Transverse structure of Lie foliations

By Blas HERRERA, Miquel LLABRÉS and Agustí REVENTÓS

(Received Apr. 7, 1994) (Revised Dec. 5, 1994)

0. Introduction.

This paper deals with the problem of the realization of a given Lie algebra as transverse algebra to a Lie foliation on a compact manifold.

Lie foliations have been studied by several authors (cf. [4], [5], [6], [12], [17]). The importance of this study was increased by the fact that they arise naturally in Molino's classification of Riemannian foliations (cf. [14]).

To each Lie foliation are associated two Lie algebras, the Lie algebra $\mathcal G$ of the Lie group on which the foliation is modeled and the structural Lie algebra $\mathcal H$. The latter algebra is the Lie algebra of the Lie foliation $\mathcal F$ restricted to the closure of any one of its leaves. In particular, it is a subalgebra of $\mathcal G$. We remark that $\mathcal H$ is canonically associated to $\mathcal F$, but $\mathcal G$ is not.

Thus two interesting problems are naturally posed: the *realization problem* and the *change problem*.

The realization problem is to know which pair of Lie algebras $(\mathcal{G}, \mathcal{H})$, with \mathcal{H} a subalgebra of \mathcal{G} , can arise as transverse and structural Lie algebras, respectively, of a Lie foliation \mathcal{G} on a compact manifold M.

This problem is closely related to the following Haefliger's problem (see [9]): given a subgroup Γ of a Lie group G, is there a Lie G-foliation on a compact manifold M with holonomy group Γ ?

The present formulation of the *realization problem* in terms of Lie algebras was first considered in [10], and [7] made a very detailed study of Lie flows of codimension 3. But a complete classification was not obtained because of the following open questions:

i) Let \mathcal{G}_{7}^{k} be the family of Lie algebras for which there is a basis $\{e_{1}, e_{2}, e_{3}\}$ such that

$$[e_1, e_2] = 0$$
, $[e_1, e_3] = e_1$, $[e_2, e_3] = ke_2$, $k \in [-1, 0) \cup (0, 1]$.

For which k is there a Lie \mathcal{G}_7^k -flow on a compact manifold with basic

This work was partially supported by the grant DGICYT PB90-0686.