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Detection of timescales in evolving complex systems
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Most complex systems are intrinsically dynamic in nature. The evolution of a dynamic complex
system is typically represented as a sequence of snapshots, where each snapshot describes the con-
figuration of the system at a particular instant of time. Then, one may directly follow how the
snapshots evolve in time, or aggregate the snapshots within some time intervals to form representa-
tive "slices” of the evolution of the system configuration. This is often done with constant intervals,
whose duration is based on arguments on the nature of the system and of its dynamics. A more
refined approach would be to consider the rate of activity in the system to perform a separation of
timescales. However, an even better alternative would be to define dynamic intervals that match the
evolution of the system’s configuration. To this end, we propose a method that aims at detecting
evolutionary changes in the configuration of a complex system, and generates intervals accordingly.
We show that evolutionary timescales can be identified by looking for peaks in the similarity between
the sets of events on consecutive time intervals of data. Tests on simple toy models reveal that the
technique is able to detect evolutionary timescales of time-varying data both when the evolution is
smooth as well as when it changes sharply. This is further corroborated by analyses of several real
datasets. Our method is scalable to extremely large datasets and is computationally efficient. This
allows a quick, parameter-free detection of multiple timescales in the evolution of a complex system.
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We live in a dynamic world, where most things are
subject to steady change. Whether we consider the in-
teractions between people, proteins, or Internet devices,
there is a complex dynamics that may progress continu-
ously with varying rates [I], or be punctuated by sudden
bursts [2]. Therefore, for understanding such complex
systems, rich empirical data with detailed time-domain
information is required, together with proper statistical
tools to make use of it. Fortunately, thanks to Infor-
mation and Communication Technologies (ICT) and the
Web, time-stamped datasets are increasingly available.
However, the development of methods for extracting use-
ful information out of massive temporal data sets is still
an ongoing task (see e.g. [3]).

A typical approach for studying the dynamics of a
large-scale evolving complex system is to divide the tem-
poral evolution into meaningful intervals where informa-
tion of single snapshots is aggregated. The “slice” cor-
responding to the interval between times t, and ¢,41
then comprises the subset of elements and interactions
(or events) that are active between t, and t,41. For
instance, a slice may correspond to a group of people
exchanging phone calls during an interval of one hour,
or to a set of tweets containing specific hashtags posted
within some time span. Once the intervals are defined,
the analysis of the system turns into an investigation of
the slices.

The main problem is then how to properly “slice” the
data, so that the resulting slices provide the understand-
ing we are after. Among several alternatives, one can
decide to use a constant slice size corresponding to some
characteristic temporal scale of the dynamics (if there is
any), or a variable slice size that follows the rate of the

dynamic activity. However, if we focus our attention on
the evolutionary aspects of the system, it might be con-
venient to define the slices according to the variability
of the system through time. As an example, if we want
to use data on email exchanges within the company to
understand the evolution of the Enron scandal, it is bet-
ter to use slices that capture changes in the composition
of communication groups and thus track the evolution
of communication patterns, as compared to slices based
solely on the rate of activity in the email communica-
tion network. Consequently, the choice of slice size will
be determined both by the availability and granularity
of data, and by the timescales that reflect evolutionary
changes in the configuration of events.

It follows that there is a clear need for a princi-
pled way of automatically identifying suitable evolution-
ary timescales in data-driven investigations of evolving
complex systems. This is the motivation behind the
method proposed in the present paper. A proper time-
slicing method should produce meaningful evolutionary
timescales (intervals) describing changes in the event
landscape, both when these changes are smooth and
when they are abrupt. For abrupt changes, the prob-
lem becomes related to anomaly detection [4, [B] that
has applications in e.g. fraud or malware detection, and
in particular to change-point detection in temporal net-
works that comprise time-stamped contact events be-
tween nodes. For temporal networks, several ways for
detecting change points have been proposed, based on
techniques of statistical quality control [6] [7], generative
network models [8HI0], bootstrapping [I1], and snapshot
clustering [I2HT4]. Note that our approach is not specif-
ically designed for change-point detection, but it does



reveal change points as a side product of the timescale
detection.

In this work, we introduce an automatic time-slicing
method for detecting timescales in the evolution of com-
plex systems that consist of recurring events, such as re-
curring phone calls between friends, emails between col-
leagues and coworkers, mobility patterns of a set of in-
dividuals, or Twitter activity about a certain topic. The
method can be easily extended to systems in which inter-
actions are permanent after their appearance (e.g. cita-
tion networks). Our approach is sequential, and consists
of determining the size of each interval from the size of
the previous interval, trying to maximize the similarity
between the sets of events within consecutive intervals
(slices). In general, there is a unique maximum: too
short intervals contain few, random events whereas too
long intervals are no longer representative of the system’s
state at any point. Consider, e.g., a set of phone calls in a
social system aggregated for a month — compared to this
slice, one-minute slices would contain apparently random
calls, and a 10-year slice would contain system configura-
tions that have nothing to do with the initial slice. The
method is parameter-free and validated on toy models
and real datasets.

I. RESULTS
A. Method for detecting evolutionary timescales

Let us consider a series of time-stamped events
recorded during some period of time. Our goal is to cre-
ate time slices, i.e. sets of consecutive time intervals, that
capture the significant evolutionary timescales of the dy-
namics of the system. There are some minimal conditions
that data must fulfil for this to be a useful procedure:
events must be recurrent in time and the total period of
recording must be long enough to capture the evolution
of the system.

In this framework, the appropriate timescales detected
must have the following properties: i) Evolution is un-
derstood as changes in the event landscape, i.e., intervals
will only depend on the identities of events within them,
not on the rate of events in time. ii) Timescales should
become shorter when the system is evolving faster, and
longer when it is evolving more slowly. iii) The particu-
lar times when all events suddenly change (critical times)
should have an interval placed at exactly that point. This
is a limiting case of (ii).

To obtain timescales satisfying the above properties,
our method iteratively constructs the time intervals
[tn,tnt1) according to a similarity measure between each
pair of consecutive slices S,,_1 and S,,, where S,, is the
set of events between time ¢, and t,.1. By looking at
the similarity measure as a function of time, one can de-
tect multiple time scales. The algorithm is designed to
detect the longest possible timescales in a parameter-free
fashion. For discussion of timescale detection and why

this is a good choice for real data, see Sec. A.1.

For the sake of clarity, assume that our method is in
progress and we have a previous slice S,_1. We want
to find the next slice S,, that is defined by the interval
[tn,tn + Aty). The increment At, is the objective vari-
able, and is determined by locally optimizing the Jaccard
index between S,,_1 and S,,:
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This is shown in Fig. [[[a). The Jaccard Index [15] J(At,,)
estimates the similarity of the two sets as the fraction of
their common items (events) with respect to the total
number of different items in them. In our case, the op-
timization process is performed by increasing At,, until
a peak for J(At,) is found (see Materials and Methods).
The Jaccard similarity can then be used to understand
the underlying event dynamics.

This iterative process requires an initial slice, which is
computed as follows: Beginning with the initial time ¢,
we construct two intervals [to, to + At) and [tg + At, to +
2At). Repeating the process above, we find the maxi-
mum of J(At) and use that to set the first two intervals
at once. This initialization preserves the meaning of our
slices and does not include any additional hypothesis.
After computing both slices, the second one is discarded
so that all subsequent intervals have the same seman-
tic meaning, and we start the iterative process described
above. Note that the method is parameter free. The Jac-
card Index is used in a similar way in [13] 4] to assess
the similarity of consecutive snapshots that are eventu-
ally grouped by means of hierarchical clustering to build
relevant intervals, and in [16] to study the effects of time
window lengths in social network analysis.

The logic behind the method is easy to understand.
Let us first consider a smoothly evolving system. We
take the previous interval S,,_; as fixed, and try to find
the next interval S, (At). On one hand, if At is small, in-
creasing At will very likely add events already present in
Sp—1. Thus, the numerator (intersection term) of Eq. ()
increases more than the denominator (union term), and
J(At) becomes larger. On the other hand, if At is very
large, the increase in At will tend to add new events not
seen in the previous interval. Therefore the denominator
(union term) of Eq.(I)) grows faster than the numerator
(intersection term), and consequently J(At) decreases.
These principles combined imply the existence of an in-
termediate value of At representing a balance of these
factors, which is a solution satisfying our basic require-
ments of sliced data. If the smoothness in the evolution
of the temporal data is altered by an abrupt change (crit-
ical time), the previous reasoning still holds, and a slice
boundary will be placed directly at the snapshot where
the anomalous behavior begins.

Our method has several technical advantages. First
and foremost, it is fast and scalable. The method is
O(N) in the total data size N (e.g. number of distinct
events), if intervals are small. Efficient hash table set

J(At,) =



implementations also allow linear scaling in interval size,
and therefore extremely large data sizes can be processed.
The data processing is done online: only the events from
the previous interval must be saved to compute the next
interval. There are no input parameters or a prior: as-
sumptions that must be made before the method can be-
gin. The input is simple, consisting simply of (event_id,
time) tuples. The method finds an initial intrinsic scale
to the data, where each interval represents roughly the
same amount of change.

B. Validation on synthetic data

First we have generated synthetic temporal data exam-
ples to be analyzed with our method. The data displays
several common configurations of the temporal evolution
of a toy system. Fig. [I] shows some examples and the
timescales that our method detects. In Fig. [1| (a) we
sketch the details of the method. Fig. [1| (b) shows three
clearly distinguishable sets of events, which are correctly
sliced into their respective timescales. Within each in-
terval, events repeat very often, but between intervals
there are no repetitions. Fig. [1] (¢) shows that the rate
of the short-term repetitions does not matter from our
evolutionary point of view. The second interval has the
same characteristic events at all times, so no evolution-
ary changes are observed. Fig.[l| (d) shows a continually
evolving system. For the first half, the long-term rate
of evolutionary change is slow (events are repeated for a
longer time before dying out), and thus the intervals are
longer. Thereafter, the process occurs much faster, and
thus the intervals are shorter.

We have also validated our method on more complex
synthetic data designed to reveal non-trivial but con-
trolled evolutionary timescales. We choose a dynamics
where there is a certain fixed number of events which, at
every time, might be active or inactive (short-term repe-
tition). We impose that the volume of active events per
time unit must be, on average, constant. Additionally,
to account for the long-term evolution, we change the
identities of the events at a (periodically) varying rate.
Low rates of change, that is, changing the identities of
only a few events at any time, should result in large time
intervals for the slices, while faster rates lead to high vari-
ations in the identities of the events and should produce
shorter slices.

We check our method on this benchmark using a pe-
riodic evolutionary rate, with period 7 = 500 (see Ma-
terials and Methods). In Fig. [2| the method shows the
desired behavior, namely, it produces short intervals in
regions where change is fastest (¢t & 250, 750) and longer
intervals for low variability of events, i.e. slow evolution
(t ~ 0,500, 1000). Most notably, the Jaccard similarity is
seen to reflect these dynamics, too. When change is slow-
est, the inter-interval similarity is high, and vice versa.
These similarities could be used to perform some form
of agglomerative clustering to produce super-intervals
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FIG. 1: Schematic representation of the application of our
method to synthetic data. In each figure, the horizontal axis
represents time in arbitrary units, and the vertical axis the
event ID. A dot is present at each point where a given event
occurs at a given time. The gray and white segments show
the detected intervals. (a) The Jaccard score J is computed
for the sets of events between adjacent intervals. Intervals are
adjusted to maximize J. (b) Interval identification in a trivial
case. Each region contains a characteristic set of events, all
distinct from those of the other regions. (c) The total event
rate (see second interval) does not affect interval size, only
the characteristic set of events does. (d) Example of varying
interval sizes. In the first half of time, events change more
slowly than in the second half, and thus intervals are longer.
Because this is data with clear transitions, (a-c) have first
intervals merged.

representing longer-term dynamics. We also show the
Shannon entropy within each interval. We see that our
method produces intervals containing roughly the same
amount of information.

At times t = 1200 and ¢ = 1400, we add two “critical
points”, when the entire set of active events changes in-
stantly. This is the limiting case of evolutionary change.
As one would expect, slice boundaries are placed at ex-
actly these points. Furthermore, the drastic drop in sim-
ilarity indicates that unique change has happened here,
and that dynamics across this boundary are uncorrelated.

C. Analysis of real temporal data

In this section we apply our approach to real-world
data, where any true signal is obfuscated by noise and
we do not have any information about the underlying
dynamics.

We start with the Enron email dataset (see Materi-
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FIG. 2: Artificial data with changing event turnover rate with period 7 = 500. (Top) Representation of events. Events have
been ordered to show the envelope of the dynamics. Events change at the slowest rate at ¢ = 500, 1000, and there are critical
points at ¢ = 1200, 1400. For clarity, only 10% of events are shown. (Middle) Detected intervals (gray/white regions), and
inter-interval similarity (plotted green lines) for the slicing algorithm. We can see that the internal length reacts to the rate of
change of events, and that the critical points correspond to intervals boundaries and to large drops in similarity. The similarity
also reflects the rate of change of events at other times. (Bottom) Event rate (dark blue) and interval entropy (light yellow)
over time. We see that overall event rate is constant and cannot be used to detect dynamical properties. We also see that each
interval contains about the same amount of information, 7.3 to 7.7 bits.

als and Methods). This dataset was made public during
the legal investigation concerning the Enron Corporation,
which ended in the bankruptcy and collapse of this corpo-
ration [I7]. Here, each event is an email communication
sent or received by any of the senior managers who were
subsequently investigated. During the course of the in-
vestigation, there were major structural changes in the
company (see Appendix B). Fig. [3| shows the results of
applying the method to the Enron data. Generally, the
intervals are of the order of several weeks, which appears
to be a reasonable time frame for changes in email com-
munication patterns. As expected, we see that the de-
tected intervals do not simply follow changes in the rate
of events, but rather in event composition. When com-
paring interval boundaries to some of major events of
the scandal (exogenous information, shown as red verti-
cal lines), we see that the interval boundaries often align
with the events; note that there is no a priori reason
for external events always to result in abrupt changes in
communication patterns. Additionally, we present the
results of the application of the change point detection
method of Peel and Clauset (cpdetect)[8]. Unlike cpde-
tect, our method reveals the underlying basic evolution-
ary timescale (weeks), rather than only major change
points. On the other hand, cpdetect requires a basic scale
as an input before its application (in this case, one week).
Performing a randomization hypothesis test, we find ev-
idence (at significance p = 0.0194) that cpdetect change
points correspond to lower-than-random similarity values
within our method (See Appendix B).

Next, we focus on the MIT Reality Mining personal
mobility dataset. In this experiment, about 100 subjects,
most of them affiliated to MIT Media Lab, have cell-

phones which periodically scan for nearby devices using
the Bluetooth personal area network [18]. Here, events
correspond to pairs of devices being in Bluetooth range
(i.e. physically close). Note that we do not limit the
analysis to interactions only between the 100 subjects,
but process all ~ 5 x 10* unique Bluetooth pairs seen
(including detected devices not part of the experiment),
a total of 1.8 x 10° distinct data points. The major events
(see Appendix B3) correspond to particular days in the
MIT academic calendar or internal Media Lab events. In
Fig. [ we plot the time slices generated by our method.
Again, we see that the basic evolutionary timescale is
about one week. We see a correlation with some of the
real events, such as a long period during winter holidays
(late December) and Spring Break (late March). At the
beginning (August) and end (June) there is a minimal
data volume, assimilable to noise, which precludes the
method to find reliable timescales.

In our last example, we look at the social media re-
sponse to the semifinals of the UEFA Champions League
2014-2015, a major European soccer tournament. We
collected data from Twitter looking for tweets contain-
ing the hashtag #UCL, the most widely used hashtag to
refer to the competition. As all captured tweets contain
the hashtag #UCL, we define events by considering the
other hashtags that a tweet may contain.

If a tweet contains more than one other hashtag, each
of them is considered as a separate event. For example,
if at time t there is a tweet containing #UCL, #Goal and
#Football, we consider that we have two events at time
t, one for #Goal and the other for #Football. In Fig.[5]
we see a one-week span around the two first semifinal
games. Because Twitter discourse is rather unstructured,
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FIG. 3: Comparison of our method and the change point detection method of Ref. [§] on the Enron email data. Thick red
lines indicate events from the company’s timeline. (Top) Results of our method on the network, in the same format as Fig.
(Middle) Results of the cpdetect method on the network. Dark vertical lines mark change points. (Bottom) Event density of the
network. We see that both methods align with the company’s events to some degree. Our method provides more fine-grained
intervals, not just the major points, and is capable of more accurately aligning with the real events since it does not have
predefined window sizes as an input.
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as important conferences or start/ends of semesters (see Appendix B3). We see that the slicing can find such major events,

including the beginning of the 2005 semester and the beginning of classes at 2005-Feb.

intervals are very small, comprising at most a few hours.
During the games themselves (May 5, 6 evenings), we see
extremely short intervals representing the fast evolution
of topics. In Fig. 5] we zoom in the first semifinal game.
As the game begins, intervals become much shorter as
we capture events that did not manifest in the previous
games to the match. We see other useful signatures, like
the rapid dynamics at the beginning of the second half
(21:45) and at the time of the game-winning goal (21:58).

II. DISCUSSION

Complex systems are inherently dynamic on varying
timescales. Given the amount of available data on such
systems, especially on human behavior and dynamics,
there is a need for fast and scalable methods for gaining

insight on their evolution. Here, we have presented a
method for automatically slicing the time evolution of
a complex system to intervals (evolutionary timescales)
describing changes in the event landscape, so that the
evolution of the system may be studied with help of the
resulting sequence of slices.

Our method provides the starting point of a pipeline
analysis. Many time-varying data analysis techniques re-
quire segmented data as an input, and if the intervals are
decided according to some fixed divisions, the boundaries
will not be in the optimal places. Our method places
snapshot boundaries in principled locations, which will
tend to be the places with the highest rate of change - or
actual sharp boundaries, if they exist. After this process,
the sliced data can be input to other methods which fur-
ther aggregate them into even higher orders of structure
while respecting the underlying dynamics.
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FIG. 5: a) Slicing of Twitter hashtag sequences generated during UEFA Champions League 2014-2015 football tournament.
The format of the figure is as in Fig.[2] In this data all tweets corresponding to the #UCL hashtag are captured, so the rest
of the co-occurring hashtags are taken as our events. The two increments in the event rate represent the two matches, which
are captured through very fine intervals in the data slicing. b) First semifinal of UEFA Champions League 2014-2015, between
Juventus and Real Madrid. The format of the figure is as in Fig.[2] The game runs from 20:45 until 22:30, with the halftime
from 21:30 until 21:45. We see sped-up activity around the goals in the slicing (top) that is not simply explained by the event
rate (bottom). When goals are scored (20:53, 21:12 and 21:55) there is a much faster topics turnover.

Our code for this method is available at [I9] and re-
leased under the GNU General Public License.

III. MATERIALS AND METHODS

Identification of optimum interval The value of At is
searched from the raw data, and various strategies can
be used. A simple linear search suffices, but is inefficient
at long timescales. An event-driven approach checks
only At intervals corresponding to actual events, but this
too is inefficient at long timescales. An ideal approach,
and the one adopted in this paper, is to use exponen-
tially spaced intervals (See Appendix). The shortest At
searched is taken from the next event in the data.

A. Temporal benchmark

The proposed benchmark has a periodic activity
change in time, while having a uniform event rate. A

universe of N = 1000 event IDs is created. Upon ini-
tialization, each event is independently placed into an
activated status with probability q. At each time step,
each active ID creates an event with probability p. Also,
at each time step (and before event creation), a fraction
¢(t) of event IDs are picked. Each of these IDs has its
active status updated, being made active with probabil-
ity q regardless of its previous state. This preserves the
mean total number of activated IDs as g/N at all times.
At each time step, on average pgN events are expressed.
Thus, by looking at simply the rate of events, the model
is completely uniform and there is a constant average
event rate in time.

The changeover rate c(t) is periodic, however, obeying

c(t)=co+c B - %cos (2#%)] ) (2)

with cg being the minimum changeover rate, ¢ the scale
of changeover, and 7 the period. Thus, at some points,
the IDs of the expressed events is changing more rapidly
than at other times, and this is the cause of longer and
shorter intervals.



When there is a critical event at time t..;, we excep-
tionally set ¢(tit) = 1 at that time. This produces a
state of the system uncorrelated from the previous time.
According to the model, this changeover occurs before
the time step, which matches with placing a new interval
at teit in our half-open segment convention. However,
the total universe of event IDs stays the same, and there
is no statically observable change in behavior.

In this work, we use N = 1000, 7 = 500, p = 0.2,
qg=0.2,cog =0, and ¢ =0.01.

B. Shannon Entropy

The Shannon entropy [20] is calculated by H =
—> piInp; over a series of events i with corresponding
probability p;.

C. Enron temporal data

The Enron Email Dataset consists of emails of approx-
imately 150 senior managers of the Enron Corporation,
which collapsed in 2001 after market manipulation was
uncovered, leading to an accounting scandal [I7]. We
have all bidirectional email communications to and from
each key person with a resolution of one day. An event
is the unordered pair (source, destination) of each email.
Our particular input data is already aggregated by day,
therefore each event is only repeated once each day, with
a weight of the number of mails that day. Appendix
Tables I and II lists the basic properties and Appendix
Table IIT lists the major events of this dataset.

D. Reality mining

The Reality Mining dataset covers a group of per-
sons affiliated with the MIT Media Lab who were given

phones which tracked other devices in close proximity via
the Bluetooth personal area network protocol. [18]. An
event is defined as every ordered pair (personal device,
other_device). We only have data from the personal de-
vices of the 91 subjects who completed the experiment,
not full ego networks. The data contains 1881152 unique
readings from 2004 August 8 until 2005 July 14, with
most centered in the middle of the academic year. Ap-
pendix Table IV lists basic properties and Appendix Ta-
ble V lists the major events of this dataset [21].

E. UCL hashtags

In this dataset, we scrape Twitter for all hashtags con-
taining #UCL, referring to the Europe Champions League
tournament. We scrape between the dates of 30 April
2015 and 08 May 2015, covering the two first semifi-
nal games of the tournament. An event is any hashtag
co-occurring with #UCL, except #UCL itself. If there are
multiple co-occurring hashtags, each counts as one event.
All hashtags are interpreted as UTF-8 Unicode and case-
normalized (converted to lowercase) before turning into
events. Appendix Table VI lists basic properties and Ap-
pendix Table VII lists the major events.
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Appendix A: Algorithm description

The algorithm for detecting the evolving timescales
of time-varying data is implemented in different layers.
Each layer is reasonably independent of others, allowing
them to be improved or replaced independently of each
other. This allows the method to be easily adapted and
improved for new types of data. This document describes
each of the possible variations of each layer of implemen-
tation. Please note that this document is designed to
explain the algorithm components from a scientific view-
point. It is not a usage manual of the code, which is
found on the project site.

The algorithm is designed in the following layers:

1. Data input (See user manual)

2. Data representation (Sec.

3. Similarity measures (Sec.

4. The core segmentation process (Sec.

5. Choosing At to test at one iteration (Sec.
6. Maximum finding (Sec. [A 6]

Code for the method is available at https://github.
com/rkdarst/dynsnap.

1. Data and timescales

Before the method is applied to data, it is important
to understand the necessarily qualities of input data and
how timescales are detected. The method is by default
suited to most real data in a parameter-free fashion, but

there can be non-intuitive behavior for data with long-
term self similarity, such as completely periodic artificial
data.

The purpose of this method is to segment events into
time-intervals so that the spacing of intervals corresponds
to the similarity of events within those intervals. This is
captured by looking at the similarity of events within
intervals. An interval is too short if there is not enough
time to get a characteristic set of events within it. An
interval is too long if, by some definition, the start and
end of the interval are different in terms of characteristic
events. All else being equal, we would rather take longer
intervals. Data must have two properties in order to be
sliced. First, events must repeat on a short time scale.
That is, events repeat in time, so that the same event can
be captured in two adjacent intervals, or else intervals can
not be similar. This is our smallest possible slicing time.
If events do not recur, then our method can not be used.
On the other hand, there must be a long time scale at
which events do not recur. If events did always recur
at every time scale, then the longest time scale of self-
similarity covers the entire time. In this case, any equal-
size slicing of the interval would be acceptable. There are
two ways this long-term change can be understood. One
is if some events become active, turn on and off for some
time, and then eventually deactivate. That is, you can
identify some time range when an event occurs, and then
forever before and after that time, that event is not seen.
Alternatively, there can be a finite universe of events, and
the events are extremely bursty, so that there are very
long inactive periods between phases of activity.

Our method can detect different timescales. If there
are different timescales, then J(At) (Sec. for each
slice will reveal them. There is then the question of se-
lecting which of these timescales the algorithm should
return for any given run of the code. The algorithm de-
scribed here and the code released along with this article
adopts the strategy that, by default, the longest possible
timescale should be detected. There are options to find
shorter timescales, and a detailed discussion exists within
the code manual at doc/Manual.rst, and in Sec.[A6|and

Sec.[A6d

To use this method on data which does not meet
the criteria above, in particular the “long term change”,
timescale options will be needed. In particular, consider
the case of periodically repeating data, especially arti-
ficial data that has no random noise. There is a short
term similarity timescale, smaller than the period of rep-
etition. This is the most useful timescale to detect. De-
tecting this timescale would allow one to detect the com-
ponents within the repeating pattern. However, there is
also a similarity at a long term timescale. Detecting this
timescale would override and hide all internal similarity.
Since this similarity extends to all time and our method
by default tries to find the longest possible timescale, we
would find the (less interesting) result that all time is
similar. Another way to see this is that there is as much,
if not more, similarity between the first 1/3rd and last
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1/3rd of data as there is within each period. (Note that
this can be used as a test for data where time scale ad-
justment is needed). Thus, our method correctly detects
the longest timescale as covering all time. However, note
that any small amount of non-repeating random noise
will destroy this long-term similarity, and the method
then detects some shorter time scale. This is why we say
that our method works well and without parameters on
real data - random noise destroys long-term similarity,
so detecting the longest time scale returns the expected
result.

2. Preliminaries

All time ranges are considered half-open intervals
[t1,t2). Within an interval, events are aggregated to pro-
duce “sets of events” which characterize the interval. The
core goal of the slicing algorithm is to produce adjacent
intervals that have different sets of events, but that are
not too dissimilar.

a. Data and interval representation

At the lowest level, all data is a multiset of (time,
id, weight) tuples for each event. The variable time
refers to the time at which an event has happened, id
stands for the unique ID of the event, and weight stands
for the number of occurrences of that particular event at
that particular time. This conforms a multiset because
duplicate events at the same time and ID are allowed. If
data is unweighted, all weights can be considered to be
(and stored as) 1.

When using data in an unweighted fashion, then the
set of events is a regular (non-weighted, non-multiset)
set containing the IDs of every event present within the
interval.

When using data in a weighted fashion, a set of events
is a weighted set containing event IDs for every event
present within the interval, where each event has an as-
sociated (non-negative) weight. If the original data has
only unit weights (or was originally unweighted), then
the event weights reduce to the counts of events within
the intervals. The weights are the sum of weights of all
events of that ID within that interval.

Note that a weighted set can be converted to un-
weighted by dropping all weights. Conversely, if un-
weighted data is made weighted, the weights count the
number of events present.

3. Similarity measures

The various similarity measures are defined as a func-
tion between two (possibly weighted) sets of events as
defined above, with a resulting value in the range [0, 1].

A 1 similarity defines a perfect match while 0 indicates
no similarity.

In the following examples, consider two intervals A and
B. Here we are loose with terminology and use the terms
A and B interchangeably to refer to the interval itself as
well as to the set of events within the intervals. In the
remainder of this document, we use J to refer to a generic
similarity measure, even if the symbol itself refers to the
Jaccard score.

a. Unweighted Jaccard

This measure calculates the similarity between un-
weighted sets of events. It makes use of the standard
Jaccard score,

|AN B
J(A,B)=———. Al
(4.B)= 505 (A1)
In this formulation, the Jaccard score is 1 if two inter-
vals have the same elements regardless of the number of
occurrences of those elements within the intervals.

b. Weighted Jaccard

The following is the extension of the Jaccard score to
the intersection and union of weighted sets. Weighted
sets are defined by real-valued indicator functions w; rep-
resenting the weight of each element within the set. El-
ement 7 has a weight of w;. Any element of weight zero
is considered to not be contained in the set and can be
removed. Conversely, any element not present in the set
has a weight of zero. A weighted union is defined to have
elements of

wy,; = max(wa;, Ws,;) (A2)
over all elements in either A or B. Here, wy,; is the
indicator function for the union, and respectively wa ;
and wp,; for the sets A and B. A weighted intersection
is defined to have elements of

wr,; = min(wa ;, wp;) (A3)
with components analogous to Eq. . With these def-
initions for the intersection and union, the weighted Jac-
card score is computed as in Eq. (AT).

It is worth noting that the weighted Jaccard score in-
troduces a bias towards equal-size sets with equal element
counts. Thus, there is some “inertia” in interval sizes and
can not adapt to changing timescale quickly.

c. Cosine similarity

The weighted sets can be considered sparse vectors,
allowing us to use the cosine similarity. Defined in terms



of sets, the cosine similarity is
A-B

B Y (wawpy)
CAB) = A5 = Swan) S(ws)

The cosine similarity of 1 indicates perfect match be-
tween events and relative event counts, but does not re-
quire the same number of total events. Thus, the cosine
similarity takes into account event counts in a more flex-
ible way than the weighted Jaccard score. The cosine
similarity can be 1 if the sets are of unequal sizes, as
long as the relative distribution of event weights is the
same.

(A4)

d. Unweighted cosine similarity

The unweighted cosine similarity is defined as

o(4,3) = 408l

V1Al B

This is the analog of Eq. (A4) when applied to un-
weighted sets. It has many of the same advantages and
disadvantages as the unweighted Jaccard score.

(A5)

4. The slicing process

The slicing of the data is the core of the algorithm.
It provides an efficient, one pass, linear time method of
segmenting the groups of events in intervals where each
interval ¢ comprises the time range within the half-open
interval [t;,t;+1). The interval size is At} = t;y1 — t;.
Our general procedure is:

1. Begin with some initial time ty. This is either the
time of the very first event, or some specified time
if one wishes to segment only a portion of the time
period.

2. Find the optimal At{ for the first interval. Various
values of At are tried (see Sec. [A5), and the op-
timum is the value which maximizes the similarity
J(At) (see Sec. |A6). The interval is then set to
[to, to + AtS).

3. Repeat the previous steps until all data is treated,
or until we reach a specified stop time. We go
through time by setting the start of the next in-
terval at the end of the previous, ¢t; = t;_1 + At]_;.

a. Initial step: calculating the size of the first interval

We begin with an initial time ¢y, which is the lower
bound of the first interval. If this is not provided by the
user, it is the time of the first event. A test sequence
of Ats is generated via one of the methods described in
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Sec[A] For each At generated, we compute the intervals
A(AL) = [to, to + At) and A'(At) = [tg + At, to + 2AL).
These will be the next two intervals of width At after
to. We then compute our similarity score J (Sec.
between A and A’ as a function of At:

J(At) = J(A(At), A(At))

= J([to,to + A), [t + At, to + 2AL)) . (A6)

Eq. is maximized as a function of At to produce
At*, our optimal interval size (see Sec. for a detailed
explanation of this procedure). Once At* is found, the
first interval A is set to [to,to + At*). This interval is
now fixed, the starting time is updated to t; = to + Aty
and we proceed to the propagation step.

a. Merging of the first two intervals This method
provides an option which consists in merging the initial
intervals. In this process, in the initial step, the first two
intervals detected (A and A’) are merged into one double-
sized interval. Continuing from Sec. after At* is
calculated, the first interval A is set to [tg, to+2At*), and
the new starting time is set to tg = to+2At. If this option
is chosen, this process is done at the beginning of the data
slicing as well as after any critical events (which cause a
restart in the slicing process as explained in Sec. .
This avoids discarding the second interval [to + At*, ¢y +
2At*, but causes the combined first interval to have a
different size distribution from subsequent calculations.

In cases where the data has only sharp transitions,
this merge process is advantageous, since the first two
intervals will probably be more similar than what comes
after it. However, in smoothly varying data, merging
should not be done because it changes the meaning of the
first interval relative to others. This is noticeable when
the first interval is twice as long as others. In the end, this
decision must be made with external information, and it
should be used only if needed. Note that this decision is
only relevant at the beginning of time, when the method
is first learning relevant timescales.

This is done in main text Fig. 1(a~c), where the data
has sharp, clear transitions. Without this process, exist-
ing boundaries stay the same, but each interval is divided
into two. Thus, there are pairs of J = 1 intervals (self
similar), followed by pairs of J = 0 intervals (critical

events, Sec. [A6¢)).

b. Propagation step

Given our previous interval A and starting time ¢; at
the end of A, we proceed to construct the next interval
in a similar fashion to the initial step. We generate our
series of Ats and construct a series of intervals B(At) =
[ti, t; + At) for each At. Analogously to the initial step,
we compute the similarity score as a function of At,

J(At) = J (A, B(At))

= J(A[ti,t; + Ab). (A7)



The difference to the initial step is that the first interval
is fixed, and only the second is changing. We choose the
At* which maximizes J(At). The next interval is then
fixed as B = [t;, t; + At*).

We repeat the propagation step indefinitely, until the
intervals reach the end of the data and all events are in-
cluded. For each iteration, we take the A as the pre-
vious interval, and begin at the next start time t¢; =
i+ At

5. At generation

There are various methods to choose the Ats to test
in the optimization process of the previous section. We
must explicitly generate some values, because this is a
numerical optimization. It is important to do this clev-
erly, or else the method can become very inefficient. We
would rather not test every possible At value, or test val-
ues too far in the future. We would prefer to check small
Ats that are close together, but they should be spaced
further apart at long At. We would rather check small
At values first, since smaller intervals have fewer events
to test, and thus are faster to compute.

Also, there is a major opportunity for optimization.
As long as At increases, interval sets can be generated by
simply adding (via set union) new events (between At,,_;
and At,) to the previous interval set. This is a very
efficient operation, and makes each individual iteration
O(Atmax), assuming that A¢ only increases.

Since we do not have an a-priori knowledge of the
minimum or maximum reasonable interval size, these are
structured as generators of At values, returning an infi-
nite sequence. At a certain point, the algorithm detects
that we have searched enough, and that it is likely that
we already obtained the peak in similarity we were look-
ing for, which causes the generation of At to stop (as

described in Sec.|A 5 él).

The methods described below are currently defined in
the code. Better methods could be implemented in the
future, including an actual bisection to find the optimum.
Only the logarithmic method is fully developed for actual
use.

a. Linear scan mode

In this mode, the values m + 1d, m 4+ 2d, m + 3d, ... are
iterated. The parameter d is the step size (1 by default),
and m is the minimum step size (default to the same as
d). This method does not automatically adapt to the
data scale, thus reasonable values of step size and mini-
mum step size must be provided. Further, this method
is inefficient for data with a very long timescale, or data
that evolves in very different timescales.
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b. Logarithmic scan mode

In this mode, we begin with a base scale of

m = 10L10810(te—ti)] (A8)
where t,—t; is the time to the next event after the interval
start time ¢;. Thus, m is the greatest power of 10 less
than the time to the next event. This allows the scan
mode to adapt to the actual data sizes. Then, we return
the sequence of values:

1m,2m, . ..,99m, 100m, 110m, 120m, . . ., 990m, 1000m, 1100m, .

(A9)
which produces a logarithmic time scale with reasonable
precision at all points.

c. Event-based scan mode

In this mode, for every distinct event time t. > t;, we
return the corresponding At = t. — t;. Recall that ¢; is
the start of the interval. In this way, every time step
with presence of events is tested. This mode offers the
greater precision in aligning intervals with events, but can
be inefficient for very large datasets at very long times,
where each individual event is unlikely to have an effect
on the Jaccard score.

d. An ideal mode

An ideal method would combine parts of the above
methods. It would begin with a logarithmic scanning,
but ideally with some fixed multiplier such as 1.01. The
next time is found by Atpexs = [1.1A¢]. Here, the ceiling
operator [-] means the time of the next event equal to or
after the given time. This allows a logarithmic increase
in time, while always aligning with actual events and
skipping non-present events. After a maximum is found,
we would backfill with a bisection algorithm to find the
exact event which produces a global optimum for the
similarity peak.

The downside to this method is that it requires many
searches through our data to find the event-ceiling. This
is implemented as a fast database search, but still re-
quires extra operations. Also, the bisection stage would
ideally need to be able to increment sets both forward
and backwards in time. Currently, the process of set
construction is optimized to incrementally build up the
sets while moving forward in At¢. Going backwards is
possible with weighted sets (though this procedure needs
to be done with caution, watching out for floating point
errors), but with unweighted sets this operation is not
possible. This biases us to do a more thorough scan go-
ing only forward in time. The current logarithmic imple-
mentation is seen as a good trade-off between simplicity,
accuracy, generality, and computational performance.



e. Criteria for stopping the At generation

The above methods do not specify when to stop search-
ing new At values (except when using greedy maximum
finding, as we will see in Sec. . The intuition is that
there will always be some maximum, independently of
the number of values of At that we choose to scan. In
order to have a good chance of finding the global opti-
mum, we need to carefully adjust how many time steps
we will search after the latest found peak. If we decide
to search in a small time window, we have great chances
to get trapped in a local maxima. Instead, if we opt
for scanning a very large time window, we will certainly
sacrifice the computational efficiency. As usual, a bal-
ance between these two opposite cases is desired. We
achieve this by continuing to scan until we have tested
all At < 25At* and At less than 25 times the previous
round’s At*, if there is a previous interval. As mentioned,
the multiplier can be adjusted lower for better perfor-
mance or higher for less risk of missing future peaks, but
this is the subject of further research.

6. Maximum finding

The At values are given by one of the methods from
Sec. and we wish to find the optimum value of At*
such that it maximizes J(At). The first consideration is
that there will likely be many local maxima. Some will
be caused by general fluctuations in the data. However,
when scanning on a larger scale, we may see different lo-
cal maxima, which can be interesting in their own right,
because they may indicate different time scales of the sys-
tem. These can be seen by plotting J(At) as a function
of At, primarily for the first interval. Sec.[A6d]discusses
some methods of adjusting the timescale detection to find
other maxima.

Then the question is under what conditions do we ex-
pect non-trivial maxima to exist. When there is a long-
term evolution of the system (events active at —oo are
different from those at +00), then we will obtain a de-
crease in similarity as At becomes longer. In this case,
there will not be a maximum. However, if there is not a
long-term evolution (i.e. for each event ID, that event has
the same probability of occurring at any point in time),
then the similarity J(At) may continually increase. In
this case, the basic assumptions of our method are vi-
olated, but the answer is correct anyway: as all times
are statistically self-similar, we expect one giant interval
covering all time because there are no sub-divisions of
distinct character.

In brief, the process of maximum finding works as fol-
lows. For each At, we calculate the similarity J(At).
We search for the maximum value of J(At) in an on-line
fashion. The At iteration (see Sec. produces a con-
tinuous stream of At values. After each At is produced,
J(At) is calculated (as in Sec. [A3). Then, the list of
all At and J(At) are examined by the methods that we
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will present next in this section, which return At*, the
optimum interval size. This At* is fed back to the stop
criteria in Sec.[A5 ¢ and used to decide when we should
cease exploring further At. Once the stop criteria is met,
the iteration stops and the final At* is known.

a. Longest

This method is our standard approach. We search for
the maximum similarity value of J(At) from all possible
At values. If there are multiple values of At with the
same maximum, we pick the greatest one as At*.

b. Shortest

This is similar to “Longest”, but choosing the shortest
At.

c. Greedy

In this method, as soon as J(At) decreases for the first
time, we stop testing other values. This method is much
more efficient in terms of computation time. While there
is usually one clear peak, there are often local fluctua-
tions which cause this method to give a local maximum
far before the global maximum. If the number of events is
large enough to reduce the effects of fluctuations, or if the
highest computational performance is needed for stream-
ing data, this method could be useful. If this method is
used, the stop criteria of Sec. is unneeded.

d. Detecting other timescales

One of the basic assumptions of this method is that the
similarity score increases, and then decreases. We would
hope that as the similarity starts going down, we can no-
tice a peak. The peak finders, as described above, do not
find multiple local maxima. This is because choosing a
peak requires some heuristic for how significant of a peak
should be detected. The two extremes are represented by
the “longest” /“shortest” peak finders (scan forward in
time as much as possible, find peak as global maximum
in scanned area) and “greedy” (stop at the first decrease,
as soon as any maximum is found; in other words the first
local maximum). This corresponds to finding the longest
similar time scales and shortest similar time scales.

Peak factor. The “peak factor” is a way to bal-
ance these. It is implemented only for the “longest” and
“shortest” maximum finding methods. Using this option,
once J(Atmax) drops to less than peak factor x J(At*),
then we stop searching any longer times and return At*.
This provides a way to break out of the search after the
first peak.



Pastpeak factor. The factor of 25 present in
Sec. can be adjusted. This limits the forward search
time and provides another way to limit the timescale
searched.

Pastpeak max, pastpeak min, search min. One
can directly set the time scales searched. One can set a
maximum or minimum amount of time to search past At*
(as in Sec. . One can also set a minimum amount
of time to search past At = 0. This may be useful to
avoid the effects of extreme fluctuations in J at small
At. Unlike the other options, these require a pre-existing
knowledge of likely time scales within the data. Because
of this, these options are not used in this work or enabled
by default. The existing options work to achieve the
goal of detecting the longest possible timescales without
needing any parameters.

e. Critical event detection

At some times (critical times), the character of the
active events in the entire data changes instantly. When
this happens, comparison with the previous interval will
give bad results, since similarity is by definition going
to always be low. Similarity scores could also remain
zero, if there is no overlap in the set of events before
and after the critical time. Thus, the signature of critical
events is low but continually increasing similarities with
no peak found. At this point, the algorithm will tend
to produce longer and longer intervals, pointlessly trying
to maximize similarity and eventually return too large
intervals. At this point, using the “initial step” process
(see Sec. :A4 is better than using the propagation step
(see Sec. [A 4 D).

Using the “initial step” process means that once a crit-
ical event occurs, the previous interval is forgotten and
segmentation restarts as in Sec. To decide whether
an event can be considered critical, we require that i) the
similarity corresponding to the last At is greater than
0.95 of the peak similarity and ii) we have not reached
the end of the dataset.

An example of critical events can be seen in main text
Fig. 1(a-c). Each interval boundary occurs at a critical
event.

Appendix B: Dataset descriptions
1. Periodic toy model

This model creates data with evolving timescales while
having a uniform event rate. The latter means that at
every point in time, there is the same expected value of
the number of events. Our method does not group the
data in intervals using the overall event rate, it detects in-
tervals based on the identity of events at a given time. In
this model, the characteristic active events change slowly
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over time, but at a varying rate. This adds the “evolu-
tionary timescales” that our method detects. When the
timescales evolve faster, intervals are shorter, and when
timescales evolve slower, intervals are longer.

In this periodic toy model, a universe of N = 1000
event IDs are created. Upon initialization, each event is
independently placed into an activated status with prob-
ability ¢q. At each timestep, each active ID emits an event
with probability p. This p produces the short-term rep-
etition, on a timescale of 1/p. Also, at each timestep
(and before event creation), a fraction ¢(t) of event IDs
are picked. Each of these IDs has its active status up-
dated, being made active with probability g regardless of
its previous state. This provides the long-term change:
on average, each active event tends to lasting on the or-
der of 1/c¢(t) time steps until it is deactivated. This pre-
serves the mean total number of activated IDs as ¢V at
all times. At each timestep, on average pgN events are
emitted.

The changeover rate c(t) is periodic, however, obeying

) = ot L Leos (22
c(t)y=co+c 2 2cos - ,

with ¢y being the minimum changeover rate and, ¢ being
the scale of changeover, and 7 being the period. Thus, at
some points, the IDs of the expressed events is changing
more rapidly than at other times, and this is the cause
of longer and shorter intervals.

When there is a critical event at time t..;;, we excep-
tionally set ¢(teit) = 1 at that time. This produces a
state of the system decorrelated from the previous time.
According to the model, this changeover occurs before
the timestep, which matches with placing a new interval
at tet in our half-open segment convention. However,
the total universe of event IDs stays the same, and there
is no statically observable change in behavior.

In this work, we use N = 1000, 7 = 500, p = 0.2,
q=0.2, cog =0, and ¢ = 0.01.

(B1)

2. Enron

The Enron Email Dataset consists of emails of approx-
imately 150 senior managers of the Enron Corporation,
which collapsed in 2001 after market manipulation was
uncovered, leading to an accounting scandal [I7]. This
dataset was made public during the legal investigation
concerning the Enron Corporation, which ended up with
the bankruptcy and collapse of this corporation. Here,
each event is an email communication sent or received by
any of the senior managers who were subsequently inves-
tigated. During the time recorded in the dataset, there
were major structural changes in the company, executives
were hired and fired and new products were launched.
This exogenous information was sometimes also reflected
in the data as changes in volume and in the identities of
active events.



Number of events 43599
Number of distinct events 1275
First event time 1999-05-11
Last event time 2002-06-21
Total count/weight of events| 43599

TABLE I: Basic properties of Enron dataset (core network)

Number of events 802481
Number of distinct events 207071
First event time 1998-05-26
Last event time 2002-07-11
Total count/weight of events| 2933183

TABLE II: Basic properties of Enron dataset (full data)

We have all bidirectional email communication to and
from each key person at a resolution of one day. An event
is the unordered pair (source, destination) of each email.
Our particular input data is already aggregated by day,
therefore each event is only present once each day, with
a weight of the number of mails that day. Table [[IT] list
the basic properties and Table [[T]] lists the major events
of this dataset. In Fig. [6] we show the full Enron data.
This includes one event for every message sent, even to
other executives.

Date Event

1999-11-29 | Launch of enron online

2000-01-15 | Launch of EBS

2000-07-01 | EBS-blockbusters partnership

2000-08-23 | Stock all-time high

2000-10-03 | Enron attorney discusses Belden’s strategies
2000-11-01 | FERC exonerates Enron

2000-12-15|EBS $53m ‘profit’

2000-12-13 | Skilling announced to be CEO

2001-01-17 | Blackouts in CA

2001-03-23 | Enron schedules conference call to boost stock
2001-04-17| The ‘asshole’ call

2001-05-17 | Schwarzenegger, Lay, Milken meeting
2001-07-12 | Quarterly conference call

2001-07-24 | Skilling meets with analysists and investors in NY
2001-08-22 | Watkins raises accounting irregularities
2001-11-08 | Dynegy agrees to buy enron

2001-11-19| Enron restates its third quarter earning
2001-11-28 | Enron shares plunge below $1

2001-11-28 | Dynergy deal collapses

2001-12-02 | Enron files for bankrupcy

2002-01-23 | Stephen Cooper takes over as Enron CEO
2002-02-03 | Lay cancels Senate committee appearance
2002-02-07 | Fastow, Kopper, Lay invoke the Fifth
2002-02-07 | Skilling and Watkins testify

2002-03-14 | Arthur Anderen LLP indicted

TABLE III: Major events of the Enron collapse
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a. Comparison with the cpdetect method

The cpdetect method is run as described in Ref. [§].
A part of this process is to pre-aggregate all data into
windows of one week size, and thus any changepoints
are a priori limited in their accuracy. This process is
not necessary in our work, and one possible use of our
method is providing initial intervals for other methods
such as cpdetect.

The output from our method and cpdetect is not di-
rectly comparable. The cpdetect method produces only
significant changepoints, while our method should pro-
duce snapshots distributed throughout the entire time
period. However, we would expect that the similarity J
is lower than average at each changepoint. If so, it will
indicate that our method can show at least the major
underlying dynamics of the system. We show this with
a hypothesis test. To do this, calculate a test statistic
which is our mean (interpolated) similarity value corre-
sponding to each change point found by cpdetect. We
randomize the times of change points by picking times
uniformly from our entire time range of changepoints,
which shuffles the change point sequence. We do this
1 x 10* times to compute a distribution of our test statis-
tic in the random case. We find that our actual value
of X is significant at p = 0.0033. This means that our
choice of similarity does correlate with the evolutionary
timescale of the system. If one looks at low values of J,
one can find changepoints, and our process of maximizing
J finds self-similar intervals.

3. Reality mining dataset

The Reality Mining dataset covers a group of per-
sons affiliated with the MIT Media Lab who were given
phones which tracked other devices in close proximity via
the Bluetooth personal area network protocol [18]. We
say an event is every ordered pair of (personal_device,
other_device). We only have data from the personal de-
vices of the 91 subjects who completed the experiment,
not full ego networks. The data contains 1881152 unique
readings from 2004 August 8 until 2005 July 14, being
most of them centered in the middle of the academic
year. Table [[V] lists basic properties and Table [V] lists
the major events of this dataset. The major events are
from the MIT academic calendar or internal Media Lab
events, with which most subjects were affiliated [21].

As expected, we find many more segment intervals
than major events. In the slicing, we can see that in
the first weeks, where students are still relocating and
meeting new people, the change in the events’ identities
is fast, thus the intervals are shorter. On the other hand,
the interactions throughout the rest of the academic year
are pretty stable, and the intervals are sized accordingly.
Additionally, we see that several key events are detected.
The major Thanksgiving holiday (Nov 25) is detected a
day early, as people begin traveling. There are intervals
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FIG. 6: Slicing of the full Enron dataset. The format of this figure is as in Fig. 2 from the main text. Thick red bars at the
top of the plots correspond to actual dates of major events. This is the slicing of the whole dataset, not just the links between

executives.

1881152
51466
2004-08-01 00:26:38
2005-07-14 17:41:19
1881152

Number of events

Number of distinct events
First event time

Last event time

Total count/weight of events

TABLE IV: Basic properties of the Reality Mining dataset

Date

2004-09-08
2004-10-18
2004-10-25
2004-11-08
2004-11-12
2004-11-25
2004-12-09
2004-12-13
2005-01-03
2005-02-01
2005-03-19
2005-03-28
2005-05-12
2005-05-16
2005-06-03

Event

First day of classes
Sponsor week end
Sponsor week start
Exam week start

Exam week end

First day of thanksgiving
Last day of classes
Exams start (4 days)
Independent activities period start
Start of spring classes
Start of spring break
End spring break

Last day of classes
Exams start
Commencement

TABLE V: Major events of the Enron dataset

before and after the start of the December exam week,
and then a stable period after that when people are on
holiday until the university opens again (Jan 3). After
that, we see segment boundaries that exactly align with
the beginning of classes (Feb 1), the beginning of spring
break (Mar 19), and the last day of classes (May 12).
All of this can be detected despite the fact that many
subjects are research staff, who are not bound by any
academic calendar.

4. TUCL hashtags

In this dataset, we scrape Twitter for all hashtags con-
taining #UCL, referring to the UEFA (European) Cham-
pions League tournament. We scrape between the dates
of 30 April 2015 and 08 May 2015, covering the first leg
of the two semifinal games of the tournament. An event
is any hashtag co-occurring with #UCL, except #UCL it-
self. If there are multiple hashtags in the same tweet,
each counts as one event. Thus, events (hashtags) reflect
what people are talking about in conjunction with the
tournament. All hashtags are interpreted as UTF-8 Uni-
code and case-normalized (converted to lowercase) before
turning into events. Table [V lists basic properties and
Table [VI]] lists the major events of this dataset.

In the slicing (main text Fig. 5(a)), we see much inter-
vals segments during the games of May 5 and May 6
than in the rest of the dataset. This corresponds to
the must faster turnover of interesting topics during the
game. In addition, we can spot the games that all four
teams played in their respective national championships
on the previous weekend of May 2-3, which trigger as well
some discussion on the forthcoming Champions League
matches. If we focus our attention on the first of the
two games (main text Fig. 5(b)), we observe a shorter
segment size at the beginning of the game and during
the three goals at times 20:53 (Juventus), 21:12 (Real
Madrid), and 21:58 (Juventus), compared to the rest of
the match. In particular, we notice a more noticeable
effect when the second half started with the tied game at
21:45, and when the third goal is scored, because it was
a penalty kick which took Juventus to the lead.Game 2
was a lopsided 3-0 victory for Barcelona against Bayern
Munich. Given the one-sided game, the analysis shows
a fairly uniform pattern throughout the game, until the
goals are scored at 22:17, 22:20, and 22:34. The game
ends right after the last goal. In the initial part of the
game, the dynamics continually slowed down as time goes
on without major events. Immediately after the game,



the audience reacts much more strongly than in the last
game, probably because at that point one starts specu-
lating about the possible finalists of the competition.
The detail of the second game is presented in Fig.
There is a flurry of activity at the start, but as the game
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progresses without goals dynamics slow down. At the end
of the game, there are three goals (beginning at 22:17).
At this point, the system becomes extremely active with
a very diverse and rapidly changing topics, and intervals
are very short for a while.
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Entire data Game 1 Game 2
Number of events 401849 87900 120123
Number of distinct events 8650 2660 3161

First event time
Last event time

Total count/weight of events

2015-04-30 16:08:42
2015-05-08 01:59:45
401849

2015-05-05 19:45:00
2015-05-05 23:44:59
87900

2015-05-06 19:45:00
2015-05-06 23:44:59
120123

TABLE VI: Basic properties of the UCL dataset. All times are in CEST, the local timezone of the matches.

Date

Event

2015-05-05 20:45
2015-05-05 20:50
2015-05-05 20:53
2015-05-05 21:12
2015-05-05 21:29
2015-05-05 21:45
2015-05-05 21:58
2015-05-05 22:33
2015-05-06 20:45
2015-05-06 21:29
2015-05-06 21:45
2015-05-06 22:17
2015-05-06 22:20
2015-05-06 22:34
2015-05-06 22:34

Game 1 begins

First half ends
Second half begins

Game 1 ends
Game 2 begins
First half ends
Second half begins

Game 2 ends

Goal by Tévez (Juventus)

Messi (Barcelona) scores
Messi (Barcelona) scores
Neymar (Barcelona) scores

Yellow card for Bonucci (Juventus)
Goal by Morata (Juventus)
Goal by Ronaldo (Real Madrid)

TABLE VII: Major events of the first leg of the Champion’s

League semifinals
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FIG. 7: Second semifinal of the UEFA Champions League 2014-2015, between Barcelona and Bayern Munich. Game times are
the same as in main text Fig. 5(b) in the main text. This game was one-sided with goals made by only one team. Consequently,
internal structure for the slicing is relatively uniform and slowing down with time, especially since all goals were scored within
the last 20 minutes of the game. Nevertheless, we can detect interval boundaries for halftime, and after the three goals are
scored (22:17, 22:20, and 22:34), we have a very high turnover rate of discussion topics.
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