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We investigate the adaptation and performance of modularity-based algorithms, designed in the scope of

complex networks, to analyze the mesoscopic structure of correlation matrices.

Using a multi-resolution

analysis we are able to describe the structure of the data in terms of clusters at different topological levels.
We demonstrate the applicability of our findings in two different scenarios: to analyze the neural connectivity
of the nematode Caenorhabditis elegans, and to automatically classify a typical benchmark of unsupervised
clustering, the Iris data set, with considerable success.
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Facing the famous Salvador Dali’s painting “Gala
contemplating the Mediterranean sea which at
twenty meters becomes a portrait of Abraham
Lincoln”, we have the best proof of how a com-
plex system reveals different information when
observed at different (in this case length) scales.
We proposed a method! to unveil the equivalent
phenomena in the description of complex net-
works from a topological perspective. By defining
a parameter that controls the resistance of each
node to belong to a group, we are able to analyze
the community structure of the network at dif-
ferent topological scales. We apply the method
to the exploratory analysis of the structural con-
nectivity of the neuronal system of C. elegans and
find a tentative classification of functional activity
of groups of neurons at certain topological scales.
We also have tested the method to automatically
classify a typical benchmark of unsupervised data
clustering, the Iris dataset. These results pave
the way to the applicability of community detec-
tion algorithms in complex networks to the ex-
ploration and classification of real data sets.

I. INTRODUCTION

Complex networks are graphs representative of the in-
tricate connections between elements in many natural
and artificial systems? ™, whose description in terms of
statistical properties has been largely developed in the
curse for a universal classification of them. However,
when the networks are locally analyzed some character-
istics that become partially hidden in the statistical de-
scription emerge. The most relevant perhaps is the dis-
covery in many of them of community structure, meaning
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the existence of densely (or strongly) connected groups of
nodes, with sparse (or weak) connections between them?.

The study of the community structure helps to elu-
cidate the organization of the networks and, eventually,
could be related to the functionality of groups of nodes®.
The most successful solutions to the community detection
problem, in terms of accuracy, are those based in the opti-
mization of a quality function called modularity proposed
by Newman and Girvan” that allows the comparison of
different partitioning of the network. Given a network
partitioned into communities, being C; the community
to which node ¢ is assigned, the mathematical definition
of modularity is expressed in terms of the weighted adja-
cency matrix w;;, that represents the value of the weight
in the link between nodes ¢ and j, this weight would be
0 if no link existed, and the strengths w; = > w; as®
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where the Kronecker delta function §(C;, C;) takes the
values, 1 if node ¢ and j are into the same commu-
nity, 0 otherwise, and the total strength 2w = >, w;.
The modularity of a given partition is then, the prob-
ability of having edges falling within groups in the
network minus the expected probability in an equiv-
alent (null case) network with the same number of
nodes, and edges placed at random preserving the nodes’
strength. The larger the modularity the best the parti-
tioning is, cause more deviates from the null case. Note
that the optimization of the modularity cannot be per-
formed by exhaustive search since the number of dif-
ferent partitions is equal to the Bell® or exponential
numbers, which grow at least exponentially in the num-
ber of nodes N. Indeed, optimization of modularity
is a NP-hard (Non-deterministic Polynomial-time hard)
problem!?. Several authors have attacked the problem,
with considerable success, by proposing different opti-
mization heuristics!' 16, see Fortunato!” for a review.
Maximizing modularity one obtains the “best” parti-

Jaccy,



FIG. 1. “Gala contemplating the Mediterranean sea which at
twenty meters becomes a portrait of Abraham Lincoln”, by
Salvador Dali, 1974. Left, at closer distance, and right, at
larger distance.

tion of the network into communities. This partition rep-
resents an intermediate topological scale of organization,
or mesoscale, that in many cases has been shown to co-
incide with known information about subdivisions in the
network”!®. However, recently, it has been pointed out
that the optimization of the modularity has a charac-
teristic scale related to the number of links in the net-
work, that delimits the resolution beyond which no sep-
aration into smaller groups can be obtained when opti-
mizing modularity, even-though these smaller partitions,
and then different levels of description, are plausible to
exist from direct observation'®. The problem seems then
that modularity, as it has been prescribed, does not have
access to these other levels of description, and then its
direct interpretation must be cautiously used??. The rea-
son for this is that the topological scale at which we have
access by maximizing modularity has a topological reso-
lution limit. The analogy with the observation of Dali’s
painting is clear, modularity is our tool to “observe” a
complex network, and their limit is equivalent of a limit
in the distance at which we observe the painting (Fig. 1).
We proposed a method! that allows the full screening of
the topological structure at any resolution level using the
original formulation and semantics of modularity, over-
coming then the resolution limit. Our aim is to take ad-
vantage of this method to analyze real data sets in terms
of clustering.

The paper is structured as follows: In the next sec-
tion we overview the multiple resolution method. Once
the method has been presented, we propose its applica-
tion for exploratory analysis in the topology of the neural
network of the nematode C. elegans in section III, and
its application to data clustering in section IV. Finally
we present the conclusions of the work in section V.

Il. MULTIPLE RESOLUTION METHOD

In this section we provide the necessary tools to extend
the multiple resolution method to the most general case
of networks with weighted signed directed links.

A. General formulation of modularity

The generalization of modularity to any network, with
weighted, directed and signed values of the weights?' is
as follows. Let us suppose that we have a weighted undi-
rected complex network with weights w;; as above. The
relative strength p; of a node
Wy

(2)

Pi = 2w )
may be interpreted as the probability that this node
makes links to other ones, if the network were random.
This is precisely the approach taken by Newman and Gir-
van to define the modularity null case term, which reads

(3)
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The introduction of negative weights destroys this
probabilistic interpretation of p;, since in this case the
values of p; are not guaranteed to be between zero and
one. The problem is the implicit hypothesis that there
is only one unique probability to link nodes, which in-
volves both positive and negative weights. To solve this
problem, we have to introduce two different probabilities
to form links, one for positive and the other for negative
links.

Let us formalize this approach. First, we separate the
positive and negative weights:

Wij = wj; — W, (4)

where we use the notation

wit = max{0, Wi} (5)

ij
w,; = max{0, —w;;}. (6)

ij

These expressions are useful since in principle we do not
know the sign of w;;. The positive and negative strengths
are given by

w; :ij;, (7)
J

w; :Zwi_jv (8)
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and the positive and negative total strengths by

2w+:2wi+zzzw;;, 9)
2w_:Zw;:ZZwZ§. (10)



Consequently,
w; = w; —w; (11)
and
2w = 2wt — 2w . (12)
With these definitions at hand, the connection prob-

abilities with positive and negative weights are respec-
tively
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Now, there are two terms which contribute to modu-
larity: the first one takes into account the deviation of ac-
tual positive weights against a null case random network
given by probabilities pj, and the other is its counterpart
for negative weights. Thus, it is useful to define
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The total modularity must be a trade off between the
tendency of positive weights to form communities and
that of negative weights to destroy them. If we want that
Q" and Q~ contribute to modularity proportionally to
their respective positive and negative strengths, the final
expression for modularity @ is

Q=5 >5<cz,c> (16)
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An alternative equivalent form for modularity @ is
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The main properties of Eq. (18) are the following:
without negative weights, the standard modularity is re-
covered; modularity is zero when all nodes are together
in one community; and it is antisymmetric in the weights,
i.e. Q(C, {wu}) = Q(C, {—wij}) .

The extension to directed networks??
tained by the substitutions in Eq. (18) of

wit — w Z Wik (19)
:I: in
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is simply ob-

B. Mesocales analysis for weighted signed networks

The extension of the multiple resolution method! to
the general case of weighted signed networks follows the
same original idea. The method relies on the introduction
of a magnitude r that we call resistance, represented by
a self-link for each node, that stands for the opposition of
a node to belong to a group, in the sense of modularity.
We tune the resistance uniformly for all nodes because in
this way the functional form of the strength distribution
is preserved and does not distort the relative structural
properties of nodes. More precisely, the formulation of
modularity @, at different resolution scales tagged by r
consists in substituting in Eq. (18)

’LUij i wij + T(Sij , (21)
wli — wii +rE , (22)
2wt — 2wt 4+ Nrt | (23)

where
r=rt—r7, (24)

and

rT = max{0,r}, (25)
r~ = max{0, —r}. (26)

The topological scale determined by maximizing @ at
which the detection of community structure has been at-
tacked so far, corresponds to r = 0 (Newman’s scale). For
positive values of 7, we have access to the substructure
below r = 0, and for negative values of r we have access
to the superstructures. For negative values of r, the re-
sistance should be understood as an affinity of nodes to
belong to the same group, and using Eq. (1) the formu-
lation is still preserved but not the semantics in terms
of probabilities. The main challenge in this new scenario
is that the limiting cases of r that corresponds to the
partition of individual nodes, and to the whole network
as a unique module have to be computed using the new
modularity formulation Eq. (18).

C. Resistance limiting cases for weighted signed networks

Here we present the mathematical proofs of the phys-
ical limiting cases of the resistance for weighted signed
networks. Let us call rp.x the limit of resistance for
which all nodes are isolated in communities of size 1, and
Tmin the limit for which all nodes become members of a
single group that represents the whole network. To de-
termine rmax we look for a value of the resistance such
that the increment in modularity when joining any pair
of vertices in the same community is negative, and the
contrary for rpin. The idea is the following: if r > 0
and all the non-diagonal terms (i # j) of Eq. (18) are



negative,
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then the maximum of @, is achieved with the partition
which satisfies §(C;, C;) = 0 for all ¢ # j, i.e. the partition
in which all nodes are isolated. Egs. (27) form a system
of second order inequations in r. After some algebra, it
can be shown that r,.x 1S the lowest value of r for which
the following set of inequalities per link (denoted ij) is
satisfied:

mln[Ar2 + BijT + Cij < 0] (28)
4]
where
A= 2w~ (29)

Bij = NQ2w™ wi; + w; w;) — 2w (w + wj) (30)

Cij = 2w 2wt w;; + 2w+w;w; — Qw_ij;r (31)
Equivalently, if » < 0 and all the non-diagonal terms
(i # j) of Eq. (18) are positive,
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the maximum of @, is achieved with the partition which
satisfies 6(C;,C;) = 1 for all i # j, i.e. the partition
in which all nodes are together in the same community.
Thus, to determine a lower bound of 7,;, we look for the
largest value of r satisfying

max[Ar2 + BijT + Cij > 0] (33)

r,ij
where

A=2w" (34)
Bij = NQuwTwij — wjw)) + 2w™ (w; +w;) (35)
Cij = 2w 2w w;; — 2ufu)ju)}r + 2w+w;w; (36)

The value of r obtained from Egs. (33) is only a lower
bound of the exact rmin, since these equations are only
sufficient conditions for the existence of a unique com-
munty holding all the nodes of the network (not all terms
in Eq. (18) need to be positive in the i, limit). On the
other hand, Eqs. (28) are necessary and sufficient condi-
tions, and thus the 7. found is the exact value.

The method to unveil the mesoscales of a complex net-
work consists in to optimize @, for r in [Fyin, "max]. Dif-
ferent values of r will eventually reveal different optimal
partitions (found by heuristic algorithms to detect com-
munity structure) that represent intermediate topologi-
cal scales of the complex network. We have applied this
method to study the mesoscales in synthetic structured
networks and real complex networks.

D. Validation of the method in synthetic networks

In Fig. 2 we have screened the whole range of topo-
logical scales for three synthetic networks, representing
the number of modules obtained at the optimal parti-
tion for @, and plotting in a matrix the superposition of
scales found. More precisely, any graphical representa-
tion of the whole mesoscale should take into account, for
every pair of nodes, the frequency of mesoscales at which
they belong to the same community. Each mesoscale
has a natural length defined by the range of resistances
[Ffrom, Tto] at which it is optimal:

length = log(7to — Tmin) — 10g(rfrom — min) - (37)

Thus, the length frequency for a pair of nodes is the sum
of the lengths corresponding to mesoscales in which they
belong to the same community, normalized by the to-
tal length. The graphical representation of this table
is the frequency mesoscales matriz. First we have com-
puted the modular structure in a hierarchical scale-free
network with 125 nodes, RB 125, proposed by Ravasz
and Barabasi®®. We clearly observe persistent structures
in 5 and 25 communities respectively, that account for
the subdivisions more significant in the process, showing
two hierarchical levels for the structure.

Another network example used is the H 13-4
network?*, which corresponds to a homogeneous in de-
gree network with two predefined hierarchical levels, be-
ing 256 the number of nodes, 13 the number of links of
each node with the most internal community (formed by
16 nodes), 4 the number of links with the most external
community (four groups of 64 nodes), and 1 more link
with any other node at random in the network. Both
hierarchical levels are revealed by the method as they
correspond to the original construction of the network:
the first hierarchical level consisting in 4 groups of 64
nodes, and the second level consisting in 16 groups of 16
nodes.

Finally, we have used the FB network proposed by For-
tunato and Barthélemy'® to demonstrate the resolution
limit of modularity (at » = 0). It consists in two cliques
of 20 nodes linked with two small cliques of 5 nodes. At
r = 0 the best partition cannot separate the two small
cliques. We observe that the partition searched by the
authors, formed by the four cliques isolated in their own
communities, is obtained by increasing the resolution r,
showing that the resolution limit of modularity is over-
come by the method.

The optimization of modularity in all these cases has
been performed using existing heuristics found in the
literature'1*16 and compiled in a free toolbox available
at the authors’ webpage?®.
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FIG. 2. Frequency mesoscales matrices in synthetic complex
networks. We have computed the topological mesoscales for
three synthetic networks. Left, we plot the networks and right
we present their mesoscales matrices. The different color lev-
els correspond to the superposition of the structures in 7,
which account for the persistence of the partitions revealed.
See text for details.

I1l.  APPLICATION TO EXPLORATORY DATA
ANALYSIS

Exploratory data analysis stands for the approach to
data analysis in which some rather general assumptions
are used to reveal information of the data in a kind of
inverse hypothesis testing. In our particular scenario,
we will analyze the structure of the neural connectivity
of the nematode C. elegans®® using this approach. We
do not pretend an exhaustive biological classification of
all functionalities that are related to the topology but
to show the applicability of the mesoscales analysis de-
scribed before. A pretty exhaustive analysis of the same

0

FIG. 3. Connectivity matrix of C. elegans neuronal network.

FIG. 4. Newman’s scale of the C. elegans neuronal network.
Left, original order, right, reordering by communities.

system has been recently presented?” for the scale cor-
responding to 7 = 0. The whole nervous system of the
nematode is composed by 302 neurons whose anatomical
and connectivity description is completely known. The
resulting network is represented as a weighted directed
adjacency matrix, see Fig. 3. We will assume that those
groups of nodes more persistent throughout the screening
of the mesoscales of the topology have some functional
role, and after we will look for this role in the current
biological literature.

The original data®® is a weighted and directed net-
work, composed of 306 vertices (302 neurons + WE, WI,
WM and WN) and 2359 arcs. We have discarded nine
disconnected nodes from the network, the remaining 297
neurons form a single connected component and will be
the subject of our analysis.

We have discretized the resistance range in 1000 non-
uniform intervals, in such a way that the last resistance
increment is ten times larger than the first one, and the
size of the increments grow at a constant rate. The signif-
icant Newman’s scale 7 = 0 has been added. The nega-
tive values of the resistance have been discarded, since we
are interested only in sub-structure beyond the standard
Newman’s scale?”.
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FIG. 5. Mesoscales of the C. elegans: number of clusters in
the optimal partition at every value of the topological scale
defined by the log(r — rmin), where rpi, refers to the exact
value, not its lower bound. Highlighted in circle, we represent
the scale that most contributes to the frequency matrix.

The order of the neurons in the matrix follows that in
Watts and Strogatz?® obtained from experimental data
by White et al.26. The detection of the mesoscales in
this neuronal system has been performed according to
the method explained in the previous section. The best
partition at » = 0 corresponding to the original New-
man’s scale provides with 5 communities. The represen-
tation of the obtained groups is depicted in Fig. 4 (left).
This figure does not allow the observation of relevant in-
formation because the original order of the neurons in
Fig. 3, however after ordering the neurons in the matrix
by their communities, the representation shown in Fig. 4
emerges.

The coarse graining at » = 0 provides then with a large
scale in this system, hence our interest has been spe-
cially focused in the sub-structural levels, not in supra-
structural levels, that means that we have analyzed the
mesoscale for r € [0, rmax], see gray region of Fig. 5. We
used the partition at » = 0 simply as a reference for
sorting the neurons in the substructures found by the
multiple resolution method.

Any trial of classification of the functional role of neu-
rons of the C. elegans is extremely delicate because the
multifunctional aspects they have. Many neurons partic-
ipate in different synaptic pathways resulting in different
functionalities. This property is also captured by our
method that shows that at different scales the same neu-
ron can appear in different groups, i.e. the method is not
necessarily hierarchical. However, to extract information
from the results obtained, we use an ensemble of the dif-
ferent partitions found by screening r, and construct a
frequency mesoscales matrix, indicating the relative per-
sistence of each neuron in a particular community. By
fixing a threshold in the frequency value, we are able to
unravel sub-structural scales that correspond to groups

FIG. 6. Frequency matrix of C. elegans neuronal network
thresholded at 0.6. We used a color scale (same as in Fig.3)
to plot the persistence of neurons into the same groups, darker
values corresponds to more persistent communities and, ac-
cording to our hypothesis in the exploratory analysis, to spe-
cific functionalities

of neurons involved in different functionalities at different
time scales.

The most interesting information is that provided at
a large value of the frequency threshold, because in this
case the substructures found will contain small groups
of neurons whose activity response is topologically corre-
lated, in particular the highlighted scales in Fig. 5 are the
ones that most contribute to the frequency matrix. We
have studied the ensemble frequency matrix at a thresh-
old value of 0.6, Fig. 6, the lengths below the thresh-
old are discarded, and the connected components of the
graph defined by the remaining lengths are found. We
have chosen this threshold fixing the sizes of the groups
to be analyzed to be less than ten neurons. With this
information at hand, and the wide description of each
neuron found at the public database of C. elegans®?:3!,
we propose a tentative classification of some groups of
neurons by functionality.

Our purpose, after identification of individual function-
alities, has been to assign a specific action to the more
persistent groups of neurons. The classification obtained
(see appendix) does not pretend to be exact but to pro-
vide biologists with a useful information for future re-
search.

IV. APPLICATION TO THE UNSUPERVISED
CLASSIFICATION OF DATA

Unsupervised classification of data (or data cluster-
ing) stands for the process of grouping patterns of data
according to their similarity. A pattern is a vector of
features (usually understood as a point in a multidimen-
sional space) that describes the item we wish to classify.
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FIG. 7. Feature vectors for the Iris data set. Colors correspon-
dence are: setosa-blue, versicolor-red, and virginica-green.

The goal of the process of data clustering is to organize
these patterns into groups, in such a way that patterns
into the same group are more alike than with other pat-
terns in other groups.

The problem of data clustering has been the subject of
interest in many disciplines where the mining of raw in-
formation is crucial to understand some phenomenon or
gain insight into a system. Typical processes where data
clustering is used are pattern analysis, decision-making,
machine learning and image segmentation. These sub-
jects have interesting applications as for example tar-
geted marketing, biological taxonomy and detecting com-
munities of interest in the World Wide Web?32.

The methodology used to obtain the clusters from the
raw data is as follows: First of all, a representation of the
patterns has to be chosen, and also a feature selection or
extraction is performed. Feature selection means choos-
ing, from all the available features, those that will make
easier the process of clustering, leaving the redundant,
correlated and less informative features out of the anal-
ysis. On the other hand, feature extraction consists in
transforming the original dataset to a new one contain-
ing only the most relevant information. This first step
is very important, as the result of the clustering often
depends directly of the quality of it. Secondly, the simi-
larity or dissimilarity between each pair of patterns has to
be computed, which is often done by defining a measure
of distance. The result of this step is the similarity ma-
trix, which using the mapping to complex networks can
be understood as a graph, where each node is a pattern
and the links are the representation of the similarity33.
Finally, the main step of the process, the grouping (or
clustering) algorithm, which will decompose the similar-
ity matrix and return the groups of data.

In our approach, the algorithm used to classify the sim-
ilarity matrix is the multiple resolution algorithm based
on modularity explained previously in this document.
Given the nature of this algorithm, the result will not
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FIG. 8. Two principal components of the PCA analysis on
the Iris dataset. Colors correspondence are: setosa-blue,
versicolor-red, and virginica-green. The separation of pattern
classes seems more clear in this projection.

be a single partition into clusters, but a collection of dif-
ferent partitions. This fact deserves a reflection about
how to evaluate the quality of the output obtained. If
we make a screening between the minimum and maxi-
mum value of the resistance parameter to obtain every
topological scale of resolution of the network, each one
of these resolution levels will provide us with a partition
of clusters. Then the question is, which one of these par-
titions is the right one? The answer is that every one
of them is right, since what we are doing is analyzing
the network at different levels of resolution, and all the
information obtained though this process is found in the
structure of the network. Having pointed that out, the
problem of choosing the right partition is translated to
that of choosing the more relevant partitions. The more
relevant partitions in our scope are those that persist un-
changed during larger intervals of values of the resistance
parameter.

The dataset benchmark selected to perform the data
clustering is the Iris flower dataset, presented by Sir
Ronald Aylmer Fisher* in 1936. This dataset consists
of 150 patterns corresponding to three different classes of
flowers: Setosa, Versicolor and Virginica. Four features,
the width and length of petal and sepal, form each pat-
tern. Plots for the cross-variables and type of flowers are
represented in Fig. 7. The unsupervised classification of
this dataset is a major challenge in artificial intelligence
and statistical theory, because of the patterns’ organi-
zation, while one of the classes is linearly separable and
then easily to classify by any elemental classification al-
gorithm, the other two classes are not linearly separable
and consequently far more difficult to classify.

Following the steps of data clustering explained above,
we first performed a feature extraction/selection process.
The idea here is simply to follow the workflow in any
clustering problem, where the high dimensionality of the
data and its redundancy is a main concern. In the partic-
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FIG. 9. Number of clusters as a function of the resolution
parameter of the classification method (see text for details).

ular case we analyze, we can use all the original data with
no computational stress, however we propose to address
the feature extraction using PCA which will be the most
common approach in many scenarios. We performed the
principal component analysis of the four features that
form each pattern, and choose to work with the two prin-
cipal components corresponding to the largest part of
the data variance. In Fig. 8 a representation of these
two components is shown. Based on these two variables,
we propose to build up a similarity matrix as the eu-
clidean distances between patterns components with re-
spect to the center of mass of the data set in this space.
For any pair of flowers ¢ and j, we define the similar-
ity s;; = d — ||#° — 27||), where d stands for the average
distance of the set, and || - || is the euclidean distance
between the feature vectors of each flower. The result-
ing similarity matrix is interpreted as a weighted network
whose communities will, in principle, reproduce the right
clustering of the data.

The results of the multiple resolution algorithm on the
two main components of the Iris dataset is shown in the
Fig. 9. It can be observed that the longest plateau in
terms of the resistance interval values is that formed by
those partitions that divide the dataset into two commu-
nities. This is not a surprising fact, as we know before-
hand that one of the three classes of flowers is linearly
separable, and then this partition makes totally sense,
since there is one for the Setosa class and the other one
containing the Versicolor and Virginica. However, the
second longest plateau is the one formed by the three
community partitions, and if we analyze the most resis-
tant of them, we realize that it largely corresponds to the
biological taxonomy of the flowers. To be specific, if we
calculate the success as the number of correctly classified
nodes divided by the total number of nodes, we achieve
for the most resistant partition of three communities a
94,6% of success compared to the correct biological tax-
onomy.

Summarizing, we have presented a possible application
of the multiple resolution method to the problem of data
clustering. Our proposal has been proved competitive in
success with other techniques used in the literature on
the same benchmark?®, but as an essential difference we
also provide information of grouping at different scales
of resolution that are invisible to other algorithms. The
methodology presented so far is plausible to be exten-
sive to any data clustering problem expressed in terms of
similarity matrices.

V. CONCLUSIONS

Scientists working on the field of complex networks
have developed tools for the analysis of structural in-
formation embedded in the topological connectivity ma-
trix. Specially interesting are the heuristic algorithms
intended to find the community structure of networks,
which remind the kind of problems of data clustering
found in many disciplines.Here we have presented a pos-
sible application of community detection algorithms to
help exploratory analysis and data clustering. In par-
ticular, we have used a previous methodology proposed
by the authors that allows for a multiple resolution of
topological scales in the substructure of networks.

The exploratory analysis of the neural connectivity of
the nematode C. elegans has been presented. We found a
tentative classification of groups of neurons presumably
involved in specific tasks, according to the persistence of
these groups in the topological analysis. We have also
exposed the applicability of the method to the unsuper-
vised classification of data, using the famous Iris dataset
as a benchmark. The results are encouraging, we observe
the full spectrum of clusters according to the organiza-
tion of data, and the most persistent scales are those
corresponding to well-known facts about its structure, a
partition in two linearly separable groups, and a parti-
tion in three groups corresponding to the biological tax-
onomy. These results open the field of applicability of
the theory of complex networks to other problems where
the representation of data as a network allows the use of
the technology developed so far.

Appendix A: Functional groups of C. elegans

Classification of functional groups of neurons resulting
from the multiple resolution method. Using the database
WormAtlas®® and the results depicted in Fig. 6 we have
identified nine groups of neurons of size lower than ten,
whose functionality can be tentatively related to a spe-
cific action. The process to assign a tentative function
to the groups of neurons has been done manually, read-
ing the associated literature and using the worm-atlas
database. We expose the list in Table I.



TABLE 1. Temptative functionality of several significant
groups of neurons found in the mesoscale.

Cluster of neurons Tentative function

RIAL, RIAR,
RMDR, RMDVR,
SMDVR, RMDDL,

Nose/Head orientation movement.

SMDDR

IL1DR, IL1VR, Head-withdrawal reflex, more re-
1L2DR, IL2VR, lated to dorsal relaxation. When
RIPR worms are touched on either the

dorsal or ventral sides of their nose
with an eyelash, they interrupt the
normal pattern of foraging and un-
dergo an aversive head-withdrawal
reflex.

Head-withdrawal reflex, more re-

L2, IL2R, OLQVL,

OLQVR, RIH lated to ventral relaxation.

ADLR, AIBR, Olfactory and thermosensation

ASEL, ASHR, reflex.

AWCL, AWCR,

ATAR, AIYL

ASGL, ASJL, Chemotaxis to lysine reflex.

ASKL, ATAL,

PVQL

DB1, DB2, DD1, Backward sinusoidal movement of

VB2, VD2, AS3, the worm, more related to touch

DA2, DA3, DA4, stimulus.

DA5

AVAL, AVAR, Forward and Backward sinusoidal

AVBL, AVBR, movement of the worm, more re-

AVDL, AVDR, lated to search for food in starving

AVEL, AVER, case, involve social feeding effect.

DA1, FLPL

AVHL, AVHR, Impossible to determine from the

AVIL, AVFL, experimental data available. There

AVFR is not any specific function known
for any of these neurons.

AVKL, ACKR, The functionality of this group

PDEL, PDER, could be related to a relaxation

PVM, DVA, WN state similar to a sleep state,
with reduced motor activity, de-
creased sensory threshold, charac-
teristic posture and easy reversibil-
ity, basically mediated by PDs

neurons.
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