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SIR model divides the N individuals of a population in three 
classes: in the “S” compartment people are susceptible to in-
fection (they can get the disease), the “I” compartment consists 
of people who are infected (and infectious, they can infect 
others), and the “R” compartment contains those individuals 
who have recovered from the infection, although “R” can also 
stand for “removed” to account for people who die from an 
infection (hence the acronym SIR). Note that at any time t, it 
holds that N = S(t) + I(t) +R(t). 

The SIR model is used to represent the spreading of 
diseases that yield immunity, no reinfections of individu-
als are allowed. It specifies the different transitions among 
these epidemic compartments, according to the most 
relevant parameters of the particular disease transmis-
sion. These transitions can be expressed by a simple law 
of conservation of mass, equivalent to a stoichiometric 
approach:     S+I →

β
  2I     I →

µ
  R.

The evolution of these variables is determined by two 
essential parameters: the probability of infection per contact 
β, and the recovery rate µ. According to the previous expres-
sion, if a susceptible individual (S) encounters an infected 
one (I), the former will transit to the Infected compartment 
with probability β. Additionally, individuals in the Infected 

E
pidemic spreading usually refers to the terri-
torial diffusion of an infectious disease that af-
fects a large fraction of the human population 
in a relatively short time. The high mortality 

caused by infectious diseases has boosted mathematical 
research since the XVIII century. But it took until 1927 
for the biochemist W.O. Kermack and the physician A.G. 
McKendrick to propose what we know today as the "SIR 
model" [1] and derive one of the main results of epide-
miology: the existence of a threshold point that separates 
the growth of an epidemic from its extinction. Almost a 
century later, our capabilities for epidemic modeling have 
been complemented with extraordinary computational 
resources, which has allowed to tailor the basic models to 
more sophisticated tools to forecast the epidemic course, 
but the fundamental idea of the SIR model still remains. 

The linchpin of epidemiological 
modeling: the SIR model
In epidemiology, compartmental models are those mod-
els that assume that the population is divided into groups  
(compartments) such that individuals belonging to the 
same compartment are epidemiologically equivalent. The 
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A very simple epidemic model proposed a century ago is the linchpin of the current 
mathematical models of the epidemic spreading of the COVID-19. Nowadays, the 
abstracted compartmentalisation of the population in susceptible, infected and recovered 
individuals, combined with precise information about the networks of mobility flows 
within geographical territories, is the best weapon of the physics community to forecast 
the possible evolution of contagions in the current pandemic scenario.
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This new scenario allows us to account for a realistic setup 
in epidemics, one where individuals move across territories; 
and gives us some non-trivial insights about the role of mo-
bility. Indeed, following the same rationale as with the original 
SIR model, we can calculate the critical point of the phase 
transition between epidemic extinction and epidemic growth 
as a function of the mobility parameters, and therefore learn 
what interventions in mobility should be enforced if we want 
to ensure the epidemic is receding. One surprising conclu-
sion that we learn from this model is that a higher mobility 
probability does not always imply a higher spreading in the 
epidemic. This is counterintuitive, as higher mobility implies 
a higher mixing between the subpopulations, and this should 
foster the spread of the virus. However, despite the higher 
spatial diffusion, we found that, in some cases, mobility can 
reduce the number of potential interactions made by infec-
tious individuals, which leads to a higher value of the epi-
demic threshold needed to observe an outbreak [2,3].

Towards a tailored model for COVID-19
Once we have a basic framework to represent any SIR-like 
disease and account for mobility, we can move on to the 
challenge of modeling COVID-19 [7,8]. For this particular 
disease the epidemic compartments available in the SIR are 
not enough to capture the complexity of the dynamics and 
the timescales of transmission of COVID-19, so we start out 
by including more epidemiological compartments and new 
transitions among them. The following is a summarised list 
of the key additions that one has to consider for modeling 
COVID-19, as exposed in [2-5]. 

First, we introduce the Exposed compartment (E), that 
accounts for individuals that are in the incubation stage (al-
ready infected but not yet infectious). Therefore, when a 
susceptible individual contacts an infectious one, the former 
will transit to the Exposed compartment, and will remain in 
this state until the incubation time has passed.

Second, a crucial aspect of the COVID-19 is the exist-
ence of Asymptomatic individuals (A): individuals that are 
infected and infectious but that do not show any symptoms. 
Far from being a clinical feature only, this class is epide-
miologically very relevant: an asymptomatic individual is 
rarely aware of its infectious potential and therefore his or 

compartment will move to the Recovered compartment with 
probability µ. These probability rates are specific for each 
disease, and they depend on so many different factors that 
it is almost impossible to find accurate values for them by 
studying the biology of the infection only, making it neces-
sary to rely on statistics once the epidemics evolves. 

Despite its simplicity, the SIR model is able to give us 
some interesting insights. An essential outcome of the model 
is the existence of a phase transition whose critical point sep-
arates two regimes: one where the epidemic dies out and the 
other where the epidemic becomes endemic. Considering the 
previous simple formulation for the SIR (which assumes 
a well-mixed population where everybody is statistically 
equivalent and makes <k> contacts), this critical point hap-
pens when β<k>/µ = 1. When this ratio (also known as the 
Basic Reproductive Number R0, indicating the average num-
ber of individuals that one infected individual will gener-
ate in an otherwise totally susceptible population) is below 
1, one infected individual will generate less than one new 
infected and thus the epidemic dies out. Conversely, when 
R0>1 the epidemic will grow. The usefulness of this number 
went unnoticed until 1979, when Anderson and May applied 
it to study epidemic control strategies ensuring that R0 is 
kept below 1. In Figure 1 (top plot) we show this transition, 
as well as two different temporal evolutions (bottom plots) 
for two different values of R0.

Including the crucial role of mobility
An important aspect when modeling epidemic spreading 
is mobility. This is a crucial factor given that the virus is able 
to travel from one location to another when the host does 
so. To introduce mobility in the previous model, we adopt 
the level of description of “metapopulations”, where the full 
population is decomposed in distinguishable geographical 
areas named “patches" (see Figure 2). So now, but consid-
ering the general quantities S(t), I(t) and R(t), we will have 
Si(t), Ii(t) and Ri(t), for each patch i. Also, the subpopula-
tions are not isolated, instead they are connected through 
a network of mobility flows W, where Wij is the weight of 
the connection between patch i and j. Considering this new 
scenario, the mobility and epidemic dynamics are as follows:  
(I) each individual belongs to (or resides in) a patch;  
(II) an individual will travel outside its patch with probability 
p and its destination patch is chosen according to the mobility 
flows W; (III) the individual will contact a fraction of indi-
viduals in the destination patch; (IV) the mobility patterns 
are recurrent, meaning that after traveling, the individual will 
return to its original patch, implying that the next travel will 
start out from the same patch of origin. Regarding the epidem-
ics, these mobility dynamics imply that one individual might 
get infected either if he does not travel and gets infected by 
someone resident of (or that has traveled to) his origin patch; 
or if the individual travels and gets infected in the destination 
patch either by a resident or by somebody that has traveled 
to that patch. See [2] for the full formulation of this model.

. FIG. 1:  
Results for the SIR 
model in a well-
mixed population. 
Top: fraction of 
recovered individuals 
in the steady state 
as a function of R0. 
Bottom: Fraction of 
individuals in each 
compartment as a 
function of time, for 
two values of R0, one 
below the epidemic 
threshold (R0=0.75) 
and the other 
above the epidemic 
threshold (R0=2).  
In both cases the 
initial fraction 
of infected 
individuals is 10%.
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segment), and observing if this implies a reduction in hos-
pital load, for example. But most importantly, we can, as we 
did with the previous simpler models, calculate the critical 
threshold of the phase transition and discern which values 
of the parameters drive the epidemic to extinction [6,7]. 

Summarising, the SIR model established a solid foundation 
to model the spreading of infectious diseases in a population. 
Despite its simplicity, it still remains at the core of most of the 
current tools for epidemic forecasting. Including the epidemi-
ological traits of the disease we wish to model and considering 
the role of human mobility, one is able to build very effective 
tools that reveal us what are the crucial mechanisms behind 
the spreading of a particular disease, giving us the opportunity 
to anticipate its outcome and change the course of epidemics.
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her social and mobility patterns remain unchanged, foster-
ing the spread of the pathogen across the territory.

Third, at variance with usual SIR-like models, we include 
compartments that capture the clinical evolution of those 
infected individuals that need hospitalisation in ICU, dis-
tinguishing between those that have a favourable prospect 
and will transit to Recovered after the hospitalisation time 
has passed, and those having a fatal outcome, transiting to 
a Deceased compartment. This way, besides forecasting the 
epidemic trajectory, the model allows us to assess different 
clinical aspects associated to the pandemic such as the health 
system overload or the number of fatalities.

Another major feature of COVID-19 models lies in the 
addition of age compartments. Indeed, it is known that age 
influences not only the symptomatology of the disease, but 
also the individual's prospect. Besides this clinical factor, the 
mobility patterns also depend on the age of the individual 
(e.g. retired individuals do not commute to work). Therefore, 
we deem necessary to account for age compartments, and 
we choose to divide the population in three segments: young 
(Y), adult (M), and elderly (O). To accommodate the age 
strata, each of the previously mentioned compartments is 
triplicated, and we use a contact matrix to model the contacts 
that are established between age compartments.

Once all the aforementioned particularities of COVID-19  
are accounted for, the resulting model becomes a very pow-
erful tool for surveillance and policy making. For example, 
starting out from a completely susceptible population, we 
can seed infection in certain patches (mimicking the first 
imported infection cases) and let the system evolve, observ-
ing to what other territories the disease spreads to, effectively 
forecasting community transmission. From this setup, one 
can calculate the expected amount of new cases, hospitalisa-
tions or deaths (see Figure 3). Besides merely observing the 
outcome of the system, one can also simulate containment 
measures, like restricting the number of contacts of the el-
derly population (emulating the confinement of this age 

c FIG. 3: Daily new 
deaths for the first 

wave of COVID-19 in 
Spain in 2020. The 

red line represents 
the outcome of the 

model, while dots 
represent real data 

as reported by the 
Spanish health 

authorities. Hollow 
dots represent the 

data points used 
to calibrate the 

parameters of the 
model, and solid 

dots are data used 
for validation.

m FIG. 2:  
Schematic of the SIR 

metapopulations 
model compared 

to the basic SIR 
model. In the 

metapopulation 
model we consider 

multiple populations 
so that now the 
quantities Si(t), 

Ii(t) and Ri(t) refer 
to the fraction of 

Susceptible, Infected 
and Recovered 

individuals in patch i. 
These quantities can 

also be interpreted as 
the probability that 
a resident of patch i 

is in the Susceptible, 
Infected or Recovered 
state. The colours are 

identical to those 
used in Fig. 1. 




