H′ satisfies B1(H+H′)∩B2(H+H′) 6= ∅.

The two following results are direct consequences of Theorem 3.32 and

Remarks 3.38 and 3.39.

Proposition 3.40. Let G be a family of connected graphs on a common ver-

tex set V1. Let H be a graph family on a common vertex set V2 of cardinality

|V2| ≥ 7 such that every H ∈ H satisfies D(H) ≥ 6, or g(H) ≥ 5 and

δ(H) ≥ 3, or it is a cycle graph. Let H′ be a graph family on a common

vertex set V ′2 of cardinality |V ′2 | ≥ 7 satisfying the same conditions as H.

Then,

Sd(G ◦ (H +H′)) = |V1| · SdA(H) + |V1| · SdA(H′).

Proposition 3.41. Let G be a family of connected graphs on a common

vertex set V . Let H be a graph of order n which satisfies D(H) ≥ 6, or

g(H) ≥ 5 and δ(H) ≥ 3, or it is a cycle graph with n ≥ 7. Let H ′ be a

graph satisfying the same conditions as H. Let B and B′ be adjacency bases

of H and H ′, respectively. Then, for any pair of families H ⊆ G̃B(H) and

H′ ⊆ G̃B′(H ′) such that H ∈ H and H ′ ∈ H′,

Sd(G ◦ (H +H′)) = |V | · dimA(H) + |V | · dimA(H ′).

We now analyse several conditions under which a graph family G com-

posed by connected graphs on a common vertex set satisfies VM(G) 6= ∅ and,

in some cases, we exactly determine the value of VM(G). It is simple to see

that any graph of the form Kt + G, t ≥ 2, satisfies V (Kt) ⊆ v∗ for some

v∗ ∈ T (Kt + G). Likewise, any graph of the form Nt + G, t ≥ 2, satisfies

V (Nt) ⊆ v∗ for some v∗ ∈ F (Nt + G). Moreover, any complete graph Kn,

n ≥ 2, satisfies T (G) = {V (Kn)}. The next results are direct consequences

of these facts.

Remark 3.42. Let G = {G1, G2, . . . , Gk} be a family of connected graphs on

a common vertex set V such that, for some i ∈ {1, . . . , k}, Gi = Nt + G′,

where Nt is an empty graph on the vertex set V ′ ⊂ V , |V ′| ≥ 2, and G′ =

(V − V ′, E ′). If, for some j ∈ {1, . . . , k}− {i}, Gj = Kt +G′′, where Kt is a

complete graph on the vertex set V ′ and G′′ = (V −V ′, E ′′), then VM(G) 6= ∅.
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Corollary 3.43. Let G = {G1, G2, . . . , Gk} be a family composed by path or

cycle graphs on a common vertex set V1 of size n ≥ 4, and let {Kt, Nt} be a

family composed by a complete and an empty graph on a common vertex set V2

of size t ≥ 2. Then every non-empty family H ⊆ {Nt+G1, Nt+G2, . . . , Nt+

Gk} and every non-empty family H′ ⊆ {Kn+t, Kt+G1, Kt+G2, . . . , Kt+Gk}
satisfy VM(H ∪H′) = V2.

We now analyse cases of families containing a graph and its complement.

Remark 3.44. Let G be a connected graph such that |T (G)| ≥ 1 or |F (G)| ≥
1, and Gc is connected. Then any family G composed by connected graphs on

a common vertex set such that G ∈ G and Gc ∈ G satisfies VM(G) 6= ∅.

Proof. First assume that |T (G)| ≥ 1. Consider a true-twins equivalence class

v∗1 = {v1, v2, . . . , vt} ∈ T (G). For every pair of vertices vi, vj ∈ v∗1, we have

that NGc(vi) = NGc(vj) and vi �Gc vj. In consequence, v∗1 is a false-twins

equivalence class of Gc. Now assume that |F (G)| ≥ 1 and consider a false-

twins equivalence class w∗1 = {w1, w2, . . . , wf} ∈ F (G). For every pair of

vertices wi, wj ∈ w∗1, we have that NGc [wi] = NGc [wj], so w∗1 is a true-twins

equivalence class of Gc. In consequence, VT (G) ∪ VF (G) ⊆ VM(G), so the

result follows.

Corollary 3.45. For every connected graph G such that Gc is connected,

VM({G,Gc}) = VT (G) ∪ VF (G).

Finally, we analyse some examples of families H satisfying B1(H) ∩
B2(H) = ∅. Consider the family H5 = {P5, C5}, where V (P5) = V (C5) =

{v1, v2, v3, v4, v5}, E(P5) = {v1v2, v2v3, v3v4, v4v5} and E(C5) = E(P5) ∪
{v1v5}. We have that B1(H5) = {{v1, v5}, {v2, v3}, {v3, v4}} and B2(H5) =

{{v2, v4}}, that is B1(H5)∩B2(H5) = ∅. Likewise, B1({P5}) = {{v1, v5}, {v2,

v3}, {v3, v4}} and B2({P5}) = {{v2, v4}}, i.e. B1({P5}) ∩ B2({P5}) = ∅;
whereas B1({C5}) = {{v1, v2}, {v1, v5}, {v2, v3}, {v3, v4}, {v4, v5}} and

B2({C5}) = {{v1, v3}, {v1, v4}, {v2, v4}, {v2, v5}, {v3, v5}}, i.e. B1({C5}) ∩
B2({C5}) = ∅. Moreover, the vertex v3 satisfies {v2, v4} ⊆ NP5(v3) and

{v2, v4} ⊆ NC5(v3), so ζ(H) = 1 for every non-empty subfamily H ⊆ H5.

Additionally, consider the family H(n)
ex = {H1, H2, H3, H4} depicted in

Figure 3.6. H(n)
ex is defined on the common vertex set V = {v1, . . . , vn, vn+1,

. . . , vn+6}, n ≥ 7, n mod 5 ∈ {0, 2, 4}, and the dashed lines in the figure in-

dicate that Hi differs from Hj in the fact of containing, or not, each one of the



Families composed by product graphs 64

edges v1vn and vn+2vn+4. Let V1 = {v1, . . . , vn} and V2 = {vn+1, . . . , vn+6}.
We have that, for every H ∈ H(n)

ex , 〈V1〉H ∼= Pn or 〈V1〉H ∼= Cn. In conse-

quence, for every non-empty subfamily H ⊆ H(n)
ex , we have that SdA(H) =

dimA(Pn)+2 = dimA(Cn)+2, and every simultaneous adjacency basis B has

the form B = B′∪X, where X ⊂ V2 and B′ is a simultaneous adjacency basis

of H′ = {〈V1〉H : H ∈ H}. Moreover, we have that B1(H) = {B′∪X}, where

B′ is a simultaneous adjacency basis of H′ that is also a dominating set of ev-

ery H ′ ∈ H′ (Lemma 3.35, and the fact that two graphs inH′ differ at most in

the fact of containing, or not, the edge v1vn, guarantee the existence of such

B′) and X ∈ {{vn+2, vn+3}, {vn+3, vn+4}, {vn+3, vn+5}, {vn+3, vn+6}, {vn+5,

vn+6}}. Likewise, B2(H) = {B′ ∪ {vn+2, vn+4}}, where B′ is a simultaneous

adjacency basis of H′ that is also a dominating set of every H ′ ∈ H′. Clearly,

B1(H)∩B2(H) = ∅. Moreover, for every B ∈ B2(H), the vertex vn+1 satisfies

B ⊆ NH(vn+1) for every H ∈ H, so ζ(H) = 1.

vn+5 vn+6

vn+2

vn+3

vn+4

vn+1

v1

v2 v3 v4 v5 v6
. . .

vn

Figure 3.6: For n ≥ 7, n mod 5 ∈ {0, 2, 4}, every non-empty subfamily

H of the family H(n)
ex = {H1, H2, H3, H4} satisfies B1(H) ∩ B2(H) = ∅ and

ζ(H) = 1.

The aforementioned facts, along with Corollaries 3.43 and 3.45, allows

us to obtain examples where Equation (3.2) becomes an equality.

Proposition 3.46. Let G = {G1, G2, . . . , Gk} be a family composed by path

or cycle graphs on a common vertex set V1 of size p ≥ 4, and let {Kt, Nt} be

a family composed by a complete and an empty graph on a common vertex

set V2 of size t ≥ 2. Let G ′ ⊆ {Nt + G1, Nt + G2, . . . , Nt + Gk}, G ′ 6= ∅, and
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let G ′′ ⊆ {Kn+t, Kt +G1, Kt +G2, . . . , Kt +Gk}, G ′′ 6= ∅. Then, the following

assertions hold:

(i) For every non-empty subfamily H ⊆ H5,

Sd((G ′ ∪ G ′′) ◦ H) = |V1 ∪ V2| · SdA(H) + |VM(G ′ ∪ G ′′)| = 2p+ 3t.

(ii) For every n ≥ 7, where n mod 5 ∈ {0, 2, 4}, and every non-empty

subfamily H ⊆ H(n)
ex ,

Sd((G ′ ∪ G ′′) ◦ H) = |V1 ∪ V2| · SdA(H) + |VM(G ′ ∪ G ′′)| =

= (p+ t) ·
(⌊

2n+2
5

⌋
+ 2
)

+ t.

Proposition 3.47. Let G be a connected graph of order q such that Gc is

connected. Then, the following assertions hold:

(i) For every non-empty subfamily H ⊆ H5,

Sd({G,Gc}◦H) = q ·SdA(H)+ |VM({G,Gc})| = 2q+ |VT (G)|+ |VF (G)|.

(ii) For every n ≥ 7, where n mod 5 ∈ {0, 2, 4}, and every non-empty

subfamily H ⊆ H(n)
ex ,

Sd({G,Gc} ◦ H) = q · SdA(H) + |VM({G,Gc})| =
= q ·

(⌊
2n+2

5

⌋
+ 2
)

+ |VT (G)|+ |VF (G)|.

The previous examples additionally show that the bounds of Equation (3.2)

are tight. In general, the upper bound is reached when min{|S1|, |S2|, |S3|} =

|S3| or when for every B1 ∈ B1(H) there exist exactly k2 vertices vp1 , vp2 , . . . ,

vpr ∈ V2 − B1 such that B1 ∩ NH(vpi) = ∅ for some H ∈ H and for every

B2 ∈ B2(H) there exist exactly k2 vertices vq1 , vq2 , . . . , vqs ∈ V2 − B2 such

that B2 ⊆ NH(vqi) for some H ∈ H.

In order to present our next results, we introduce some additional defi-

nitions. For a family H of non-trivial graphs on a common vertex set V , and

a simultaneous adjacency basis B ∈ B(H), consider the sets

P (B) = {v ∈ V : B ⊆ NH(v) for some H ∈ H}

and

Q(B) = {v ∈ V : B ∩NH(v) = ∅ for some H ∈ H}.
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Based on the definitions of P (B) and Q(B), we define the parameter

ξ(G,H) = min
B∈B(H)

{|P (B)| (|VT (G)| − |T (G)|) + |Q(B)| (|VF (G)| − |F (G)|)} .

Finally, for a graph G, let V ′T (G) =
⋃
v∗∈T (G)(v

∗ − {v}) be the set com-

posed by all vertices, except one, from every true-twins equivalence class of G.

Likewise, let V ′F (G) =
⋃
v∗∈F (G)(v

∗−{v}) be the set composed by all vertices,

except one, from every false-twins equivalence class of G. For convenience,

we will assume without loss of generality that for every graph G a fixed ver-

tex will always be the one excluded from every true or false-twins equivalence

class when constructing V ′T (G) or V ′F (G), respectively. With these definitions

in mind, we give our next result.

Theorem 3.48. Let G be a connected graph of order n and let H = {H1, H2,

. . . , Hk} be a family of non-trivial graphs on a common vertex set V2. If for

every simultaneous adjacency basis B of H there exists H ∈ H where one

vertex v satisfies B ⊆ NH(v), or there exists H ′ ∈ H for which B is not a

dominating set, then

n · SdA(H) ≤ Sd(G ◦ H) ≤ n · SdA(H) + ξ(G,H).

Proof. Sd(G ◦ H) ≥ n · SdA(H) by Theorem 3.31, so we only need to prove

that Sd(G ◦H) ≤ n · SdA(H) + ξ(G,H). Let B be a simultaneous adjacency

basis of H for which ξ(G,H) is obtained. We differentiate the following cases

for every graph Hi ∈ H:

(1) There exist w1, w2 ∈ V2 such that B ⊆ NHi(w1) and B∩NHi(w2) = ∅. In

this case, we define the set Si = (V (G)×B)∪(V ′T (G)×{w1})∪(V ′F (G)×
{w2}).

(2) There exists w1 ∈ V2 such that B ⊆ NHi(w1) and there exists no vertex

x ∈ V2 such that B ∩ NHi(x) = ∅. In this case, we define the set

Si = (V (G)×B) ∪ (V ′T (G)× {w1}).

(3) There exists w2 ∈ V2 such that B ∩ NHi(w2) = ∅ and there exists no

vertex x ∈ V2 such that B ⊆ NHi(x). In this case, we define the set

Si = (V (G)×B) ∪ (V ′F (G)× {w2}).

(4) There exists no vertex x ∈ V2 such that B ⊆ NHi(x) or B ∩NHi(x) = ∅.
In this case, we define the set Si = V (G)×B.
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For cases 1, 2 and 3, it is shown in [43] that the corresponding set Si

is a metric generator for G ◦ Hi. Moreover, as we discussed in the proof

of Theorem 3.32, in case 4 the corresponding set Si is a metric generator

for G ◦ Hi. In consequence, the set S =
⋃

1≤i≤k
Si is a simultaneous metric

generator for G ◦ H. Therefore, Sd(G ◦ H) ≤ |S| = n · SdA(H) + ξ(G,H), so

the result holds.

The bounds of the inequalities in Theorem 3.48 are tight. As pointed out

in [43], a twins-free graph G satisfies T (G) = VT (G) = F (G) = VF (G) = ∅.
In consequence, ξ(G,H) = 0 for any twins-free graph G and any graph family

H, so Theorem 3.48 leads to the next result.

Proposition 3.49. Let G be a twins-free connected graph of order n, and

let H be a family of non-trivial graphs on a common vertex set. Then,

Sd(G ◦ H) = n · SdA(H).

Recall the families K(V ) of star graphs defined in Section 2.1. The

following result is an example of a family for which the upper bound of the

inequalities of Theorem 3.48 is reached.

Proposition 3.50. For every finite set V of size |V | ≥ 4,

Sd(P2 ◦ K(V )) = 2 · |V | − 1.

Proof. By Corollary 3.4, every simultaneous adjacency basis B of K(V ) has

the form V −{vi}, i ∈ {1, . . . , |V |}. In Ki
1,n−1, we have that B ⊆ NKi

1,n−1
(vi),

so ξ(P2,K(V )) = 1. Thus, Sd(P2 ◦ K(V )) ≤ 2 · SdA(K(V )) + 1 = 2 · |V | − 1.

Additionally, since P2 ◦H ∼= H +H for any graph H, we have that Sd(P2 ◦
K(V )) = Sd(K(V )+K(V )) ≥ 2·SdA(K(V ))+1 = 2·|V |−1 by Theorem 3.25,

so the equality holds.

As we did for join graphs, now we define large families composed by

subgraphs of a lexicographic product graph G◦H, which may be seen as the

result of a relaxation of the lexicographic product operation, in the sense that

not every pair of nodes from two copies of the second factor corresponding

to adjacent vertices of the first factor must be linked by an edge. Since for

any adjacency basis B of G ◦H, the family RB defined in the next result is

a subfamily of G̃B(G ◦H), the result follows directly from Theorem 3.8.
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Corollary 3.51. Let G be a connected graph of order n, let H be a non-trivial

graph and let B be an adjacency basis of G ◦H. Let E ′ = {(ui, uj)(ur, us) ∈
E(G ◦H) : i 6= r, (ui, uj) /∈ B, (ur, us) /∈ B} and let RB = {R1, R2, . . . , Rk}
be a graph family, defined on the common vertex set V (G◦H), such that, for

every l ∈ {1, . . . , k}, E(Rl) = E(G ◦H)−El, for some edge subset El ⊆ E ′.

Then

Sd(RB) ≤ dim(G ◦H).

3.5 Families of corona product graphs

For two graph families G = {G1, G2, . . . , Gk1} and H = {H1, H2, . . . , Hk2},
defined on common vertex sets V and V ′, respectively, we define the family

G �H = {G�H : G ∈ G, H ∈ H}.

In particular, if G = {G}, we will use the notation G�H.

Given G ∈ G and H ∈ H, we denote by Hi = (V ′i , Ei) the subgraph

of G � H corresponding to the i-th copy of H. Notice that for any i ∈ V

the graph Hi, which is isomorphic to H, does not depend on G. Hence, the

graphs in G � H are defined on the vertex set V ∪

(⋃
i∈V

V ′i

)
. Analogously,

for every i ∈ V we define the graph family

Hi = {Hi = (V ′i , Ei) : H ∈ H}.

Also, given a set W ⊂ V ′ and i ∈ V , we denote by Wi the subset of V ′i
corresponding to W . To clarify this notation, Figure 3.7 shows the graph

C4 � (K1 ∪ K2). In the figure, V = {1, 2, 3, 4} and V ′ = {a, b, c}, whereas

V ′i = {ai, bi, ci} for i ∈ {1, 2, 3, 4}.

3.5.1 Results on the simultaneous metric dimension

We first introduce a useful relation between the metric generators of two

corona product graphs with a common second factor, which allows to deter-

mine the simultaneous metric dimension of several families of corona product

graphs through the study of the metric dimension of a specific corona product

graph.
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Figure 3.7: The graph G�H, where G ∼= C4 and H ∼= K1 ∪K2.

Theorem 3.52. Let G1 and G2 be two connected non-trivial graphs on a

common vertex set and let H be a non-trivial graph. Then any metric gene-

rator for G1 �H is a metric generator for G2 �H.

Proof. Let V be the vertex set of G1 and G2 and let V ′ be the vertex set of

H. We claim that any metric generator B for G1 �H is a metric generator

for G2 � H. To see this, we differentiate the following three cases for two

different vertices x, y ∈ V (G2 �H)−B.

(1) x, y ∈ V ′i . Since no vertex belonging to B−V ′i distinguishes the pair x, y

in G1 �H, there must exist u ∈ V ′i ∩ B which distinguishes them. This

vertex u also distinguishes x and y in G2 �H.

(2) Either x ∈ V ′i and y ∈ V ′j or x = i and y ∈ V ′j , where i 6= j. For these

two possibilities we take u ∈ B ∩V ′i and we conclude that dG2�H(x, u) ≤
2 6= 3 ≤ dG2�H(y, u).

(3) x = i and y ∈ V ′i . In this case, we take u ∈ B ∩ V ′j , for any j 6= i, and

we have that dG2�H(x, u) < dG2�H(y, u).

(4) x = i and y = j. In this case, for u ∈ B ∩V ′i , we have dG2�H(x, u) = 1 6=
2 ≤ dG2�H(y, u).

In conclusion, B is a metric generator for G2 �H.
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The following result is a direct consequence of Theorem 3.52.

Corollary 3.53. Let G be a family of connected non-trivial graphs on a

common vertex set and let H be a family of non-trivial graphs on a common

vertex set. Then, for any G ∈ G,

Sd(G �H) = Sd(G�H).

The following result, obtained in [26], provides a strong link between

the metric dimension of the corona product of two graphs and the adjacency

dimension of the second graph involved in the product operation.

Theorem 3.54. [26] For any connected graph G of order n ≥ 2 and any

non-trivial graph H,

dim(G�H) = n · dimA(H).

We now present a generalisation of Theorem 3.54 to deal with graph

families.

Theorem 3.55. For any family G composed by connected non-trivial graphs

on a common vertex set V and any family H composed by non-trivial graphs

on a common vertex set,

Sd(G �H) = |V | · SdA(H).

Proof. Throughout the proof we consider two arbitrary graphs G ∈ G and

H ∈ H. Let B be a simultaneous metric basis of G �H and let Bi = B ∩V ′i .
Clearly, Bi ∩ Bj = ∅ for every i 6= j. Since no pair of vertices x, y ∈ Hi is

distinguished by any vertex v ∈ Bj, i 6= j, we have that Bi is an adjacency

generator for Hi. Hence, the set B′ ⊂ V ′ corresponding to Bi ⊂ V ′i is an

adjacency generator for H and, since B′ does not depend on the election of

H, it is a simultaneous adjacency generator for H and, as a result,

Sd(G �H) = |B| ≥
∑
i∈V

|Bi| = |V ||B′| ≥ |V | · SdA(H).

Now, let W be a simultaneous adjacency basis of H and let Wi = W ∩V ′i .
By analogy to the proof of Theorem 3.54 we see that S =

⋃
i∈V

Wi is a metric

generator for G�H. Since S does not depend on the election of G and H,

it is a simultaneous metric generator for G �H and so

Sd(G �H) ≤ |S| =
∑
i∈V

|Wi| = |V | · SdA(H).

Therefore, the equality holds.
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The following result is a direct consequence of Theorems 3.8 and 3.55.

Proposition 3.56. Let G be a family of connected non-trivial graphs on a

common vertex set V . Let H be a non-trivial graph and let B be an adjacency

basis of H. Then, for every H ⊆ G̃B(H) such that H ∈ H,

Sd(G �H) = |V | · dimA(H).

3.5.2 Results on the simultaneous adjacency dimen-

sion

Given a family G of connected non-trivial graphs on a common vertex set V

and a family H of non-trivial graphs on a common vertex set, Remark 3.1

and Theorem 3.55 lead to

SdA(G �H) ≥ Sd(G �H) = |V | · SdA(H). (3.3)

Therefore, there exists an integer f(G,H) ≥ 0 such that

SdA(G �H) = |V | · SdA(H) + f(G,H). (3.4)

It is easy to check that for any simultaneous adjacency basis W of H

and any i ∈ V , the set (V − {i}) ∪

(⋃
j∈V

Wj

)
is a simultaneous adjacency

generator for G �H, where Wj is the subset of V ′j corresponding to W ⊂ V ′.

Hence,

0 ≤ f(G,H) ≤ |V | − 1. (3.5)

From now on, our goal is to determine the value of f(G,H) under diffe-

rent sets of conditions. We begin by pointing out a useful fact which we

will use throughout the remainder of this section. Let B be a simultaneous

adjacency basis of G �H, and let Bi = B ∩ V ′i . The following observation is

a consequence of the fact that for any graph G�H ∈ G �H and i ∈ V , no

vertex in B −Bi is able to distinguish two vertices in V ′i .

Remark 3.57. Let G be a family of connected non-trivial graphs on a com-

mon vertex set V and let H be a family of non-trivial graphs on a common

vertex set V ′. Let B be a simultaneous adjacency basis of G � H and let

Bi = B ∩ V ′i for every i ∈ V . Then, Bi is a simultaneous adjacency genera-

tor for Hi.
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Now, consider the following known result where f(G,H) = 0.

Theorem 3.58. [26] Let G be a connected graph of order n ≥ 2 and let H

be a non-trivial graph. If there exists an adjacency basis S of H, which is

also a dominating set, and if for every v ∈ V (H) − S, it is satisfied that

S 6⊆ NH(v), then

dimA(G�H) = n · dimA(H).

As the next result shows, Theorem 3.58 can be generalised to the case

of families of the form G �H. To this end, recall the notion of simultaneous

domination which, as we mentioned previously, was introduced in [7]. On

a graph family G, defined on a common vertex set V , a set M ⊆ V is a

simultaneous dominating set if it is a dominating set of every graph G ∈ G.

Theorem 3.59. Let G be a family of connected non-trivial graphs on a com-

mon vertex set V and let H be a family of non-trivial graphs on a common

vertex set V ′. If there exists a simultaneous adjacency basis B of H which is

also a simultaneous dominating set and satisfies B * NH(v) for every H ∈ H
and every v ∈ V ′, then

SdA(G �H) = |V | · SdA(H).

Proof. By (3.3) we only need to show that SdA(G � H) ≤ |V | · SdA(H). To

this end, assume that B is a simultaneous adjacency basis of H which is a

simultaneous dominating set of H and satisfies B * NH(v) for every H ∈ H
and every v ∈ V ′. Consider an arbitrary graph G � H ∈ G � H and let

Bi = B ∩ V ′i , for every i ∈ V . By analogy to the proof of Theorem 3.58

we see that S =
⋃
i∈V

Bi is an adjacency generator for G � H and, since S

does not depend on the election of G and H, it is a simultaneous adjacency

generator for G � H. Thus, SdA(G � H) ≤ |S| = |V | · SdA(H), and the

equality holds.

The following result is an example of a case where Theorem 3.59 allows

to exactly determine the value of SdA(G � H) for a large number of graph

families.

Proposition 3.60. Let G be a family of connected non-trivial graphs on a

common vertex set V . Let Pn be a path graph of order n ≥ 7 such that

n 6≡ 1 mod 5 and n 6≡ 3 mod 5, and let Cn be the cycle graph obtained from
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Pn by joining its leaves by an edge. Let B be an adjacency basis of Pn and Cn

which is also a dominating set of both. Then, for every H ⊆ G̃B(Pn)∪G̃B(Cn)

such that Pn ∈ H or Cn ∈ H,

SdA(G �H) = |V | ·
⌊

2n+ 2

5

⌋
.

Proof. The existence of B is a consequence of Lemma 3.35. Since Pn ∈ H
or Cn ∈ H, by Theorem 3.8 we deduce that B is a simultaneous adjacency

basis of H. Let V ′ = V (Pn) = V (Cn). By the definition of G̃B(G), we have

that
⋃
v∈B

NH(v) =
⋃
v∈B

NPn(v) = V ′ or
⋃
v∈B

NH(v) =
⋃
v∈B

NCn(v) = V ′ for every

H ∈ H, so B is a dominating set of every H ∈ H. Moreover, by Lemma 3.16,

we have that B * NPn(v) and B * NCn(v) for every v ∈ V ′. Furthermore, by

the definition of G̃B(G), we have that B∩NH(v) = B∩NPn(v) or B∩NH(v) =

B∩NCn(v) for every H ∈ H and every v ∈ V ′, so B * NH(v) for every H ∈ H
and every v ∈ V ′. In consequence, the result follows from Remark 3.15 and

Theorems 3.8 and 3.59.

In order to show some cases where f(G,H) = |V | − 1, we present the

following result.

Theorem 3.61. Let G be a family of connected non-trivial graphs on a com-

mon vertex set V and let H be a family of non-trivial graphs on a common

vertex set. If for every simultaneous adjacency basis B of H there exists

H ∈ H where B is not a dominating set, then

SdA(G �H) = |V | · SdA(H) + |V | − 1.

Proof. By (3.4) and (3.5) we have that SdA(G �H) ≤ |V | ·SdA(H) + |V |−1.

It remains to prove that SdA(G �H) ≥ |V | · SdA(H) + |V | − 1.

Let U be a simultaneous adjacency basis of G �H, let Ui = U ∩ V ′i and

let U0 = U ∩ V . By Remark 3.57, Ui is a simultaneous adjacency generator

for Hi for every i ∈ V . Consider the partition {V1, V2} of V defined as

V1 = {i ∈ V : |Ui| = SdA(H)} and V2 = {i ∈ V : |Ui| ≥ SdA(H) + 1}.

For any i, j ∈ V1, i 6= j, we have that there exist a graph H ∈ H and

two vertices x ∈ V ′i − Ui and y ∈ V ′j − Uj such that Ui ∩ NH(x) = ∅ and

Uj ∩NH(y) = ∅. Thus, i ∈ U or j ∈ U and so |U0| ≥ |V1| − 1. In conclusion,
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SdA(G �H) = |U0|+
∑
i∈V1

|Ui|+
∑
i∈V2

|Ui|

≥ (|V1| − 1) + |V1| · SdA(H) + |V2| · (SdA(H) + 1)

= |V | · SdA(H) + |V | − 1.

Therefore, the result follows.

Now we treat some specific families that satisfy the conditions of Theo-

rem 3.61. Lemma 3.35 allows us to give the following result.

Proposition 3.62. Let G be a family of connected non-trivial graphs on a

common vertex set V . Let Pn be a path graph of order n ≥ 7, n ≡ 1 mod 5

or n ≡ 3 mod 5, and let Cn be the cycle graph obtained from Pn by joining

its leaves by an edge. Let B be a simultaneous adjacency basis of {Pn, Cn}.
Then, for every family H = H1 ∪ H2 such that H1 is composed by paths,

H1 ⊆ G̃B(Pn), Pn ∈ H1, H2 is composed by cycles, H2 ⊆ G̃B(Cn), and

Cn ∈ H2,

SdA(G �H) = |V | ·
(⌊

2n+ 2

5

⌋
+ 1

)
− 1.

Proof. Note that B is an adjacency basis of both Pn and Cn. Since Pn ∈ H1

and Cn ∈ H2, we have that B is a simultaneous adjacency basis of H =

H1∪H2 by Theorem 3.8. Moreover, since every H ∈ H1 is a path graph and

every H ∈ H2 is a cycle, we have that dimA(H) = SdA(H) for every H ∈ H,

so every simultaneous adjacency basis of H is an adjacency basis of every

H ∈ H and, by Lemma 3.35, is not a dominating set of H. Thus, the result

follows from Theorem 3.61.

It is worth noting that for a path graph Pn and a cycle graph Cn, n ≥ 7,

n ≡ 1 mod 5 or n ≡ 3 mod 5, and an adjacency basis B of both, the fam-

ily G̃B(Pn) contains
(
n−

⌊
2n+2

5

⌋)
! path graphs, whereas the family G̃B(Cn)

contains
(
n−

⌊
2n+2

5

⌋)
! cycle graphs.

Proposition 3.63. Let G be a family of connected non-trivial graphs on a

common vertex set V and let H = {Nt∪H1, Nt∪H2, . . . , Nt∪Hk}, where Nt

is an empty graph of order t ≥ 1 and H1, H2, . . . , Hk are connected non-trivial

graphs on a common vertex set. Then,

SdA(G �H) = |V | · SdA(H) + |V | − 1.
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Proof. Consider that the common vertex set of H has the form V ′ = V (Nt)∪
V ′′, where V (Nt) and V ′′ are disjoint. Let B be a simultaneous adjacency

basis of H, and let B′′ = B ∩ V ′′. Consider an arbitrary graph Nt ∪H ∈ H.

The vertices of Nt are false twins, so V (Nt) ⊆ B if and only if there exists

v ∈ V ′′ such that B ∩NH(v) = ∅. If such v exists, it is not dominated by B,

so the result follows from Theorem 3.61. Otherwise, V (Nt) − B = {v′} and

B ∩NH(v′) = ∅, so the result follows from Theorem 3.61.

Recall that γ(G) denotes the domination number of a graph G.

Theorem 3.64. [26] Let G be a connected graph of order n ≥ 2 and let

H be a non-trivial graph. If there exists an adjacency basis of H, which is

also a dominating set and if, for any adjacency basis S of H, there exists

v ∈ V (H)− S such that S ⊆ NH(v), then

dimA(G�H) = n · dimA(H) + γ(G).

The simultaneous domination number of a family G, which we will denote

as S γ(G), is the minimum cardinality of a simultaneous dominating set. The

next result is a generalisation of Theorem 3.64 to the case of G �H.

Theorem 3.65. Let G be a family of connected non-trivial graphs on a com-

mon vertex set V and let H be a family of non-trivial graphs on a common

vertex set V ′. If there exists a simultaneous adjacency basis of H which is

also a simultaneous dominating set, and for every simultaneous adjacency

basis B of H there exist H ∈ H and v ∈ V ′ −B such that B ⊆ NH(v), then

SdA(G �H) = |V | · SdA(H) + S γ(G).

Proof. We first address the proof of SdA(G � H) ≥ |V | · SdA(H) + S γ(G).

Let U be a simultaneous adjacency basis of G �H, let Ui = U ∩ V ′i , and let

U0 = U ∩ V . By Remark 3.57, Ui is a simultaneous adjacency generator for

Hi for every i ∈ V . Consider the partition {V1, V2} of V defined as

V1 = {i ∈ V : |Ui| = SdA(H)} and V2 = {i ∈ V : |Ui| ≥ SdA(H) + 1}.

For every i ∈ V1, the set Ui is a simultaneous adjacency basis of Hi,

so there exist H ∈ H and x ∈ V ′i such that Ui ⊆ NH(x), causing i and x

not to be distinguished by any y ∈ Ui in any graph belonging to G � H.

Thus, either i ∈ U0 or for every G ∈ G there exists z ∈ U0 such that
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dG�H,2(i, z) = 1 6= 2 = dG�H,2(x, z). In consequence, V2 ∪ U0 must be a

simultaneous dominating set of G, so |V2 ∪ U0| ≥ S γ(G). Finally,

SdA(G �H) =
∑
i∈V1

|Ui|+
∑
i∈V2

|Ui|+ |U0|

≥
∑
i∈V1

SdA(H) +
∑
i∈V2

(SdA(H) + 1) + |U0|

= |V | · SdA(H) + |V2|+ |U0|
≥ |V | · SdA(H) + |V2 ∪ U0|
≥ |V | · SdA(H) + S γ(G).

Now, let W be a simultaneous adjacency basis of H which is also a

simultaneous dominating set of H. Consider an arbitrary graph G � H ∈
G � H, and let Wi = W ∩ V ′i . By analogy to the proof of Theorem 3.64,

we have that S = M
⋃(⋃

i∈V

Wi

)
, where M is a minimum simultaneous

dominating set of G, is an adjacency generator for G�H. Since S does not

depend on the election of G and H, it is a simultaneous adjacency generator

for G �H. Thus, SdA(G �H) ≤ |S| = |V | · SdA(H) + S γ(G), so the equality

holds.

Several specific families for which the previous result holds will be de-

scribed in Theorem 3.72 and Propositions 3.73 and 3.74. Now, in order to

present our next result, we need some additional definitions. Let v ∈ V (G)

be a vertex of a graph G and let G − v be the graph obtained by remov-

ing from G the vertex v and all its incident edges. Consider the following

auxiliary domination parameter, which is defined in [26]:

γ′(G) = min
v∈V (G)

{γ(G− v)}

Theorem 3.66. [26] Let H be a non-trivial graph such that some of its

adjacency bases are also dominating sets, and some are not. If there exists

an adjacency basis S ′ of H such that for every v ∈ V (H)−S ′ it is satisfied that

S ′ * NH(v), and for any adjacency basis S of H which is also a dominating

set, there exists some v ∈ V (H) − S such that S ⊆ NH(v), then for any

connected non-trivial graph G,

dimA(G�H) = n · dimA(H) + γ′(G).
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The following result is a generalisation of Theorem 3.66 to the case of

G�H.

Theorem 3.67. Let G be a connected graph of order n ≥ 2 and let H be

a family of non-trivial graphs on a common vertex set V ′ such that some

of its simultaneous adjacency bases are also simultaneous dominating sets,

and some are not. If there exists a simultaneous adjacency basis B′ of H
such that B′ * NH(v) for every H ∈ H and every v ∈ V ′−B′, and for every

simultaneous adjacency basis B of H which is also a simultaneous dominating

set there exist H ′ ∈ H and w ∈ V ′ −B such that B ⊆ NH′(w), then

SdA(G�H) = n · SdA(H) + γ′(G).

Proof. In the family G � H, we have that V = V (G). We first address the

proof of SdA(G�H) ≥ n·SdA(H)+γ′(G). Let U be a simultaneous adjacency

basis of G � H, let Ui = U ∩ V ′i , and let U0 = U ∩ V . By Remark 3.57, Ui

is a simultaneous adjacency generator for Hi for every i ∈ V . Consider the

partition {V1, V2, V3} of V , where V1 contains the vertices i ∈ V such that Ui

is a simultaneous adjacency basis of Hi but is not a simultaneous dominating

set, V2 contains the vertices i ∈ V such that Ui is a simultaneous adjacency

basis and a simultaneous dominating set of Hi, and V3 is composed by the

vertices i ∈ V such that Ui is not a simultaneous adjacency basis of Hi.

If i, j ∈ V1, then there exist a graph H ∈ H and two vertices vi ∈ V ′i −Ui
and vj ∈ V ′j − Uj such that Ui ∩ NH(vi) = ∅ and Uj ∩ NH(vj) = ∅. Thus,

i ∈ U0 or j ∈ U0, so |U0 ∩ V1| ≥ |V1| − 1. If i ∈ V2, then there exist H ∈ H
and x ∈ V ′i such that Ui ⊆ NH(x). In consequence, the pair i, x is not

distinguished by any y ∈ Ui, so either i ∈ U0 or there exists z ∈ U0 such that

dG�H,2(i, z) = 1 6= 2 = dG�H,2(x, z). Therefore, at most one vertex of G is

not dominated by U0 ∪ V3, so |U0 ∪ V3| ≥ γ′(G). Finally,

SdA(G�H) =
∑

i∈V1∪V2

|Ui|+
∑
i∈V3

|Ui|+ |U0|

≥
∑

i∈V1∪V2

SdA(H) +
∑
i∈V3

(SdA(H) + 1) + |U0|

= n · SdA(H) + |V3|+ |U0|
≥ n · SdA(H) + |V3 ∪ U0|
≥ n · SdA(H) + γ′(G).
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Now, let W ′ be a simultaneous adjacency basis of H such that W ′ *
NH(v) for every H ∈ H and every v ∈ V ′ −W ′, and assume that for any si-

multaneous adjacency basis W of H which is also a simultaneous dominating

set there exist H ′ ∈ H and w ∈ V ′ −W such that W ⊆ NH′(w). Let W ′′ be

one of such simultaneous adjacency bases of H. Consider an arbitrary graph

G�H ∈ G�H, let W ′
i = W ′∩V ′i and W ′′

i = W ′′∩V ′i . Additionally, let M be

a minimum dominating set of G−n, assuming without loss of generality that

γ′(G) = γ(G−n), and let S = M
⋃
W ′
n

⋃ ⋃
i∈V−{n}

W ′′
i

. By analogy to the

proof of Theorem 3.66, we have that S is an adjacency generator for G�H.

Since S does not depend on the election of G and H, it is a simultaneous ad-

jacency generator for G�H. Thus, SdA(G�H) ≤ |S| = n ·SdA(H) + γ′(G),

so the equality holds.

Consider the family {P5, C5}, where C5 is obtained from P5 by joining its

leaves by an edge. Assume that V (P5) = V (C5) = {v1, v2, v3, v4, v5}, E(P5) =

{v1v2, v2v3, v3v4, v4v5} and E(C5) = E(P5) ∪ {v1v5}. We have that the set

{v2, v4} is the sole simultaneous adjacency basis which is also a simultaneous

dominating set and v3 satisfies {v2, v4} ⊆ NP5(v3) and {v2, v4} ⊆ NC5(v3).

Moreover, the set {v1, v5} (as well as {v2, v3} and {v3, v4}) is a simultaneous

adjacency basis such that every vertex vx satisfies NP5(vx) * {v1, v5} and

NC5(vx) * {v1, v5}. These facts allow us to obtain examples where Theo-

rem 3.67 applies. For instance, for any connected graph G of order n ≥ 2,

we have that SdA(G� {P5, C5}) = 2n+ γ′(G).

The case where the second factor is a family of join

graphs

To begin our presentation, we introduce the following auxiliary result.

Lemma 3.68. Let G and H be two families of non-trivial graphs on common

vertex sets V1 and V2, respectively. Then, every simultaneous adjacency basis

of G +H is a simultaneous dominating set of G +H.

Proof. Let B be a simultaneous adjacency basis of G +H, let W1 = B ∩ V1

and W2 = B ∩ V2. Since no pair of different vertices u, v ∈ V2 − W2 is

distinguished in any G + H ∈ G +H by any vertex from W1, we have that

W2 is a simultaneous adjacency generator forH and, in consequence, W2 6= ∅.
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By an analogous reasoning we can see that W1 is a simultaneous adjacency

generator for G and, in consequence, W1 6= ∅. Moreover, every vertex in V1

is dominated by every vertex in W2, whereas every vertex in V2 is dominated

by every vertex in W1, so B is a dominating set for every G+H ∈ G+H.

Recall that Theorem 3.20 characterizes a large number of families of the

form G +H whose simultaneous adjacency bases are formed by the union of

an arbitrary simultaneous adjacency basis ofH and a simultaneous adjacency

basis B of G such that B * NG(v) for every G ∈ G and every v ∈ V1. With

this fact in mind, we present our next result.

Theorem 3.69. Let G be a family of connected non-trivial graphs on a com-

mon vertex set V , and let H and H′ be families of non-trivial graphs on

common vertex sets V ′1 and V ′2 , respectively. If there exist a simultaneous

adjacency basis B of H that satisfies B * NH(v) for every H ∈ H and

every v ∈ V ′1 , and a simultaneous adjacency basis B′ of H′ that satisfies

B′ * NH′(v
′) for every H ′ ∈ H′ and every v′ ∈ V ′2 , then

SdA(G � (H +H′)) = |V | · SdA(H) + |V | · SdA(H′).

Proof. Let B and B′ be simultaneous adjacency bases of H and H′, respec-

tively, that satisfy the premises of the theorem, and let S = B ∪ B′. As

shown in the proof of Theorem 3.20, S is a simultaneous adjacency basis of

H + H′. Moreover, since B * NH(v) for every H ∈ H and every v ∈ V ′1 ,

and B′ * NH′(v
′) for every H ′ ∈ H′ and every v′ ∈ V ′2 , we have that

S * NH+H′(x) for every H + H ′ ∈ H +H′ and every x ∈ V ′1 ∪ V ′2 . Finally,

by Lemma 3.68, we have that S is a simultaneous dominating set of H+H′,
so SdA(G � (H+H′)) = |V | · SdA(H+H′) = |V | · SdA(H) + |V | · SdA(H′) by

Theorems 3.59 and 3.20.

The following result is a direct consequence of Lemma 3.16 and Theo-

rem 3.69.

Proposition 3.70. Let G be a family of connected non-trivial graphs on a

common vertex set V . Let H be a graph family on a common vertex set V ′1
of cardinality |V ′1 | ≥ 7 such that every H ∈ H is a path graph, a cycle graph,

D(H) ≥ 6, or g(H) ≥ 5 and δ(H) ≥ 3. Let H′ be a graph family on a

common vertex set V ′2 of cardinality |V ′2 | ≥ 7 satisfying the same conditions

as H. Then,

SdA(G � (H +H′)) = |V | · SdA(H) + |V | · SdA(H′).
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In addition, following a reasoning analogous to that of the proofs of

Propositions 3.60 and 3.62, we obtain the following result as a consequence

of Lemma 3.16 and Theorems 3.8 and 3.69.

Proposition 3.71. Let G be a family of connected non-trivial graphs on a

common vertex set V . Let H be a graph of order n ≥ 7 which is a path graph,

or a cycle graph, or satisfies D(H) ≥ 6, or g(H) ≥ 5 and δ(H) ≥ 3. Let H ′

be a graph of order n′ ≥ 7 that satisfies the same conditions as H. Let B

and B′ be adjacency bases of H and H ′, respectively. Then, for any pair of

families H ⊆ G̃B(H) and H′ ⊆ G̃B′(H ′) such that H ∈ H and H ′ ∈ H′,

SdA(G � (H +H′)) = |V | · dimA(H) + |V | · dimA(H ′).

By analogy to the manner in which Theorem 3.69 can be deduced from

Theorems 3.59 and 3.20, we present the following result which can be deduced

from Theorems 3.65 and 3.20.

Theorem 3.72. Let G be a family of connected non-trivial graphs on a com-

mon vertex set V , and let H and H′ be families of non-trivial graphs on

common vertex sets V ′1 and V ′2 , respectively. If there exists a simultaneous

adjacency basis B of H that satisfies B * NH(v) for every H ∈ H and ev-

ery v ∈ V ′1 , and for every simultaneous adjacency basis B′ of H′ there exist

H ′ ∈ H and v′ ∈ V ′2 such that B′ ⊆ NH′(v
′), then

SdA(G � (H +H′)) = |V | · SdA(H) + |V | · SdA(H′) + S γ(G).

Proof. Let S be a simultaneous adjacency basis of H +H′, let W = S ∩ V ′1
and let W ′ = S ∩ V ′2 . As discussed in the proof of Theorem 3.20, W and W ′

are simultaneous adjacency bases of H and H′, respectively. Since there exist

H ′ ∈ H and v′ ∈ V ′2 such that W ′ ⊆ NH′(v
′), we have that S ⊆ NH+H′(v

′) for

any H ∈ H by the definition of the join operation. Moreover, by Lemma 3.68,

S is a simultaneous dominating set of H + H′, so SdA(G � (H + H′)) =

|V | · SdA(H + H′) + S γ(G) = |V | · SdA(H) + |V | · SdA(H′) + S γ(G) by

Theorems 3.65 and 3.20.

The following results are particular cases of Theorem 3.72.

Proposition 3.73. Let G be a family of connected non-trivial graphs on a

common vertex set V . Let H be a graph family on a common vertex set V ′

of cardinality |V ′| ≥ 7 such that every H ∈ H is a path graph, a cycle graph,
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D(H) ≥ 6, or g(H) ≥ 5 and δ(H) ≥ 3. Let Kt be a complete graph of order

t ≥ 2. Then,

SdA(G � (Kt +H)) = |V | · SdA(H) + |V | · (t− 1) + S γ(G).

Proof. By Theorem 3.20, SdA(Kt + H) = SdA(H) + t − 1. Moreover, by

Lemma 3.16, every simultaneous adjacency basis B of H satisfies B * NH(v)

for every H ∈ H and every v ∈ V ′. Furthermore, every adjacency basis of

Kt has the form B′ = V (Kt) − {v}, where v is an arbitrary vertex of Kt.

Clearly, B′ ⊆ NKt(v), so the result follows from Theorem 3.72.

Following a reasoning analogous to that of the proofs of Propositions 3.60

and 3.62, we obtain the following result as a consequence of Lemma 3.16 and

Theorems 3.8, 3.20 and 3.72.

Proposition 3.74. Let G be a family of connected non-trivial graphs on a

common vertex set V . Let H be a graph of order n ≥ 7 which is a path graph,

or a cycle graph, or satisfies D(H) ≥ 6, or g(H) ≥ 5 and δ(H) ≥ 3. Let Kt

be a complete graph of order t ≥ 2. Let B be an adjacency basis of H. Then,

for any family H ⊆ G̃B(H) such that H ∈ H,

SdA(G � (Kt +H)) = |V | · dimA(H) + |V | · (t− 1) + S γ(G).

As an example of the previous result, consider an arbitrary family G
composed by connected non-trivial graphs on a common vertex set V , a

complete graph Kt of order t ≥ 2, a path graph Pn of order n ≥ 7, and the

cycle graph Cn obtained from Pn by joining its leaves by an edge. For any

simultaneous adjacency basis B of {Pn, Cn} and any family H ∈ G̃B(Pn) ∪
G̃B(Cn) such that Pn ∈ H or Cn ∈ H, we have that

SdA(G � (Kt +H)) = |V | ·
(⌊

2n+ 2

5

⌋
+ t− 1

)
+ S γ(G).





Chapter 4

The simultaneous strong metric

dimension of graph families

After extensively studying the simultaneous metric dimension, and the re-

lated simultaneous adjacency dimension, this chapter explores into the ex-

tensibility of the notion of simultaneity to other forms of resolvability. Here,

we introduce the simultaneous strong metric dimension. As in Chapter 2,

we investigate the core properties of this parameter, including its bounds,

extreme values and relations to the individual strong metric dimensions of

the graphs composing the families, as well as several families on which inter-

esting facts may be pointed out, namely those composed by a graph and its

complement.

Let G = {G1, G2, ..., Gk} be a family of (not necessarily edge-disjoint)

connected graphs Gi = (V,Ei) with common vertex set V (the union of

whose edge sets is not necessarily the complete graph). By analogy to the

definitions of simultaneous metric/adjacency generator, basis and dimension,

we define a simultaneous strong metric generator for G to be a set S ⊆ V

such that S is simultaneously a strong metric generator for each Gi. We

say that a minimum cardinality simultaneous strong metric generator for

G is a simultaneous strong metric basis of G, and its cardinality the simul-

taneous strong metric dimension of G, denoted by Sds(G) or explicitly by

Sds(G1, G2, ..., Gt). To illustrate these definitions, Figure 4.1, shows the fam-

ily G = {G1, G2, G3}, for which the set {v1, v2, v5, v7} is a simultaneous strong

metric basis, whereas the set {v1, v5, v7} is a simultaneous metric basis, so

Sds(G) = 4 and Sd(G) = 3.

83
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Figure 4.1: The set {v1, v2, v5, v7} is a simultaneous strong metric basis of

the family G = {G1, G2, G3}, whereas the set {v1, v5, v7} is a simultaneous

metric basis of G. Thus, Sds(G) = 4 and Sd(G) = 3.

4.1 General bounds

The following remark is a direct consequence of the fact that every strong

metric generator for a graph G is also a metric generator for G.

Remark 4.1. For any family G of connected graphs defined on a common

vertex set V ,

1 ≤ Sd(G) ≤ Sds(G) ≤ |V | − 1.

It was shown in [12] that dim(G) = 1 if and only if G is a path. It

now readily follows that dims(G) = 1 if and only if G is a path. Since any

strong metric basis of a path is composed by a leaf, we can state the following

remark.

Remark 4.2. Let G be a family of connected graphs defined on a common

vertex set. Then Sds(G) = 1 if and only if G is a collection of paths that

share a common leaf.

At the other extreme we see that dims(G) = n − 1 if and only if G is

the complete graph of order n. Thus, for a family of graphs we have the

following straightforward remark.
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Remark 4.3. Let G be a family of connected graphs defined on a common

vertex set. If Kn ∈ G, then

Sds(G) = n− 1.

A characterization of the graph families for which Sds(G) = |V | − 1 is

given in the following result.

Theorem 4.4. Let G be a family of connected graphs defined on a common

vertex set V. Then Sds(G) = |V |−1 if and only if for every pair u, v ∈ V, there

exists a graph Guv ∈ G such that u and v are mutually maximally distant in

Guv.

Proof. If Sds(G) = |V | − 1, then for every v ∈ V, the set V − {v} is a

simultaneous strong metric basis of G and, as a consequence, for every u ∈
V − {v} there exists a graph Guv ∈ G such that the set V − {u, v} is not a

strong metric generator for Guv. This means that the set V − {u, v} is not

a vertex cover of (Guv)SR and then u and v must be adjacent in (Guv)SR or,

equivalently, they are mutually maximally distant in Guv.

Conversely, if for every u, v ∈ V there exists a graph Guv ∈ G such

that u and v are mutually maximally distant in Guv, then for any strong

simultaneous metric basis B of G either u ∈ B or v ∈ B. Hence, all but one

element of V must belong to B. Therefore |B| ≥ |V |−1 and we can conclude

that Sds(G) = |V | − 1.

As a non-trivial example of the previous result, recall the family K(V ),

defined in Section 3.2, which is composed by r + 1 star graphs of the form

K1,r, defined on a common vertex set V , all of them having different centres.

In this case, every pair of vertices is maximally mutually distant in r − 1

graphs of the family, so Sds(G) = |V | − 1.

Given a family G = {G1, G2, . . . , Gk} of connected graphs defined on a

common vertex set V , we define ∂(G) =
⋃
G∈G

∂(G). The following general

considerations are true.

Remark 4.5. For any familly G = {G1, G2, . . . , Gk} of connected graphs de-

fined on a common vertex set V and any subfamily H ⊂ G.

Sds(H) ≤ Sds(G) ≤ min

{
|∂(G)| − 1,

k∑
i=1

dims(Gi)

}
.
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In particular,

max
i∈{1,...,k}

{dims(Gi)} ≤ Sds(G).

The inequalities above are sharp. For instance, consider a family H1

of graphs defined on a vertex set V , where some particular vertex u ∈ V

belongs to a simultaneous strong metric basis B. Consider also a family of

paths H2, defined on V , sharing all of them this particular vertex u as one

of their leaves. Then B is a simultaneous strong metric basis of the family

H1 ∪H2, so that Sds(H1 ∪H2) = Sds(H1).

On the other hand, Remark 1.2 allows to easily construct several families

of graphs G satisfying Sds(G) = dims(G) for some G ∈ G. We introduce the

following remarks as straightforward examples.

Remark 4.6. Let G be a family of trees defined on a common vertex set and

let G ∈ G. If σ(G) ⊇ σ(G′), for all G′ ∈ G, then Sds(G) = dims(G).

Notice that a family of trees as the one described above, where the set of

leaves of one tree contains the sets of leaves of every other tree in the family,

satisfies Sds(G) = |∂(G)| − 1.

Remark 4.7. Let G be a family of 2-antipodal graphs defined on a common

vertex set V . If there exits a partition {V1, V2} of V such that for every

u ∈ V1 and every G ∈ G, the only vertex diametral to v in G belongs to V2,

then Sds(G) = dims(G) = |V |
2

, for all G ∈ G.

The next result is a direct consequence of the fact that, in a corona

product graph G � H, no vertex of G is mutually maximally distant with

any vertex of G�H.

Remark 4.8. Let G = {G1, G2, . . . , Gk} be a family composed by connected

non-trivial graphs, defined on a common vertex set, and let H be a non-trivial

graph. Then, for any i ∈ {1, . . . , k},

Sds(G1 �H,G2 �H, . . . , Gk �H) = dims(Gi �H).

Finally, consider the family G = {G1, G2} shown in Figure 4.2. It is easy

to see that Sds(G) = dims(G1) + dims(G2) = |∂(G)| − 2 < |∂(G)| − 1.

Next, we recall an upper bound for dims(G) obtained in [57]. Recall

that X ⊆ V (G) is a twins-free clique in G if X is a clique containing no true

twins. The twins-free clique number of G, denoted by $(G), is the maximum

cardinality among all twins-free cliques in G.
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Figure 4.2: The family G = {G1, G2} satisfies Sds(G) = dims(G1) +

dims(G2) = 6.

Theorem 4.9. [57] For any connected graph G of order n ≥ 2,

dims(G) ≤ n−$(G).

Moreover, if D(G) = 2, then the equality holds.

Our next result is an extension of Theorem 4.9 to the case of the simul-

taneous strong metric dimension. We define a simultaneous twins-free clique

of a family G of graphs as a set which is a twins-free clique in every G ∈ G.

The simultaneous twins-free clique number of G, denoted by S$(G), is the

maximum cardinality among all simultaneous twins-free cliques of G.

Theorem 4.10. Let G be a family of connected graphs of order n ≥ 2 defined

on a common vertex set. Then

Sds(G) ≤ n− S$(G).

Moreover, if every graph belonging to G has diameter two, then

Sds(G) = n− S$(G).

Proof. Let W be a simultaneous twins-free clique in G of maximum cardi-

nality and let G = (V,E) be a graph belonging to G. We will show that

V −W is a strong metric generator for G. Since W is a twins-free clique, for

any two distinct vertices u, v ∈ W there exists s ∈ V −W such that either

s ∈ NG(u) and s /∈ NG(v) or s ∈ NG(v) and s /∈ NG(u). Without loss of

generality, we consider s ∈ NG(u) and s /∈ NG(v). Thus, v ∼ u ∼ s form a

minimum length v − s path in G and, as a consequence, s strongly resolves

u and v. Therefore, Sds(G) ≤ |V −W | = n− S$(G).

Now, suppose that every graph G = (V,E) belonging to G has diameter

two. Let X ⊂ V be a simultaneous strong metric basis of G and let u, v ∈ V ,
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u 6= v. If dG(u, v) = 2 or NG[u] = NG[v], for some G ∈ G, then u and v are

mutually maximally distant vertices of G, so u ∈ X or v ∈ X. Hence, for any

two distinct vertices x, y ∈ V −X and any G ∈ G we have dG(x, y) = 1 and

NG[x] 6= NG[y]. As a consequence, V −X is a simultaneous twins-free clique

of G and so n−Sds(G) = |V −X| ≤ S$(G). Therefore, Sds(G) ≥ n−S$(G)

and the result follows.

Corollary 4.11. Let G be a family of graphs of diameter two and order n ≥ 2

defined on a common vertex set. If G contains a triangle-free graph, then

n− 2 ≤ Sds(G) ≤ n− 1.

Finally, we recall the following upper bound on dims(G), obtained in

[88].

Theorem 4.12. [88] For any connected graph G of order n,

dims(G) ≤ n−D(G).

Given a graph family G defined on a common vertex set V , recall the

parameter ρ(G), defined in Section 2.1 as ρ(G) = |W | − 1, where W ⊆ V is

a maximum cardinality set such that for every G ∈ G the subgraph 〈W 〉G
induced by W in G is a path and there exists w ∈ W which is a common leaf

of all these paths.

Theorem 4.13. Let G be a family of graphs defined on a common vertex set

V . Then,

Sds(G) ≤ |V | − ρ(G).

Proof. Let W = {v0, v1, . . . , vρ(G)} ⊆ V be a set for which ρ(G) is obtained.

Assume, without loss of generality, that v0 is a common leaf of 〈W 〉G, for

every G ∈ G, and let W ′ = W − {v0}. Since no pair of vertices u, v ∈ W ′

are mutually maximally distant in any G ∈ G, the set S = V − W ′ is a

simultaneous strong metric generator for G. Thus, Sds(G) ≤ |S| = |V | −
ρ(G).

The inequality above is sharp. A family of graphs G composed by paths

having a common leaf is a trivial example where the inequality is reached.

In this case, ρ(G) = |V |−1, so that Sds(G) = 1 = |V |−ρ(G). This is not the

only circumstance where this occurs. For instance, consider a graph family G
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constructed as follows. Consider a star graph K1,r of center u and a complete

graph Kr+1 defined on a common vertex set V ′. Let V ′′ be a set such that

V ′∩V ′′ = ∅ and let {G′1, G′2, . . . , G′k} be a family composed by paths defined

on V ′′, having a common leaf, say v, and let G = {G1, H1, G2, H2, . . . , Gk, Hk}
be a graph family such that every Gi is constructed from G′i and K1,r by iden-

tifying u and v, and every Hi is constructed from G′i and Kr+1 by identifying

u and v. For every w ∈ V ′ − {u}, the set W = V ′′ ∪ {w} is a maximum

cardinality set such that, for every graph in G, the subgraph induced by W

is a path and there exists w ∈ W which is a common leaf of all these paths,

so that ρ(G) = |V ′′|. Furthermore, the set V ′ − {u} is a simultaneous strong

metric basis of G and, as a result, Sds(G) = r = |V | − ρ(G).

4.2 Families of the form {G,Gc}
We first consider the following direct consequence of Theorem 4.4.

Corollary 4.14. Let G be a graph of order n. Then the following assertions

are equivalent:

(i) Sds(G,G
c) = n− 1.

(ii) D(G) = D(Gc) = 2.

Proof. Let x, y ∈ V (G). If D(G) = D(Gc) = 2, then either x and y are

diametral in G or they are diametral in Gc. Hence, by Theorem 4.4 we

obtain Sds(G,G
c) = n− 1.

Now, assume that D(G) ≥ 3. If x, u, v, y is a shortest path from x to y

in G, then x and v are not mutually maximally distant in G and, since they

are adjacent in Gc and they are not twins, they are not mutually maximally

distant in Gc. Thus, by Theorem 4.4 we deduce that Sds(G,G
c) ≤ n−2.

The Petersen graph is an example of graphs where Sds(G,G
c) = n−1 and

the graphs shown in Figure 4.3 are examples of graphs where Sds(G,G
c) =

n− 2.

From Theorem 4.9 and Corollary 4.14 we derive the next result.

Theorem 4.15. For any graph G of order n and D(G) = 2 such that Gc is

connected,

Sds(G,G
c) ≥ n−$(G).
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Moreover, if D(Gc) ≥ 3 and $(G) = 2, then

Sds(G,G
c) = n− 2.

Given a graph G = (V,E), we say that a set S ⊂ V is a strong resolving

cover for G if S is a vertex cover and a strong metric generator for G.

Theorem 4.16. If G is a connected graph such that Gc is connected, then

any strong resolving cover of G is a simultaneous strong metric generator for

{G,Gc}.

Proof. Let W be a strong resolving cover of G. We shall show that W is a

strong metric generator for Gc. We differentiate two cases for any pair x, y

of mutually maximally distant vertices in Gc:

(1) x and y are adjacent in Gc. In this case, x and y are false twins in G (true

twins in Gc) and so they are mutually maximally distant in G. Since W

is a strong metric generator for G, we conclude that x ∈ W or y ∈ W .

(2) x and y are not adjacent in Gc. In this case x and y are adjacent in G

and, since W is a vertex cover of G, we have that x ∈ W or y ∈ W .

According to the two cases above, W is a vertex cover of (Gc)SR and,

as a consequence, W is a strong metric generator for Gc. Therefore, W is a

simultaneous strong metric generator for {G,Gc}.

a

b

c

d

e

G Gc

d

a

c

e

b

Figure 4.3: X1 = {a, c, d} is a strong resolving cover for G and X2 = {a, c, b}
is a strong resolving cover for Gc. Both X1 and X2 are simultaneous strong

metric bases of {G,Gc}.

The strong resolving cover number of a graph G, denoted by βs(G), is the

minimum cardinality among all the strong resolving covers for G. Obviously,

for any connected graph of order n,

n− 1 ≥ βs(G) ≥ max{dims(G), β(G)}. (4.1)
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Corollary 4.17. For any connected graph G such that Gc is connected,

Sds(G,G
c) ≤ min{βs(G), βs(G

c)}.

Figure 4.3 shows a graph G and its complement Gc. In this case,

Sds(G,G
c) = βs(G) = βs(G

c) = 3 > 2 = dims(G) = dims(G
c) = β(G) =

β(Gc). The graph G shown in Figure 4.4 satisfies that dims(G
c) = 2 < 3 =

βs(G
c) = Sds(G,G

c) = dims(G) < 4 = βs(G). In this case, {2, 4} is a strong

metric basis of Gc, {2, 3, 4} is a βs(G
c)-set which is a simultaneous strong

metric basis of {G,Gc} and, at the same time, it is a strong metric basis of

G, while {2, 4, 5, 6} is a βs(G)-set.

12

3

4 5

6

G

12

3

4 5

6

GSR

12

3

4 5

6

Gc

12

3

4 5

6

(Gc)SR

Figure 4.4: The βs(G
c)-set {2, 3, 4} is a simultaneous strong metric basis of

{G,Gc}.

Theorem 4.18. Let G be a connected graph such that D(Gc) = 2 and let

S ⊂ V (G). Then the following assertions are equivalent.

(i) S is a simultaneous strong metric generator for {G,Gc}.

(ii) S is a strong resolving cover for G.

Proof. Let G = (V,E). Since D(Gc) = 2, two vertices x, y ∈ V are mutually

maximally distant in Gc if and only if dGc(x, y) = 2 or NGc [x] = NGc [y].

Hence, (Gc)SR = (V,E ∪ E ′), where E ′ = {xy : NG(x) = NG(y)}.
Let S be a simultaneous strong metric generator for {G,Gc}. Since S

is a strong metric generator for Gc, we deduce that S is a vertex cover of

(Gc)SR = (V,E ∪ E ′), and as a consequence, for any edge xy ∈ E, we have

that x ∈ S or y ∈ S. Hence, S is a strong metric generator for G and a

vertex cover of G. By Theorem 4.16 we conclude the proof.

From Theorem 4.18 we deduce the following result.
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Corollary 4.19. For any connected graph G such that D(Gc) = 2,

Sds(G,G
c) = βs(G).

In order to present the next result, we need to introduce some new no-

tation and terminology. Given a graph G such that V (G) 6= ∂(G), we define

the interior subgraph of G as the subgraph G̊ induced by V (G)− ∂(G). The

parameter β̊(G) is defined as follows.

β̊(G) =


0 if V (G) = ∂(G)

β(G̊) otherwise.

Corollary 4.20. For any connected graph G such that D(Gc) = 2,

Sds(G,G
c) ≥ max{dims(G) + β̊(G), β(G)}.

Proof. By Theorem 4.18 and Equation (4.1) we have that Sds(G,G
c) ≥ β(G).

It only remains to prove that Sds(G,G
c) ≥ dims(G) + β̊(G). If V (G) =

∂(G), then β̊(G) = 0, and by Theorem 4.18 and Equation (4.1) we have

Sds(G,G
c) ≥ dims(G) = dims(G) + β̊(G). Assume that V (G) 6= ∂(G). Let

B be a simultaneous strong metric basis of {G,Gc}, and let B1 = B ∩ ∂(G)

and B2 = B −B1. Clearly, |B1| ≥ dims(G). Moreover, since no vertex of B1

covers edges of G̊, by Theorem 4.18 we conclude that B2 is a vertex cover

of G̊, so that |B2| ≥ β(G̊). Therefore, Sds(G,G
c) = |B| = |B1| + |B2| ≥

dims(G) + β̊(G).

To illustrate this result we take the graph G shown in Figure 4.5. In

this case Sds(G,G
c) = β(G) = 5 > 4 = dims(G) + β̊(G). In contrast, the

equality Sds(G,G
c) = dims(G) + β̊(G) is satisfied for any graph constructed

as follows. Let r, s ≥ 2 and t ≥ 3 be three integers and let G be the

graph constructed from Kr, Ks and Pt by identifying one vertex of Kr with

one leaf of Pt and one vertex of Ks with the other leaf of Pt. In this case

Sds(G,G
c) = r + s + b t

2
c − 1, dims(G) = r + s− 1, β(G) = r + s + b t

2
c − 2

and β̊(G) = β(G̊) = b t
2
c. Hence, Sds(G,G

c) = dims(G) + β̊(G) > β(G).

Corollary 4.21. Let G be a connected graph such that D(Gc) = 2. Then the

following assertions hold.

(i) Sds(G,G
c) = dims(G) if and only if there exists a strong metric basis

of G which is a vertex cover of G.
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1 3 6 9 11

4 7 10

2 5 8

Figure 4.5: The sets {1, 5, 6, 7} and {5, 6, 7, 11} are the only strong metric

bases of G, while {1, 5, 6, 7, 11} is the only β(G)-set which is a strong metric

generator of G.

(ii) Sds(G,G
c) = β(G) if and only if there exists a β(G)-set which is a

strong metric generator of G.

1 2 3

4

7 6 5

Figure 4.6: The graph G satisfies Sds(G,G
c) = dims(G) = 4 > 3 = β(G).

To illustrate the result above we take the graphs shown in Figures 4.5

and 4.6. In both cases D(Gc) = 2. Now, in the case of Figure 4.5, the

sets {1, 5, 6, 7} and {5, 6, 7, 11} are the only strong metric bases of G. At the

same time, the set {1, 5, 6, 7, 11} is the only β(G)-set which is a strong metric

generator of G, and so it is the only βs(G)-set. Therefore, Sds(G,G
c) =

βs(G) = β(G) = 5 > 4 = dims(G). In the case of Figure 4.6, Sds(G,G
c) =

βs(G) = dims(G) = 4 > 3 = β(G), as {2, 4, 6, 7} is a strong metric basis of

G which is a vertex cover of G and {2, 4, 6} is a β(G)-set.

The hypercube Qr, r ≥ 3, is a 2-antipodal graph, so dims(Qr) = 2r−1.

Also, Qr is a bipartite graph and, for r odd, any colour class forms a

strong metric basis which is a vertex cover of minimum cardinality. Since

D((Qr)
c) = 2, we conclude that for any odd integer r ≥ 3,

Sds(Qr, (Qr)
c) = dims(Qr) = β(Qr) = 2r−1. (4.2)

This is an example where Sds(G,G
c) = dims(G) = β(G) and it is a particular

case of the next result.
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Proposition 4.22. For any bipartite 2-antipodal graph G of odd diameter

and order n > 2,

Sds(G,G
c) =

n

2
.

Proof. Let G = (V1 ∪ V2, E). Since the subgraph of Gc induced by Vi, i ∈
{1, 2}, is complete and G is not a complete bipartite graph, we conclude

that Gc is connected. Furthermore, since G is 2-antipodal of odd diameter,

each vertex x ∈ V1 is adjacent to a vertex x′ ∈ V2 in Gc and, as a result,

D(Gc) = 2.

On the other hand, V1 is a vertex cover of G and since G is a 2-antipodal

graph and D(G) is odd, for any x ∈ V1 there exists exactly one vertex x′ ∈ V2

which is antipodal to x, which implies that V1 is a strong metric basis of G.

Therefore, by Corollary 4.21 we conclude the proof.

An even-order cycle C2k has odd diameter if k is odd. In this case,

Sds(C2k, (C2k)
c) = k. Note that for k even, Sds(C2k, (C2k)

c) = k + 1. If G

is a bipartite 2-antipodal graph, then the Cartesian product graph G�K2

is bipartite and 2-antipodal. Moreover, D(G�K2) = D(G) + 1. Therefore,

Proposition 4.22 immediately leads to the following result.

Corollary 4.23. For any bipartite 2-antipodal graph G of even diameter and

order n,

Sds(G�K2, (G�K2)c) = n.

Theorem 4.24. Let G be a connected graph. Then GSR = Gc if and only if

D(G) = 2 and G is a true-twins-free graph.

Proof. (Necessity) Assume that GSR = Gc = (V,E), and let u, v ∈ V be two

mutually maximally distant vertices in G.

First consider that u and v are diametral vertices in G. Since u and

v are mutually maximally distant in G and GSR = Gc, we obtain that u

and v are adjacent in Gc and, as a result, D(G) = dG(u, v) ≥ 2. Now,

suppose that dG(u, v) > 2. Then there exists w ∈ NG(v)−NG(u) such that

dG(u,w) = D(G) − 1 ≥ 2. Hence, w and u are not mutually maximally

distant in G and w ∈ NGc(u), which contradicts the fact that GSR = Gc.

Therefore, D(G) = 2.

Now assume that u and v are true twins in G. We have that u and v are

false twins in Gc and, as a result, they are not adjacent in Gc and they are
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mutually maximally distant in G, which contradicts the fact that GSR = Gc.

Therefore, G is a true-twins-free graph.

(Sufficiency) If G = (V,E) is a true-twins-free graph and D(G) = 2,

then two vertices u, v are mutually maximally distant in G if and only if

dG(u, v) = 2. Therefore, GSR = Gc.

Odd-order cycles are an example of the previous result, as [(C2k+1)c]SR =

C2k+1. Moreover, it is not difficult to show that a simultaneous strong metric

basis of {C2k+1, (C2k+1)c} is the minimum union of a strong metric basis and

a minimum vertex cover of C2k+1, so

Sds(C2k+1, (C2k+1)c) = k +

⌊
k

2

⌋
+ 1.

Corollary 4.25. Let G be a true-twins-free graph such that D(G) = 2. Then

the following assertions hold.

(i) Sds(G,G
c) = dims(G) if and only if there exists a β(Gc)-set which is a

strong metric generator for Gc.

(ii) Sds(G,G
c) = dims(G) = dims(G

c) if and only if there exists a β(Gc)-set

which is a strong metric basis of Gc.

The complement of the graph shown in Figure 4.5 has diameter two and

{1, 5, 6, 7, 11} is a β(G)-set which is a strong metric generator for G, so that

Sds(G,G
c) = dims(G).

Given a graph G, it is well-known that D(G) ≥ 4 leads to D(Gc) =

2. Hence, D(G) 6= 2 and D(Gc) 6= 2 if and only if D(G) = D(Gc) = 3.

In particular, for the case of trees we have that D(T ) = 3 if and only if

D(T c) = 3.

Proposition 4.26. Let T be a tree of order n. If D(T ) = 3, then

Sds(T, T
c) = n− 2.

Proof. Notice that T has |Ω(T )| = n − 2 leaves. Let u and v be the two

interior vertices of T . We have that D(T c) = 3 and dT c(u, v) = 3. Any

simultaneous strong metric basis of {T, T c} must contain all leaves of T ,

except one, and one of u and v, so Sds(T, T
c) ≥ |Ω(T )| − 1 + 1 = n − 2.

Moreover, by Corollary 4.14 we have that Sds(T, T
c) ≤ n − 2 and so the

equality holds.
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Proposition 4.27. Let T be a tree of order n such that D(T ) ≥ 4, let u be

a leaf of T , and let T ′u be the tree obtained from T by removing all leaves,

except u. Then,

β(T̊ ) + |Ω(T )| − 1 ≤ Sds(T, T
c) ≤ β(T ′u) + |Ω(T )| − 1.

Proof. Note that dims(T ) = |Ω(T )|−1 and β̊(T ) = β(T̊ ). Thus, by Corollary

4.20, Sds(T, T
c) ≥ max{|Ω(T )| − 1 + β(T̊ ), β(T )}, and as a consequence,

Sds(T, T
c) ≥ β(T̊ ) + |Ω(T )| − 1.

To prove the upper bound, let X be a β(T ′u)-set and let Y ⊂ V (T ) be

the set composed by all leaves of T , except u. Notice that X ∪ Y is a strong

resolving cover of T and X∩Y = ∅. Now, since D(T c) = 2, by Theorem 4.18

we conclude that Sds(T, T
c) = βs(T ) ≤ |X|+ |Y | = β(T ′u) + |Ω(T )| − 1.

A particular case of the previous result is that of caterpillar trees T

such that T ′u
∼= Pn−|Ω(T )|+1 for every leaf u of T . In this case, we have that

Sds(T, T
c) = |Ω(T )| +

⌈
n−|Ω(T )|

2

⌉
− 1. Moreover, if D(T ) = 4, then T̊ is

a star graph. On the other hand, if D(T ) = 5, then T̊ is composed by

exactly two interior vertices and |Ω(T̊ )| = n− |Ω(T )| − 2 leaves. With these

facts in mind, the following two results are straightforward consequences of

Proposition 4.27.

Corollary 4.28. Let T be a tree of order n such that D(T ) = 4. If the

central vertex of T̊ is a support vertex of T , then

Sds(T, T
c) = |Ω(T )|.

Otherwise,

Sds(T, T
c) = |Ω(T )|+ 1.

Corollary 4.29. Let T be a tree of order n such that D(T ) = 5. If an

interior vertex of T̊ is a support vertex of T , then

Sds(T, T
c) = |Ω(T )|+ 1.

Otherwise,

Sds(T, T
c) = |Ω(T )|+ 2.



Chapter 5

Computability of simultaneous

resolvability parameters

In previous chapters, we have discussed a number of cases where the si-

multaneous metric, adjacency and strong metric dimensions may be exactly

determined or sharply bounded in terms of several parameters of the families

and/or their composing graphs. Moreover, some authors have shown meth-

ods to efficiently compute some standard resolvability parameters in partic-

ular types of graphs, even though it is known that computing these standard

resolvability parameters is difficult in the general case. In this chapter, we

address the computability of the simultaneous resolvability parameters stud-

ied in previous chapters. First, we show that the requirement of simultaneity

adds on the complexity of the original problems, making the computation

hard even for families composed by graphs whose individual resolvability pa-

rameters are easy to compute. Next, in light of this circumstance, we propose

several methods for estimating these parameters and study their accuracy on

several collections of graph families.

5.1 Overview

It is proven in [48] that the problem of finding the metric dimension of a

graph, when stated as a decision problem, is NP-complete. Moreover, the

NP-completeness of finding the adjacency dimension and the strong metric

dimension of a graph is proven in [26] and [67], respectively. These problems

are formally stated as decision problems as follows:

97
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Metric Dimension (DIM)

INSTANCE: A graph G = (V,E) and an integer p, 1 ≤ p ≤ |V (G)| − 1.

QUESTION: Is dim(G) ≤ p?

Adjacency Dimension (ADIM)

INSTANCE: A graph G = (V,E) and an integer p, 1 ≤ p ≤ |V (G)| − 1.

QUESTION: Is dimA(G) ≤ p?

Strong Metric Dimension (SDIM)

INSTANCE: A graph G = (V,E) and an integer p, 1 ≤ p ≤ |V (G)| − 1.

QUESTION: Is dims(G) ≤ p?

In an analogous manner, we define the decision problems associated to

finding the simultaneous metric dimension, the simultaneous adjacency di-

mension, and the simultaneous strong metric dimension of a graph family.

Simultaneous Metric Dimension (SD)

INSTANCE: A graph family G = {G1, G2, . . . , Gk} on a common vertex set

V and an integer p, 1 ≤ p ≤ |V | − 1.

QUESTION: Is Sd(G) ≤ p?

Simultaneous Adjacency Dimension (SAD)

INSTANCE: A graph family G = {G1, G2, . . . , Gk} on a common vertex set

V and an integer p, 1 ≤ p ≤ |V | − 1.

QUESTION: Is SdA(G) ≤ p?

Simultaneous Strong Metric Dimension (SSD)

INSTANCE: A graph family G = {G1, G2, . . . , Gk} on a common vertex set

V and an integer p, 1 ≤ p ≤ |V | − 1.

QUESTION: Is Sds(G) ≤ p?

With these definitions in mind, it is straightforward to see that SD, SAD

and SSD are NP-complete.

Remark 5.1. The Simultaneous Metric Dimension Problem (SD), the Si-

multaneous Adjacency Dimension Problem (SAD) and the Simultaneous Strong

Metric Dimension Problem (SSD) are NP-complete.

Proof. It is simple to see that determining whether a vertex set S ⊂ V ,

|S| ≤ p, is a simultaneous metric, adjacency or strong metric generator can

be done in polynomial time, so SD, SAD and SSD are in NP. Moreover, for

any graph G = (V,E) and any integer 1 ≤ p ≤ |V (G)|−1, the corresponding
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instance of DIM, ADIM or SDIM can be transformed into an instance of SD,

SAD or SSD, respectively, in polynomial time by making G = {G}, so SD,

SAD and SSD are NP-complete.

5.2 Computational difficulty added by the si-

multaneity requirement

In the previous section, we saw that the computation of simultaneous resol-

vability parameters is difficult in the general case, as a direct consequence of

the fact that computing the individual parameters of the graphs composing

the families is also difficult. However, as we will show, the requirement of

simultaneity adds on the difficulty of calculating the individual parameters,

making it hard to compute simultaneous resolvability parameters even for

families composed by graphs whose individual resolvability parameters are

easy to compute.

To begin with, recall that for a tree T , every set composed by all terminal

vertices, except one, of every exterior major vertex, is a metric basis of T .

Likewise, recall that every set composed by all but one of its leaves is a

strong metric basis of T . In consequence, a simple traversal (e.g. a post-

order traversal) allows us to compute dim(T ) and dims(T ) in polynomial

time. Here, we will show that the requirement of simultaneity makes it

difficult to compute Sd(T ) and Sds(T ) for a family T = {T1, T2, . . . , Tk}
composed by trees on a common vertex set. To this end, we will prove that

the decision problems associated to the computation of Sd(T ) and Sds(T )

are NP-complete for these families. We do so by showing a transformation

from a subcase of the Hitting set Problem, which is defined as follows:

Hitting Set Problem (HSP)

INSTANCE: A collection C = {C1, C2, . . . , Ck} of non-empty subsets of a

finite set S and a positive integer p ≤ |S|.
QUESTION: Is there a subset S ′ ⊆ S with |S ′| ≤ p such that S ′ contains at

least one element from each subset in C?

The Hitting Set Problem was shown to be NP-complete by Karp [46], as

shows the next result.

Lemma 5.2. [30, 46] The Hitting Set Problem (HSP) is NP-complete, even

if |Ci| ≤ 2 for every Ci ∈ C.



Computability of simultaneous resolvability parameters 100

In what follows, we will refer to the subcase of HSP where |Ci| ≤ 2 for

every Ci ∈ C as HSP2, and will use polynomial time transformations of HSP2

into SD and SSD for families of trees to show their NP-completeness.

Theorem 5.3. The Simultaneous Metric Dimension Problem (SD) and the

Simultaneous Strong Metric Dimension Problem (SSD) are NP-complete for

families of trees.

Proof. As we discussed previously, determining whether a vertex set S ⊂ V ,

|S| ≤ p, is a simultaneous (strong) metric generator for a graph family G can

be done in polynomial time, so SD and SSD are in NP.

Now, we will show a polynomial time transformation of HSP2 into SD

and SSD. Let S = {v1, v2, . . . , vn} be a finite set and let C = {C1, C2, . . . , Ck},
where every Ci ∈ C satisfies 1 ≤ |Ci| ≤ 2 and Ci ⊆ S. Let p be a positive

integer such that p ≤ |S|, and let S ′ = {w1, w2, . . . , wn} such that S∩S ′ = ∅.
We construct the family T = {T1, T2, . . . , Tk} composed by trees on the

common vertex set V = S ∪ S ′ ∪ {u}, u /∈ S ∪ S ′, as follows. For every

r ∈ {1, . . . , k}, if Cr = {vir}, let Pr be a path on the vertices of (S−{vir})∪
(S ′ − {wir}), and let Tr be the tree obtained from Pr by joining by an edge

the vertex u to one end of Pr, and joining the other end of Pr to the vertices

vir and wir . On the other hand, if Cr = {vir , vjr}, Pr is a path on the vertices

of (S − {vir , vjr}) ∪ S ′, and Tr is the tree obtained from Pr by joining by an

edge the vertex u to one end of Pr, and the other end of Pr to the vertices

vir and vjr . Figure 5.1 shows an example of this construction.

In order to prove the validity of this transformation, we claim that there

exists a subset S ′′ ⊆ S of cardinality |S ′′| ≤ p that contains at least one

element from each Ci ∈ C if and only if Sd(T ) = Sds(T ) ≤ p+ 1.

To prove this claim, first note that every Tr ∈ T satisfies M(Tr) =

{x} and TERTr(x) = Ω(Tr), so every simultaneous metric basis of T is a

simultaneous strong metric basis, and vice versa.

Now, assume that there exists a set S ′′ ⊆ S which contains at least

one element from each Ci ∈ C and satisfies |S ′′| ≤ p. Since the set S ′′ ∪ {u}
satisfies |(S ′′∪{u})∩Ω(Tr)| ≥ |Ω(Tr)|−1 for every Tr ∈ T , it is a simultaneous

(strong) metric generator for T . Thus, Sd(T ) = Sds(T ) ≤ p+ 1.

Now, assume that Sd(T ) = Sds(T ) ≤ p+ 1 and let W be a simultaneous

(strong) metric generator for T such that |W | = p+ 1. Since u is a common

leaf of all trees in T , we can assume that u ∈ W , i.e., if u /∈ W , then for

any Ti ∈ T and any leaf x ∈ W ∩ Ω(Ti), the set (W − {x}) ∪ {u} is also a
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simultaneous (strong) metric generator for T , and so we can replace W by

(W − {x}) ∪ {u}. Moreover, for every set Cr ∈ C such that W ∩ Cr = ∅, we

have that Cr = {vir} and wir ∈ W . Hence, the set

W ′ =
⋃

W∩Cr=∅

((W − {wir}) ∪ {vir})

is also a simultaneous (strong) metric generator for T . Finally, the set W ′′,

identical to W ′ except for the fact that every x ∈ W ′ ∩ S ′ is replaced by an

arbitrary yx ∈ S −W ′, is also a simultaneous (strong) metric generator for

T of cardinality |W ′′| = p+ 1 such that u ∈ W ′′ and (W ′′−{u})∩Ci 6= ∅ for

every Ci ∈ C. Thus the set S ′′ = W ′′−{u} satisfies |S ′′| ≤ p and contains at

least one element from each Ci ∈ C.
To conclude our proof, it is simple to verify that the transformation of

HSP2 into SD and SSD described above can be done in polynomial time.
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Figure 5.1: The family T = {T1, T2, T3} is constructed for transforming an

instance of HSP2, where S = {v1, v2, v3, v4} and C = {{v1, v2}, {v3}, {v2, v4}},
into instances of SD and SSD for families of trees.

Results analogous to that of Theorem 5.3 can be verified for other classes

of graph families. In particular, as an extreme case, we would point out that

there exist families composed by graphs whose individual metric dimensions

are constant, and small, yet their simultaneous metric dimensions may span

a wide range of values and are difficult to compute. For example, consider

the so-called tadpole graphs [49], unicyclic graphs obtained by taking a path

graph Pn and a cycle graph Cn′ , and identifying a leaf of Pn and an arbitrary

vertex of Cn′ . These are particular cases of the graphs of the forms P +e and

C + e− f described in Section 2.4. As discussed in the proof of Remark 2.12

(cases 2 and 3), any graph G constructed in this manner satisfies dim(G) = 2.

However, by Remark 2.1 and Theorem 2.3, we have that a family G composed
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by tadpole graphs satisfies 2 ≤ Sd(G) ≤ |V | − 1, being both bounds tight1.

Moreover, as illustrated in Figure 5.2, a polynomial-time procedure, similar

to that described in the proof of Theorem 5.3, allows to transform an instance

of HSP2 into an instance of SD for families of tadpole graphs, in such a way

that a solution S ′′, |S ′′| ≤ p, for HSP2 exists if and only if the family G
constructed by this transformation satisfies Sd(G) ≤ p + 1, so SD is NP-

complete for these families.
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Figure 5.2: The family G = {G1, G2, G3} is constructed for transforming an

instance of HSP2, where S = {v1, v2, v3, v4} and C = {{v1, v2}, {v3}, {v2, v4}},
into an instance of SD for families of tadpole graphs.

5.3 Algorithms for estimating simultaneous

resolvability parameters

Here, we present several approaches for obtaining approximate values for si-

multaneous resolvability parameters. A common idea lies on the conception

of all methods, namely that of computing a permutation S = (vi1 , vi2 , . . . , vin)

of the vertex set V , which imposes an ordering on V , and finding the min-

imum value θS such that the set W = {vi1 , vi2 , . . . , viθS }, composed by the

first θS vertices according to this ordering, is a simultaneous generator of

the desired type. We will refer to this value as the resolvability threshold of

the given permutation. We will describe two greedy algorithms and a ran-

domized local search procedure for finding a permutation whose resolvability

threshold is as close as possible to the exact value of the desired simultaneous

resolvability parameter.

1The lower bound is trivially satisfied, whereas the upper bound is reached, for instance,

by the family composed by all different labelled graphs isomorphic to K1 + (K1 ∪K2).
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5.3.1 Preliminaries

The data structure used for representing one graph is the upper triangular

half of the distance matrix, excluding the diagonal. Explicit labels are not

used for vertices. Instead, the structure refers to each vertex by its ordinal

position in the vector. Thus, the i-th row refers to vertex vi and contains the

distances to the vertices vi+1, vi+2, . . . , v|V |. A graph family is represented

as a vector of graph representations. Note that, for a graph family G =

{G1, G2, . . . , Gk} defined on a common vertex set V , the space complexity of

this data structure is O(k · |V |2).

Algorithm 1 Function dist

1: function dist(dt,i,x,u,v)

2: if dt = Sd then

3: return dGi(u, x) 6= dGi(v, x)

4: else if dt = SdA then

5: return dGi,2(u, x) 6= dGi,2(v, x)

6: else

7: return dGi(u, x) = dGi(u, v) + dGi(v, x) or dGi(v, x) = dGi(u, v) +

dGi(u, x)

8: end if

9: end function

A number of subroutines are common to all methods. We will briefly

describe those that are not trivial or simply auxiliary2. Boolean function

dist(dt, i, x, u, v) verifies whether the vertex x distinguishes the pair u, v in

the graph Gi according to the criterion of the dimension type dt, as de-

scribed in Algorithm 1. As all the distances are kept in the data structure

representing the graph family, the time complexity of function dist is O(1).

At some point, all the algorithms proposed need to verify whether a

vertex set S is a simultaneous generator of a given type for a graph family.

This verification is performed by the Boolean function checkSimGen(dt,S),

which is described in Algorithm 2. Note that function checkSimGen is

likely to run faster when the output is false. The worst case time complexity

of the function is O(k · |S| · |V |2)

2The C++ implementations of the data structures and algorithms described in this

chapter are available at https://github.com/yramirezc/sim-dim-graph-families.

https://github.com/yramirezc/sim-dim-graph-families
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Algorithm 2 Function checkSimGen

1: function checkSimGen(dt,S)

2: for i← 1 . . . |G| do

3: for p← 1 . . . |V | − 1 do

4: for q ← 1 . . . |V | − 1 do

5: if vp /∈ S and vq /∈ S then

6: foundDistinguisher ← false

7: for x ∈ S do

8: if dist(dt, i, x, vp, vq) then

9: foundDistinguisher ← true

10: break for

11: end if

12: end for

13: if not foundDistinguisher then

14: return false

15: end if

16: end if

17: end for

18: end for

19: end for

20: return true

21: end function

5.3.2 Description of the algorithms

Two of the proposed methods are greedy algorithms that rely on the as-

sumption that the likelihood of a vertex belonging to a simultaneous basis

of any type is directly proportional to the number of vertex pairs that it

distinguishes.

The first method, greedy aggregation, consists on iteratively adding ver-

tices to a set W until a generator is obtained. The method consists on an

initialization phase, where the set of vertex pairs distinguished by each ver-

tex is computed, and vertices are decrementally sorted by the sizes of these

sets, and a greedy computation phase. In this second phase, a simultaneous

generator of the desired type is constructed by iteratively performing two

steps. First, a new vertex is added to the generator, and then the remain-

ing vertices are re-sorted according to the number of vertex pairs that are
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distinguished by them but not by the already added vertices. Algorithm 3

describes greedy aggregation in detail.

Algorithm 3 Greedy aggregation

Require: A graph family G = {G1, G2, . . . , Gk} on a common vertex set V

1: . Initialization

2: for vi ∈ V do

3: Di ← ∅
4: for vj ∈ V − {vi} do

5: for vk ∈ V − {vi, vj} do

6: for Gl ∈ G do

7: if dist(dt, l, vk, vi, vj) then

8: Di ← Di ∪ {{vj, vk}}
9: end if

10: end for

11: end for

12: end for

13: end for

14: sort((v1, D1), (v2, D2), . . . , (vn, Dn)) . decrementally by |Di|
15: . Greedy computation

16: j ← 1

17: W ← {vi1}
18: while checkSimGen(dt,W ) = false do

19: for l ∈ {j + 1, j + 2, . . . , n} do

20: Dil ← Dil −Dij

21: end for

22: j ← j + 1

23: sort((vij , Dij), (vij+1
, Dij+1

), . . . , (vin , Din)) . decrementally by |Dil |
24: W ← W ∪ {vij}
25: end while

26: return |W |

Remark 5.4. The time complexity of the greedy aggregation algorithm for a

family G = {G1, G2, . . . , Gk} defined on a common vertex set V is O(k · |V |4).

Proof. It is simple to see that the time complexity of the initialization phase

is O(k · |V |3). Moreover, function checkSimGen, as well as the inverted
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index update and re-sorting, are called as much as |V |−2 times. Taking into

account that the worst case time complexity of updating one entry of the

inverted index of distinguished pairs per vertex is O(k · |V |2) and that the

time complexity of efficient sorting algorithms is O(n log n) on lists composed

by n objects, we have that the time complexity of the greedy aggregation

algorithm is

O(k · |V |3 +k · |V |2 · 1 + (|V | − 1) · k · |V |2 + (|V | − 1) · log(|V | − 1)+

+k · |V |2 · 2 + (|V | − 2) · k · |V |2 + (|V | − 2) · log(|V | − 2)+

. . .

+k · |V |2 · (|V | − 2) + 2k · |V |2 + 2 · log 2) =

= O(k · |V |3 +k · |V |2 ·
|V |−2∑
i=1

[i] + k · |V |2 ·
|V |−1∑
i=2

[i] +
|V |−1∑
i=2

[i · log i]) =

= O(k · |V |3 +k · |V |2 ·
|V |−2∑
i=1

[i] + k · |V |2 ·
|V |−1∑
i=2

[i] + log(|V |) ·
|V |−1∑
i=2

[i]) =

= O(k · |V |3 + k · |V |4 + k · |V |4 + |V |2 · log(|V |)) =

= O(k · |V |4).

Moreover, the space complexity of the inverted index of distinguished

vertex pairs per vertex is O(k · |V |3), which dominates that of the graph

family data structure, so the overall space complexity of greedy aggregation

is O(k · |V |3 + k · |V |2) = O(k · |V |3).

The second method, greedy pruning, consists on iteratively removing

vertices from a set W , which is initialized as the entire vertex set, until it

stops being a generator. Algorithm 4 describes greedy pruning in detail.

Greedy pruning sorts the vertices only once, so its effective running times

are lower than those of greedy aggregation. Note, however, that the asymp-

totic time complexity of greedy pruning is the same as that of greedy aggre-

gation, i.e. O(k · |V |4), as it is also dominated by the calls of checkSimGen,

which can also be as many as |V | − 2. Regarding space complexity, greedy

pruning only needs to store counts of the number of distinguished vertices,

which makes its space complexity dominated by that of the graph family

data structure, i.e. O(k · |V |2). As a final remark, note that the simulta-

neous generator computed by greedy pruning coincides with the one that

would be computed by greedy aggregation if the re-sorting step were not

performed. Whether following one constructive strategy or the other is more
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Algorithm 4 Greedy pruning

Require: A graph family G = {G1, G2, . . . , Gk} on a common vertex set V

1: . Initialization

2: for vi ∈ V do

3: Ci ← 0

4: for vj ∈ V − {vi} do

5: for vk ∈ V − {vi, vj} do

6: for Gl ∈ G do

7: if dist(dt, l, vk, vi, vj) then

8: Ci ← Ci + 1

9: end if

10: end for

11: end for

12: end for

13: end for

14: sort((v1, C1), (v2, C2), . . . , (vn, Cn)) . incrementally by Ci

15: . Greedy computation

16: j ← 1

17: W ← V

18: while checkSimGen(dt,W ) = true do

19: W ← W − {vij}
20: j ← j + 1

21: end while

22: return |W |+ 1

efficient depends on how probable it is for graph families to have a value of

the simultaneous resolvability parameter to compute which is closer to 1 or

to |V | − 1. Intuitively, we consider that the latter is more likely be the case,

hence the choice of pruning rather than aggregation without re-sorting.

The third proposed method is a randomized local search procedure,

which consists on running a number of local searches starting in random

initial solutions, and selecting the one that obtains the best final solution.

Each local search consists on an iterative process where, at every step, given

the current solution S, a number of similar solutions are generated by switch-

ing the positions of two vertices, one of which is among the first θS vertices

in S, and the candidate solution that better improves on S (if any) is se-
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Algorithm 5 Randomized local search for simultaneous resolvability param-

eters

Require: A graph family G = {G1, G2, . . . , Gk} on a common vertex set

V , runCount: the number of local searches to run, maxIters the maxi-

mum number of iterations to perform in a local search if no convergence

is reached, and candCount: the number of new candidate solutions to

generate in each iteration

1: bestResult← |V | − 1

2: for r ← 1 . . . runCount do

3: S ← randomPerm(V )

4: resThr ← resThreshold(dt, S)

5: if resThr < bestResult then

6: bestResult← resThr

7: end if

8: i← 1

9: notConverged← true

10: while i ≤ maxIters and notConverged do

11: notConverged← false

12: S ← newCandSolutions(S, bestResult, candCount)

13: for S ′ ∈ S do

14: resThr ← resThreshold(dt, S ′)

15: if resThr < bestResult then

16: bestResult← resThr

17: S ← S ′

18: notConverged← true

19: end if

20: end for

21: i← i+ 1

22: end while

23: end for

24: return bestResult

lected as the new solution. The choice of the pair of vertices to switch is due

to the fact that, clearly, switching the positions of two vertices beyond the

resolvability threshold does not generate a better solution. This method is

described in detail in Algorithm 5.
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Algorithm 6 Function resThreshold

1: function resThreshold(dt,S = (vi1 , vi2 , . . . , vi|V |))

2: j ← 1

3: W ← {vi1}
4: while checkSimGen(dt,W ) = false do

5: j ← j + 1

6: W ← W ∪ {vij}
7: end while

8: return |W |
9: end function

The worst case running time of this randomized local search method

occurs when all runCount local searches run up to maxIters times due

to non-convergence. Thus, the asymptotic time complexity of the method

is determined by the runCount · maxIters · candCount calls of function

resThreshold, each call of which may in turn call checkSimGen up to

|V | − 1 times, and is

O(runCount ·maxIters · candCount ·
|V−1|∑
i=1

(k · i · |V |2)) =

= O(runCount ·maxIters · candCount · k · |V |2 ·
|V−1|∑
i=1

(i)) =

= O(runCount ·maxIters · candCount · k · |V |4).

Clearly, the relation between effective running times of the randomized

local search method versus that of greedy aggregation and greedy pruning

depends on the relations between the values of the parameters runCount,

maxIters and candCount and those of the implicit constants affecting the

running times of both greedy methods. The randomized local search method

needs to store at every iteration one list of candidate solutions, which is

discarded from one iteration to the next. Thus, its space complexity is dom-

inated by that of the graph family data structure and is O(k · |V |2 +c · |V |) =

O(k · |V |2).

5.3.3 Experiments

In order to assess the accuracy of the proposed methods, we constructed an

evaluation benchmark composed by three collections of graph families, each
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Algorithm 7 Function newCandSolutions

1: function newCandSolutions(S = (vi1 , vi2 , . . . , vi|V |), resThr,

candCount)

2: S ← ∅
3: for i← 1 . . . candCount do

4: x← randomInt([1, resThr])

5: y ← randomInt([1, |V |])
6: if x < y then

7: S ′ ← (vi1 , . . . , vix−1 , viy , vix+1 , . . . , viy−1 , vix , viy+1 , . . . , vi|V |)

8: else

9: S ′ ← (vi1 , . . . , viy−1 , vix , viy+1 , . . . , vix−1 , viy , vix+1 , . . . , vi|V |)

10: end if

11: S ← S ∪ {S ′}
12: end for

13: return S
14: end function

one containing 50 families. The first collection is composed by arbitrary

graphs, whereas the second and third collections are composed by families

of corona product graphs and trees, respectively. Table 5.1 summarizes the

most relevant statistical information of these collections.

For building each family of the first collection, the number of graphs in

the family and the size of the common vertex set were randomly set. Then,

each graph was constructed by randomly deciding whether each pair of ver-

tices was to be joined by an edge or not. Connectedness was enforced by

adding as many extra edges as necessary. Once the families had been con-

structed, the exact values of their simultaneous metric, adjacency and strong

metric dimensions were computed using exhaustive breadth-first search. The

need for this exhaustive search imposed a practical constraint on the fami-

lies of the first collection, namely that of having small simultaneous metric,

adjacency and strong metric dimensions.

Families in the second collection were obtained by generating two fami-

lies G and H by the previously described process and computing the family

G � H. In this case, exhaustive breadth-first search was used for comput-

ing SdA(H), which allowed us to analytically determine Sd(G �H) applying

Theorem 3.55 and SdA(G �H) applying Theorems 3.59, 3.61, 3.65 and 3.67.
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Thus, although the second factors were constrained to have small simulta-

neous adjacency dimensions, the graphs of the family themselves were not

subject to such constraint. Beyond the fact that the aforementioned results

allowed us to analytically determine the exact values of the simultaneous

metric and adjacency dimensions of the families composing the collection,

we chose to make Collection 2 be composed by families of corona product

graphs because such families are particularly difficult for greedy aggrega-

tion and greedy pruning. In a corona product graph G � H, every vertex

ui ∈ V (G) distinguishes a large number of vertex pairs, including all pairs

v, w where v ∈ V (Hi) and w ∈ V (Hj), i 6= j. Thus, for corona product

graphs having large |V (G)|, the heuristic that drives both greedy methods

is likely to prioritize vertices of G, even though (simultaneous) metric bases

must necessarily be composed by vertices from the copies of H and (simul-

taneous) adjacency bases in most cases only need to contain several vertices

of G. This feature of Collection 2 makes it a good example of extreme cases

to be handled by the algorithms that we intend to evaluate.

Coll. 1 Coll. 2 Coll. 3

min mean max min mean max min mean max

|G| 5 17.26 25 2 11.36 25 2 13.62 24

|V | 12 19.18 25 84 185.38 260 43 139.94 236

Sd(G) 6 7.84 14 39 94.3 147 13 88.08 161

SdA(G) 6 8.68 14 51 110.9 167 – – –

Sds(G) 10 17.66 24 – – – 17 104.2 189

Table 5.1: Statistics of the benchmark collections used for the experiments.

As we mentioned previously, families in the third collection are composed

by trees. Moreover, such families were constructed in such a way that all trees

have a common set of exterior major vertices, all of which, at the same time,

have common sets of terminal vertices. In consequence, every set composed

by all terminal vertices, except one, of every exterior major vertex, is a metric

basis of every tree in the family, so it is also a simultaneous metric basis.

Moreover, every set composed by all leaves, except one, is a simultaneous

strong metric basis of the family. Consequently, the simultaneous (strong)

metric dimensions of all families of this collection were easily determined

analytically, so no constraint needed to be posed on their values.



Computability of simultaneous resolvability parameters 112

For building each family of the collection, we first set, randomly, the

number of trees in the family, the number of exterior major vertices, as

well as the terminal degree of every exterior major vertex, and the number

of additional vertices. The process for randomly constructing each tree is

depicted in Figure 5.3. Initially, a “seed” tree is constructed. This tree is

composed by a non-exterior major vertex, joined by edges to every vertex in

the defined set of exterior major vertices, which in turn are joined by edges to

their associated terminal vertices. The seed tree is then randomly modified

as many times as the number of additional vertices, minus one, to obtain

each final tree, which is added to the family. Each modification consists on

either adding a vertex in a randomly chosen path that joins an exterior major

vertex and some of its terminal vertices, or adding a vertex in a randomly

chosen path that joins two exterior major vertices.

Summing up, for Collection 1 we determined the exact values of the si-

multaneous metric, adjacency, and strong metric dimensions; for Collection 2

we determined the exact values of the simultaneous metric and adjacency

dimensions; and for Collection 3 we determined the exact values of the si-

multaneous metric and strong metric dimensions. Afterwards, we obtained

the estimated values of these parameters by each algorithm. In the case of

randomized local search, we set the values of maxIters and candCount to

1000 and 100, respectively, and computed partial estimates after 50, 100,

500 and 1000 runs. For a family G, defined on the common vertex set V ,

let Sd∗(G) denote an estimate of Sd(G). The quality of Sd∗(G) is assessed

through the relative error measure

ε(Sd∗(G)) =
Sd∗(G)− Sd(G)

|V |
.

Note that, since all evaluated algorithms compute as their final output

the size of a simultaneous metric generator, we have that Sd(G) ≤ Sd∗(G) ≤
|V |− 1 and so 0 ≤ ε(Sd∗(G)) ≤ |V |−2

|V | . Also note that we do not use the stan-

dard definition of relative error, which would be ε(Sd∗(G)) =
∣∣∣Sd(G)−Sd∗(G)

Sd(G)

∣∣∣, as

we consider that it fails to differentiate cases where |V | is relevant to assess

the seriousness of errors. For instance, consider two graph families G and G ′

defined on common vertex sets V and V ′, respectively, such that |V | � |V ′|
and Sd(G) = Sd(G ′), e.g. most pairs of families composed by paths and/or

cycles characterized in Theorem 2.8. In these cases, we consider that equal
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Figure 5.3: Initial steps of the process for randomly constructing a tree with

three exterior major vertices having terminal degrees two, three and four.

absolute errors should not be considered as equally serious, yet the stan-

dard relative errors would be the same. The measure ε(Sd(G)) handles this

situation more adequately.

For the simultaneous adjacency dimension and the simultaneous strong

metric dimension, the measures ε(Sd∗A(G)) and ε(Sd∗s(G)), respectively, are

computed in a manner analogous to ε(Sd∗(G)).

Figures 5.4, 5.5 and 5.6 show the results obtained for the simultaneous

metric dimension on the first, second and third collections, respectively. In

the figures, each plot represents the values of ε(Sd∗(G)) for every algorithm on
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every family. Moreover, dashed horizontal lines represent the mean values for

each algorithm on the entire collection. In the x axes, families are arranged

in incremental order of |V |. In a similar manner, Figures 5.7 and 5.8 show

the results obtained for the simultaneous adjacency dimension on the first

and second collections, respectively, whereas Figures 5.9 and 5.10 show the

results obtained for the simultaneous strong metric dimension on the first

and third collections, respectively.

The analysis of these results allowed us to extract a number of conclu-

sions. First, note that the only cases where randomized local search substan-

tially outperforms greedy aggregation are those where the cardinality of the

vertex set is considerably small, as can be verified on Collection 1 (clearly

for the simultaneous metric and adjacency dimensions and to a lesser ex-

tent for the simultaneous strong metric dimension) and a few of the families

of Collection 3 having smallest |V | . This result comes as no surprise, as

performing enough local searches on a small search space is likely to be (al-

most) equivalent to an exhaustive search. Moreover, from the results on

Collections 2 and 3, it is clear that as |V | increases, the results for random-

ized local search degrade. Besides, the effect of the number of runs on the

accuracy of randomized local search is more discrete than we expected.

Secondly, even though Collection 2 was conceived to show the greedy

methods at their worst, greedy aggregation actually suffered the lowest error

(almost at tie with randomized local search for the simultaneous adjacency

dimension). An interesting aspect of the results on Collection 2 are a few

families for which greedy aggregation obtained the exact values of the si-

multaneous metric and adjacency dimensions, in contrast with the generally

poorer results. Those cases correspond to families G � H where |V (G)| is

considerably small and |V (H)| is considerably large, so vertices from |V (G)|
are not unfairly prioritized. In general, on Collection 2 the results of all

methods tend to degrade as |V (G �H)| increases.

The results on Collection 3, whose families are defined on larger vertex

sets than Collection 1 and, unlike Collection 2, have no features obviously

contradicting the assumptions behind any of the proposed algorithms, allow

us to see that greedy aggregation is much more stable as |V | grows, while

randomized local search tends to degrade and greedy aggregation tends to

slightly improve (more noticeable for the simultaneous strong metric dimen-

sion than for the simultaneous metric dimension).
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In our opinion, the most important fact highlighted by these results is

that, despite its computational cost, the re-sorting stage of greedy aggrega-

tion is critical, as it allows it to obtain the overall best results, in contrast to

the overall worst results obtained by greedy pruning.

To conclude our discussion, we point out some rules-of-thumb, based

on the computational cost of the methods and the observed experimental

results, to aid in the selection of one of the proposed algorithms for real-

life computations. First, if enough memory is available, greedy aggregation

should be the method of choice, as it showed overall best results and higher

stability as the cardinality of the vertex set grows. Now, if memory is lim-

ited, an extra circumstance should be considered. Up to some value of |V |,
randomized local search would be the second option, provided that enough

computation time is available. However, extrapolating the observed fact that

randomized local search tends to degrade as |V | increases while greedy prun-

ing tends to improve (although at a slower pace) we conjecture that for very

large instances greedy pruning may be the most appropriate second choice.

For instance, we can see that for the simultaneous strong metric dimension,

the results of greedy pruning on families of Collection 3 having the largest

values of |V | were better than those of randomized local search. Even though

this situation did not occur for the simultaneous metric dimension, a trend

towards convergence can also be observed.
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Figure 5.4: Experimental results for the simultaneous metric dimension on

Collection 1.
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Figure 5.7: Experimental results for the simultaneous adjacency dimension

on Collection 1.



Computability of simultaneous resolvability parameters 120

G5 G10 G15 G20 G25 G30 G35 G40 G45 G50

1.0

0.0

0.2

0.4

0.6

0.8

Families

ε(
S
d
∗ A

(G
i)

)

Greedy aggregation

Local search (50 runs)

Local search (500 runs)

Greedy pruning

Local search (100 runs)

Local search (1000 runs)
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Figure 5.9: Experimental results for the simultaneous strong metric dimen-

sion on Collection 1.



Computability of simultaneous resolvability parameters 122

G5 G10 G15 G20 G25 G30 G35 G40 G45 G50

1.0

0.0

0.2

0.4

0.6

0.8

Families

ε(
S
d
∗ s(
G i

))

Greedy aggregation

Local search (50 runs)

Local search (500 runs)

Greedy pruning

Local search (100 runs)

Local search (1000 runs)
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Conclusions

In this thesis we have introduced the notion of simultaneous resolvability

for graph families defined on a common vertex set. The main results of the

thesis have dealt with simultaneous metric generators and bases, as well as

the simultaneous metric dimension of such families. Additionally, we have

covered two related forms of simultaneous resolvability. Firstly, we treated

the simultaneous adjacency dimension, which proved useful for characteriz-

ing the simultaneous metric dimension of families composed by lexicographic

and corona product graphs. Secondly, we studied the main properties of

the simultaneous strong metric dimension. In all cases, our focus was on

determining the general bounds for these parameters, their relations to the

standard resolvability parameters of the individual graphs and, when possi-

ble, giving exact values or sharp bounds for a number of specific families.

Computationally, these problems are far from solved for the general case,

as we were able to verify that the requirement of simultaneity adds on the

complexity of the calculations involving these resolvability parameters, which

had already been proven to be NP-hard for their standard counterparts. In

particular, we characterized families composed by graphs for which some

standard resolvability parameters can be efficiently computed, while com-

puting the associated simultaneous parameters is NP-hard. To alleviate this

problem, we proposed several methods for approximately estimating these pa-

rameters and conducted an experimental evaluation to study their behaviour

on randomly generated collections of graph families.

Contributions of the thesis

The results presented in this work have been published, or are in the

process of been published, in several venues. Several papers have been pub-
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lished, accepted or submitted to ISI-JCR journals, while some of the principal

results have been presented in international conferences.

Publications in ISI-JCR journals

• Y. Ramı́rez-Cruz, O. R. Oellermann, J. A. Rodŕıguez-Velázquez. The

Simultaneous Metric Dimension of Graph Families. Discrete Applied

Mathematics 198, 241–250, 2016. DOI: 10.1016/j.dam.2015.06.012.

• Y. Ramı́rez-Cruz, A. Estrada-Moreno, J. A. Rodŕıguez-Velázquez. The

Simultaneous Metric Dimension of Families Composed by Lexicographic

Product Graphs. Graphs and Combinatorics, in press, available online

Jan. 13, 2016. DOI: 10.1007/s00373-016-1675-1.

• A. Estrada-Moreno, C. Garćıa-Gómez, Y. Ramı́rez-Cruz, J. A. Rodŕı-

guez-Velázquez. The Simultaneous Strong Metric Dimension of Graph

Families. Bulletin of the Malaysian Mathematical Sciences Society, in

press, available online Nov. 5, 2015. DOI:10.1007/s40840-015-0268-0.

• Y. Ramı́rez-Cruz, A. Estrada-Moreno, J. A. Rodŕıguez-Velázquez. Si-

multaneous Resolvability in Families of Corona Product Graphs. Bul-

letin of the Malaysian Mathematical Sciences Society, to appear.

Publications in conference proceedings

• Y. Ramı́rez-Cruz, O. R. Oellermann, J. A. Rodŕıguez-Velázquez. Si-

multaneous Resolvability in Graph Families. Proceedings of “IX Jor-

nadas de Matemática Discreta y Algoŕıtmica”. Electronic Notes in

Discrete Mathematics 46, 241–248, 2014.

• A. Estrada-Moreno, C. Garćıa-Gómez, Y. Ramı́rez-Cruz, J. A. Rodŕı-

guez-Velázquez. On Simultaneous Strong Metric Generators of Graph

Families. Proceedings of “IX Encuentro Andaluz de Matemática Dis-

creta”. J. Cáceres and M. L. Puertas (Eds.), Avances en Matemática

Discreta en Andalućıa IV, 109–116, 2015.



Conclusions 125

Contributions to conferences

• Y. Ramı́rez-Cruz, O. R. Oellermann, J. A. Rodŕıguez-Velázquez. Si-

multaneous Resolvability in Graph Families. IX Jornadas de Matemática

Discreta y Algoŕıtmica, Tarragona, Spain (2014).

• O. R. Oellermann, Y. Ramı́rez-Cruz, J. A. Rodŕıguez-Velázquez. The

Simultaneous Metric Dimension of Graph Families. 8th Slovenian Con-

ference on Graph Theory, Kranjska Gora, Slovenia (2015).

• Y. Ramı́rez-Cruz, O. R. Oellermann, A. Estrada-Moreno, C. Garćıa-

Gómez, J. A. Rodŕıguez-Velázquez. The Simultaneous (Strong) Metric

Dimension of Graph Families. III Congreso de Jóvenes Investigadores

de la Real Sociedad Matemática Española, Murcia, Spain (2015).

• A. Estrada-Moreno, C. Garćıa-Gómez, Y. Ramı́rez-Cruz, J. A. Rodŕı-

guez-Velázquez. On Simultaneous Strong Metric Generators of Graph

Families. IX Encuentro Andaluz de Matemática Discreta, Almeŕıa,

Spain (2015).

Other contributions

• Y. Ramı́rez-Cruz. Notions of Simultaneous Resolvability in Graph

Families. A. Valls-Mateu and J. A. Rodŕıguez-Velázquez (Eds.), 1st

URV Doctoral Workshop in Computer Science and Mathematics, Lli-

bres URV, Tarragona, Spain, 2014, 45–48.

• Y. Ramı́rez-Cruz. Computability of the Simultaneous (Strong) Metric

Dimension of a Graph Family. M. Sánchez-Artigas and A. Valls-Mateu

(Eds.), 2nd URV Doctoral Workshop in Computer Science and Mathe-

matics, Llibres URV, Tarragona, Spain, 2015, 51–55.

Future work

• A vast number of variations of the metric dimension have been pre-

sented, as we discussed in Section 1.1. In principle, simultaneous coun-

terparts of all of these parameters can be defined on graph families,

which would lead to a wide range of studies.

• Remark 4.8 shows a result on the simultaneous strong metric dimension

of some specific families composed by corona product graphs. While



Conclusions 126

this result turned out to be straightforward, it illustrates the interest-

ingness of conducting a deeper study on the simultaneous strong metric

dimension of families composed by product graphs. Such study may

be based on the results presented in [56, 57, 71].

• A natural extension of the results presented in Section 5.3 is to ap-

ply popular metaheuristics to the approximation of simultaneous resol-

vability parameters, e.g. genetic algorithms, ant-colony optimization,

particle swarm optimization, etc.

• Following the line of computing approximate solutions, an alternative

approach may be that of defining relaxed notions of resolvability. While

the combinatorial study of such variations may be challenging, they

may pave the way for the use of a wide range of computational tech-

niques borrowed from other areas, such as data mining and pattern

recognition3, thus enlarging their field of practical applications. To il-

lustrate our point, here we define two intuitively interesting relaxations:

– Quasi-simultaneous generators : For a graph family G = {G1, G2,

. . . , Gk}, defined on a common vertex set V , and a real number

ς ∈ [0, 1], a set S ⊆ V is a ς-quasi-simultaneous metric / adjacency

/ strong metric generator for G if the numberRS(G) of graphsGi ∈
G for which S is a metric / adjacency / strong metric generator

satisfies RS(G)
k
≥ ς.

– Simultaneous quasi-generators : For a graph G = (V,E) and a

real number ς ∈ [0, 1], a set S ⊆ V is a metric / adjacency

/ strong metric ς-quasi-generator for G if the number RS(G)

of different vertex pairs that are distinguished by some element

of S satisfies 2·RS(G)
|V |·(|V |−1)

≥ ς.4 By analogy, for a graph family

G = {G1, G2, . . . , Gk}, defined on a common vertex set V , and

a real number ς ∈ [0, 1], a set S ⊆ V is a simultaneous met-

ric/adjacency/strong metric ς-quasi-generator for G if it is a met-

ric / adjacency / strong metric ς-quasi-generator for every Gi ∈ G.

Note that simultaneous generators are a particular case of both relaxed

variants for ς = 1.

3For instance, feature selection, frequent itemset mining, clustering, etc.
4Note that the total number of different vertex pairs u, v ∈ V is |V |·(|V |−1)2 .
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Symbol List

The symbols are arranged in the order of the first appearance in the work.

Page numbers refer to definitions.

G simple graph, 7

V (G) set of vertices of G, 7

E(G) set of edges of G, 7

n order of a graph, 7

u ∼ v vertex u is adjacent to v, 7

u � v vertex u is not adjacent to v, 7

G ∼= H graphs G and H are isomorphic, 7

NG(v) open neighbourhood of a vertex v in G, 7

NG[v] closed neighbourhood of a vertex v in G, 7

NG(S) open neighbourhood of a subset of V (G), 7

NG[S] closed neighbourhood of a subset of V (G), 7

γ(G) domination number of G, 7

δG(v) degree of a vertex v of G, 7

NS(v) open neighborhood of a vertex v in the set S, 7

NS [v] closed neighborhood of a vertex v in the set S, 7

δ(G) minimum degree of the graph G, 7

∆(G) maximum degree of the graph G, 7

g(G) girth of the graph G, 7

Kn complete graph of order n, 7

Cn cycle of order n, 7

Pn path of order n, 7

Nn empty graph of order n, 7

Ks,t complete bipartite graph of order s+ t, 7
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K1,n star of order n+ 1, 7

T tree, 7

Ω(T ) set of leaves in the tree T , 7

dG(u, v) distance between two vertices u and v in G, 8

D(G) diameter of the graph G, 8

Gc complement of the graph G, 8

〈X〉G subgraph of G induced by the set X, 8

σ(G) set of simplicial vertices of G, 8

ω(G) clique number of G, 8

$(G) twins-free clique number of G, 8

α(G) independence number of G, 8

G�H Cartesian product of two graphs G and H, 8

Qr hypercube of order 2r, 8

d metric, 9

(X, d) metric space, 9

dim(G) metric dimension of G, 10

dimA(G) adjacency dimension of G, 10

dG,t(u, v) distance between two vertices u and v in G, bounded by t, 10

dims(G) strong metric dimension of G, 11

β(G) vertex cover number of G, 12

MG(v) set of vertices of G which are maximally distant from v, 12

∂(G) boundary of the graph G, 12

GSR strong resolving graph of G, 13

G graph family on a common vertex set, 15

Sd(G) simultaneous metric dimension of G, 15

I(G) set of interior vertices of G, 21

terG(v) terminal degree of v in G, 21

TERG(v) set of terminal vertices of v in G, 21

M(G) set of exterior major vertices of G, 22

S(B) stabilizer of B, 30

GB(G) family associated to G having B as a simultaneous metric

generator, 32

G+H join graph of two graphs G and H, 35
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G ◦H lexicographic product of two graphs G and H, 36

G�H corona product of two graphs G and H, 36

SdA(G) simultaneous adjacency dimension of G, 37

K(V ) family of star graphs on the common vertex set V , composed

by |V | graphs having each a different center, 39

Gc family composed by the complements of the graphs in G, 39

〈BG〉w subgraph of G weakly induced by B, 40

G̃B(G) family associated to G having B as a simultaneous adjacency

generator, 41

G +H family composed by join graphs, 46

x∗ equivalence class of x by the twins equivalence relation, 51

G ◦ H family composed by lexicographic product graphs, 52

G �H family composed by corona product graphs, 68

S γ(G) simultaneous domination number of G, 75

Sds(G) simultaneous strong metric dimension of G, 83

S$(G) simultaneous twins-free clique number of G, 87

βs(G) strong resolving number of G, 90

θS resolvability threshold of a permutation of V (G), 102

Sd∗(G) estimate of Sd(G), 112

ε(Sd∗(G)) relative error of Sd∗(G) with respect to Sd(G), 112

Sd∗A(G) estimate of SdA(G), 112

ε(Sd∗A(G)) relative error of Sd∗A(G) with respect to SdA(G), 112

Sd∗s(G) estimate of Sds(G), 112

ε(Sd∗s(G)) relative error of Sd∗s(G) with respect to Sds(G), 112





Index

2

2-antipodal graph, 9, 20, 86

A

adjacency basis, 10

- dimension, 10

- generator, 10

B

boundary, 12

C

Cartesian product, 8, 94

closed neighbourhood, 7

corona product, 36, 68, 86, 110

cycle graph, 19, 25, 45, 47, 58, 72, 94

D

distance, 8, 10, 10

distinguish, 10, 11, 103

dominating set, 7, 54, 72

domination number, 7, 75

E

edge exchange, 24

exterior major vertex, 22

F

F

false twin vertices, 8

- twins, 8

- - equivalence class, 51

G

graph, 7

- family, 15, 32, 37, 41, 43, 46,

52, 68, 83

greedy aggregation, 105

- pruning, 107

H

hypercube, 8, 58, 93

I

interior vertex, 21

J

join, 35, 43, 62, 78

L

leaf, 7, 99, 111

lexicographic product, 35, 51

local search, 108

locating set, see metric generator
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Index 144

M

major vertex, 21

maximally distant, 12

metric, 9

- basis, 10

- dimension, 10

- generator, 10

- space, 9

mutually maximally distant, 12

N

neighbourhood, 7

O

open neighbourhood, 7

P

path graph, 19, 24, 39, 45, 47, 58, 72,

84

R

randomized local search, 108

resolving set, see metric generator

resolvability threshold, 102

S

simultaneous adjacency basis, 37

- - dimension, 37

- - generator, 37

- dominating set, 72

- domination number, 75

- metric basis, 15

- - dimension, 15

- - generator, 15

- strong metric basis, 83

- - - dimension, 83

- - - generator, 83

- twins-free clique, 87

- - - number, 87

stabilizer, 30, 40

strong metric basis, 11

- - dimension, 11

- - generator, 11

- resolving cover, 90

- - - number, 90

- - graph, 12

strongly distinguish, 11, 103

T

tadpole graph, 101

terminal degree, 21

- vertex, 21

tree, 21, 27, 95, 99, 111

true twin vertices, 8

- twins, 8

- - equivalence class, 51

twin vertices, 8

twins, 8

- equivalence relation, 51

twins-free clique, 8, 86

- - number, 8, 86

U

unicyclic graph, 25, 101

V

vertex cover, 12

- - number, 12
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