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Algebraic Equations of All Involucre Conicsin
the Configuration of the c-Inscribed Equilateral Triangles
of a Triangle

Blas Herrera

Abstract. Let AABC be a triangle with side length ¢ = AB; here we present
the determination of the existence and quantity m of the c-inscribed equilateral

triangles {T, =" (ie. T, = AA;B,C; with A, € BC, B, € UA, ¢, €
@, ¢ = A;B;) of AABC in function of the position of vertex C' respect
to a separatrix parabola P;, and from an algebraic point of view. We give the
algebraic equations of all involucre conics —circles N, N;; parabola P;; ellipses
Hi, Ho— in the configuration.

1. Introduction

Many configurations linking conics and equilateral triangles with the triangle
have been described by different geometers in the past; here we give a new one. Let
AABC be atriangle with side length ¢ = AB; in this work we want to present the
determination of the existence and quantity of the c-inscribed equilateral triangles
{T,P=" (ie. T; = AA;B,C; with A; € BC, B € UA, ¢ € 4B, e = 4;B))
of AABC in function of the position of vertex C respect to a separatrix parabola
P;, from an algebraic point of view. We give the algebraic equations of all involucre
conics —circles N, N;; parabola P;; ellipses H;, H,— in the configuration.

Readers can find the construction of the c-inscribed equilateral triangles [3].
And from the kinematic point of view we are considering a well known result of
planar kinematics: we consider the motion of the point X of an equilateral triangle
APQX, where P and @ slide along straight (non-parallel) lines. It is well known
that, in the general case, the trajectory of X is an ellipse (for each of the two pos-
sible orientations of A PQ) X). Therefore, we consider nothing else than a special
case of the well known elliptic motion or Cardan motion [1], [2]. Nevertheless, in
this work, through long but straightforward calculations, we present not the well
known kinematic point of view, but the algebraic equations of the special case of
all the conics which are linked with the c-equilateral triangles which are sliding
on a triangle AABC'. More precisely, let AABC be a triangle with side length
¢ = AB, let be their equilateral triangles, of side length ¢, which are sliding on

the straight lines f@ . In the next section we present the algebraic equations
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Figure 1. The conics linked with the c-equilateral triangles which are sliding on
a triangle.

of all the conics which are linked with these c-equilateral triangles {T ;jl“ (see
Figure 1). And with these configuration equations, we present the determination
of the existence and quantity m of the c-inscribed equilateral triangles {T; }gz’ln of
A ABC in function of the position of vertex C respect to a separatrix parabola P;,
from an algebraic point of view. (see Figures 2, 3).

Of course, the triangle AABC has its other two similar configurations for its
other two sides b = AC, a = BC.

1.1. Elements of the configuration. In the following we fix, with precision, the
notation and the elements involved with the configuration (for the case of the side
AB).

Lemma 1. Let AABC be a triangle in the affine euclidean plane A2, with its
length sidec = AB, and (see Figures 1, 2, 3):

1-Let{Tpy = APsrAgiB}i—; beitsfour f-sliding equilateral triangles: i.e.
B is an arbitrary point with 8 € CA, Ag, € % and T, has its length sides
equal to ¢ = AB (see Figure 1, and the proof of Lemma 2) [thisis a special case
of the well known elliptic motion].

2.- Let N, and N; be the circumcircle of AABC, and A ABC}, the outer equi-
lateral triangle and the inner equilateral triangle of AB, respectively. Let B, and
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B; be the circumference of center C,, with radius C, A and the circumference of
center C; with radius C; A, respectively.

3.- Let P; be the parabola such that 4B and C; areits: directrix and focus,
respectively. Let P; and P, be the convex arc-connected region and the non-convex
arc-connected region, respectively, of S \. P;, where S is the semiplane, with side
fﬁ containing C; and AABC.

4.- Let H, bethelocus of the points Ps ;, when T 5, is being sliding on the pair
of the straight Imes% CA: i.e. when 5 isbeing diding on &?1 (see Figure 1,
and Corollary 6) [thisis a special case of the well known €elliptic motion].

5.- Let {T; }7 —" bethe c- mscrlbed equilateral triangles of AABC: i.e. T;

AA;B;C; with A; e% B; GCA C; efﬁ and c = A;B; (see Figures 2,
3).

The number m will be determined in the Corollary 8.

Without loss generality we can assume, along of this paper, that AB = ¢
also we can consider a Cartesian system of coordinates (x, y) such that A = (0,
B = (1,0), C = (a,b) with b > 0.

2. Results
Lemma 2. Equations (1), (2), (3), (4) are algebraic formulae of { Pg . }1 =]

Proof. Let 5y = (Aa, Ab), A € R with 8, = 3, be an arbitrary point on <(J_/i Let

A, = (14 pa — p, pb), p € R, be an arbitrary point on
With an easy calculation, we can observe that there are two points A, with
BrA, = 1, which depend on A, and with ;o = 115+ where:

pre = (A (@ — a4 1) —at 14/ (a = 1)° + (2 - 1) A,

We will put: @ = /(@ — 1)> + 0% = BC, ¥, = y/(a— 1) + (2 - \) A2
and Ay :)\(azfa+b2).

Points A,,, exist if and only if ¥, > 0 & X € [1—-%,1+ 2]. Points
Ay, exist, with A = 0, and po— = gz (—a+1—|a—1|), M0+ = &(-a+1
+ | ); and we have:

ifa—120:>A,L07:§( a—l) 2b(1—a)),A,m+:B;
ifa—1<0= A, =B Ay (b2 (a 1)2,2b(1—a)>.

It happens that B = A,,,_ M0+<:>u:0<:>1_a<:>4ABC is a right

angle. Also A, existwith A =1 = p_ = 1——and,u,1+—1+¢,,thus

A“F:(a—%,b—%)and/l#“:(a—l— tb+ )
Ingeneral, toany A € [1 — £,1+ 2]\ {O} we have that

B,
=A

A

_ (P H(a=D)(Ar£T)) bfa+1+A/\i\I/>\
Pt 2 ) o2 :
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And the two middle points M, . , of the segments A}, B, are:

AL?

M _ { O+ D)2+ (a—1)(2A3+T)) b()\+1)(7a+1)+2AA+\I/>\
Pay = 252 282 ’
M — O+ +(a—1)(2A5—T)) b(’\H)( a+1)+2A,—T
Bx— = 292 292
Then, making a calculation, it follows that: Cy,, . = (Cy,..,s Cusss, )» With
c b2+ +(a—1)(V3b(1— A)+2AA) (a—1— fb)%
M4z (1)
c _ b(A+1)(1—a)—(A— 1)fb2+2bA)\+(b V3+v/3a) Wy
Hx++y — 292 !
andalso that Cy, = (Cpy,_,, Chiy,y_, ), With
o PO )+ (a—1) (- fbu A)+2A)\) (a— 1+fb)\pA
Hx+—z — (2)
o _ b(A+1)(1—a)+(A— 1)fb2+2bAA+(b+f fa)%
Hx+—y 292
and also that C,, _, = (Cy,_,,,Cpy_, ), With
c 2D +(a—1)(VBb(1—XN)+2A, ) — (a—1—+v/3b) ¥
HXx—+z — 2P2 (3)
o _ b(A+1)(1—a)—(A—1)v/Bb2+2bA\+(—b+/3— \fa)%_
Hx—+y — 2P2 )
and also that C,, __ = (C,__,,Cy,__,), with
PO D)+(a—1)(=VBb(1-2)+2A, ) — (a—1++v/3b) ¥
Cﬂxffx - 202 J (4)
b(A+1)(1—a)+(A—1)v/3b2+2bAx+(—b—v/3+1/3a) Ty
C.U')\ffy = DYy
Where Cy, ., Cus oy Cpy 4y Cpuy are the vertices of the equilateral triangles

ACN/\++ MA+6/\’ AC}M-&- AM+/B>\' Chun- +AM,\_6>\: ACy, Ay, B, respec-
tively.

In the case of A\ = 0 it happens that: ifa —1 > 0 then Cy,,, = (%, §>
Cpoy = (5,=%)iandifa—1 < 0then Cpyy = (5.%7), G =
f) andifa—1 =0thenC =Cpuy_, = (%, @) Cuop— =Cpo__ =

Ho++

(3.-
(3

MOJ
N———

Therefore, finally we have: 8 = B\, Ag1 = Ag2 = Ay, Az = Ags =
Ay Ps1=C Pgo=C, Pg3=C Pgy=C,y . O

P+ Hat— Pa—t

With gp the rotation with angle of amplitude ¢ and with center point P: by
construction, we have that gpﬁ’l’_%(A@l) = gpm%(Aﬁ,g) = gpﬁyf%_%(Alg;g) =

9p, 4,z (Ag4) = B; and we have that the equilateral triangles APg 1 Ag 18, APg2Ap 20,

APg3Ag 33, APg 4Ag 43 are not coincident.

Along all the paper we will put & = \/(a —1)* + b2, Ay = A (a® — a + b?)

and W, = /(a — 1)° + (2 — \) A2,
The following lemma also is a Definition:
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Lemma 3. Let H;, H, be the two conics determined by: both conics have the
center point C, the outer and inner bisectors of the angle Z/ AC' B are the axes of

the both conics, the two points C; = (%, §> and Cy,,, = (a + %;b\/g, b+

w> belong to #;, the two points C,, = (%, —@) and C,,,, = (a+

= N b+(12_¢“)‘/§> belong to #4,.

Then we have:

‘H; iscircumference < C' € B;, in this case H; has equation (5);

H, iscircumference & C' € B,, in this case H,, has equation (6);

ifa = % it happensthat b # @ < H; isdlipse, inthis case H; has equation
(7);

ifa = % it happensthat b = 1 + § < H; is circumference, in this case H;
has equation (8);

ifa = % it happens that b = § < H; isapair of coincident straight lines
parallel to f@ in this case H; has equation (9);

ifa = % it happens that b # % & H, isdlipse, in this case H,, has equation
(10);

ifa = % it happensthat b = 1 — @ & H, is circumference, in this case H,,
has equation (11);

ifa = % it happensthat b = ? < H, isa pair of coincident straight lines
orthogonal to j@ in this case #; has eguation (12);

ifa # %, ithappensthat C ¢ B, < 7, isnot circumference, in this case #; has
equation (13);

ifa # % it happensthat C' ¢ B, < H, is not circumference, in this case H,
has equation (14).

Proof. Let  be a conic, its equation is H = £x2+(y?>+ Day+Ex+Fy+G = 0;

G 3E iF
and M = %E 1S %D is its associated matrix with its algebraic parame-
oF 3D ¢

1
ters: T' = trace (Myy), U = det M11 + det Moo, where Myy = ( B 3D >

1 1 %D C
My = ( %? QFC ) andM22: < %g 2E§ )

From now, we consider that the inner and outer bisectors of the angle ZACB
are the axes of .

By requiring that C' is the center 7, we have two possibilities: the bisectors of
/ACB are parallel to the coordinate axes, or they are not; and these two possibil-
ities are equivalent to a = 3 or a # 3. Therefore, if = 5 then the axes of  are
parallel to the coordinate axes; but if a # % then the axes of # are not parallel to
the coordinate axes unless H is circumference.

Now, whatever the value of a, we first consider that #H is circumference with
center point C'. By imposing the circumference 7 passes through the point C; =
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(%, 73) we have
H =22+ y> —2ax —2by —1+a+bV/3=0. (5)

By imposing the circumference # passes through the point C, = (%, —§> we
have

H=a?+y?>—2ax — 2y —1+a—bV/3=0. (6)

And if H' = H, passes through the point C,,, , , then a® 4+ b*> —a — bv/3 = 0; also
if 71° = H,, passes through the point C)/ . then a® 4+ b? — a + bv/3 = 0.

The equations of B; and B, are B; = 22 + ¢y?> — 2z — yv/3 = 0 and By =
22 + y? — x + yv/3 = 0 respectively. Accordingly, if the conics #;, H, are
circumferences then C' € B;, C' € B, respectively.

The inverse assertion is true, i.e. if the conics H; and #, have their centers
C € B; and C € B,, respectively, then they are circumferences; we will prove
later this inverse assertion.

Now, regardless if # is a circumference or not, we consider the case of a = %
Then we have that the axes of H are parallel to the coordinate axes; which implies
that the matrix Ago has the eigenvectors {(1,0), (0,1)}, which algebraically im-
poses that D = 0. Then H = &x% + Cy? + Ex+ Fy+G = 0. But,  is conic with
center, then H is not a parabola; and then, algebraically, the value 0 is discarded
as eigenvalue of Agyg, so £ # 0 and ¢ # 0. Therefore, without loss generality, we
can consider that ¢ = 1, and we have that H = 2% + 4> + Ex + Fy + G = 0.
Moreover C' is center point of #; then, with a = % analytically we have that

1 1
{ 2¢ +1 2B =0 , Which implies that H = —Ex? + y> + Ex — 2by + G = 0. If
H also passes through the point C; then we denote the conic as ¢, and has the fol-
lowing equation: H' = — (=3 4+ 4bv/3 — 4G) 22 + y? + (-3 + 4bv3 — 4G) z —
2by + G = 0. Similarly, if H also passes through the point C,, then we denote the
conic as #°, and has the following equation: 7° = — (—3 — 4bv/3 — 4G) 2? +
Y2+ (=3 —4bv3 — 4G) z — 2by + G = 0.

We impose now that '’ passes through the point C”/

‘ . Witha = Jand b #
/3, then we have that H! = H, with

;= 4862 (2b — v/3) w2 + 4 (6b + V/3)” 4% — 4862 (2b — V3) &
—8b (6 + v3)° y + 3 (86° + 1262V/3 — 6b — v/3) (2b+ v/3) = 0.

With b #£ %\/3 the conic #; has the algebraic parameters: det A = —192b%(2b—

VBYA(6b + VB)E #£ 0, det Agy = 19267 (2b — v3)* (6b+ V3)" > 0, T =
48b%(2b— V/3)? + 4(6b + +/3)% and T'det A < 0; therefore #; is a real non-
degenerate ellipse. Ifb =1 + %\/3 i.e. C € B;, then

(")

Hizx2+y2—x—<2+\/§)y+l+\/§=0. (8)



Algebraic equations of all involucre conics 229

and H; is a circumference of radius 1. If b = %\/gthen the conic #; degenerates to

3
’HiEyQ—\/gy%—Z:O, 9)

with £ = 0, whose algebraic parameters are: det A = 0, det Agyp = 0, U = 0;
therefore H; is the pair of coincident straight lines {y = 3v/3}, {y = 1V/3}.

We impose now that 7° passes through the point C/’i’Hi,with a = % and b #
1V/3, then we have that 7£° = #, with

M, = 4862 (2b+ v/3) 22 + 4 (6b — v/3) 42 — 4802 (2b + v/3)
—8b (6b — v/3) y + +3 (865 — 1262v/3 — 6b + v/3) (2b — V/3) = 0.

With b # /3, the conic #, has the algebraic parameters: det A = —192b%(2b+
6

V3)4 (6b — v3)4 £ 0, det Ay = 19262 (2b+ v/3)” (6b— V3)* > 0, T =

480 (2b+ /3)% + 4(6b — v/3)% and T'det A < 0; therefore H, is a real non-
degenerate ellipse. If b = 1 — $1/3, i.e. C € B,, then

(10)

Hozx2+y2—x—<2—\/§>y+l—\/§:0, (11)
is a circumference of radius 1. If b = %\/3 then the conic H,, degenerates to
1
Hozx2—x+1:o, (12)

with ¢ = 0, whose algebraic parameters are: det A = 0, det Agg = 0, U = 0;
therefore H,, is the pair of coincident straight lines {z = 1}, {z = }}.

We have just seen that if a = % and C € B;, C ¢ B, then H;, H, are cir-
cumferences, respectively. Let’s see what is also true with a # % If C €
B,, then is easy to calculate that C is at the same distance from C, to CI’L’H;
But the three points C,, C;j1+_ and C € B,, are not aligned. To prove the
above assertion: if we impose that ((a + “‘1;;1}"/5, b+ b+(12_§)‘/§) — (a, b)) -
e! ((%,—§> — (a, b)) = (0,0), then this implies that o = —‘géﬂ‘l/)g and
3a2 + 3b% — 3a + bv/3 = 0. But moreover a? + b2 — a + bv/3 = 0, then nec-
essarily C = (0,0) = Aor C = (1,0) = B, in contradiction. Therefore: C
is at the same distance from C, to CZH,, they are three not aligned points, and
C is center of symmetry of the conic #H, which passes through C, and CI’;HJ
then H, is a circumference. Similarly: if C' € B;, then is easy to calculate that
C is at the same distance from C; to C/’jl ., But the three points C;, c”

M1+
and C' € B;, are not aligned. To prove the above assertion: if we impose that

<<a + “_lzjbb\/g,b + b+(a2_¢1)\/§> - (a,b))—a ((%, @) — (a, b)) = (0,0), then
this implies that o = %ﬁbf{g and 3a2 + 3b%2 — 3a — bv/3 = 0. But moreover
a® + b —a — by/3 = 0, then necessarily C' = (0,0) = Aor C = (1,0) = B,

in contradiction. Therefore: C is at the same distance from C; to CZ1++’ they are
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three not aligned points, and C' is center of symmetry of the conic #; which passes

through C; and CL’lH, then H; is a circumference.

Now we consider the case of a # 3.

The axes of # are not parallel to the coordinate axes unless that any straight
line through C' is axis of #, and then A is circumference. Algebraically, H is not
circumference if and only if the vector {(1,0), (0, 1)} are not eigenvectors of My,
then H is not circumference if and only if D # 0.

We consider that # is not circumference (if # is circumference then is already
a studied case) and we can assume that D = 1, so that H = &2 + (y? +

zy + Fx + Fy + G = 0. The vectors 7+ = (6—7+ (ﬂ—7)2+1,1>,
U = <ﬂ —y =/ (B=)+1, 1) are eigenvectors with eigenvalues 33 +

L (B=)+ 1,48+ 1y = 14/(B—7)* + 1, of My, respectively. Then
7+, 7 are directlon vectors of the axes of H. The inner and outer bisectors

of the angle ZACB are directed by v’ = (a,b) W + (a —1, b)\/ﬁ

, U = (a,b) m — (a — 1,b)m. Then we have the proportionality
Uy = vy, W =V, which implies, with  # 3, that 8 = §50552 + ¢;
s0: H = (“(;Lf Ia +(> u? + Cy? + 2y + Ex + Fy+ G = 0. By |mposmg that
(a,b) is the center H we have: ¢ = —% £ F= (;ibi) + £ which

implies that ¢ = —15EE Therefore:

1b+FE 43202 a
W LV E e s pert 2y (gt ) 4G =0
a
And by imposing that H = #° passes through the point C, = (%, —£> and by

computing we obtain

G — 3a3—3a+ab?—2b%—/3ab—2v/3b°+ Eb(6a—2—4a2+4v/3ab—2v/3b)
o 4ab(2a—1)

for the conic H°. ‘
Also, by imposing that £ = #* passes through the point C; = (%
computing we obtain

\%

) and by

3a3—3a?+ab?—2b%++/3ab+2v/3b°+ Eb(6a—2—4a2 —4v/3ab+2v/3b)

Gi = 4ab(2a—1) '

for the conic #°.
Now, considering that a 7é 1 and also that a® + > — a — bv/3 # 0 because
C ¢ B; -H is not cwcumference by imposing that H! = #; passes through the

i o a?4+b%+a—bV3 i )
point Cy,,, . we have E; = b(a2+b27a7b\/§)(2a71)' The above expression of E;

14+
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implies that:
G — (3a3—6a2—a2\/?:b+3a+3ab2—6b2+\/§b—\/§b3)(3a+b\/§)
v 12b(a2+b%—a—bv/3) (2a—1) '
H, = —b a’?4b%—a—~/3b41 2 a*-2d34a%b?+a?—a?V3b—ab?++/3ab+b?, 2
v (a2+b27a7b\/§)(2a71) b(a2+b27a7b\/§)(2a71) Y
a?2+b2+a—+/3b . a3 —a?+ab%—+/3ab—2b? —
Ty o+ b(a2+b2—a—b\/§)(2a—l)x (a2+b2—a—b\/§)(2a—l)y +Gi=0.

(13)
Similarly, considering that a # %, and also that a? 4 b? — a + byv/3 # 0 because
C ¢ By -H is not circumference- by imposing that #° = H, passes through the

. o a2+b2+a+\/§b .
point C,, _ we have E, = b(a2+b27a+\/§b)(2a71)' The above expression of £,
implies that:
G — (3a376a2+a2\/§b+3a+3ab276b27\/§b+\/§b3)(Bafx/gb)
o 12b(a2+b2—a++/3b) (2a—1) '
H o =_ a?+b%—a+v3b+1 2 a*—2a3+a?b?+a’+a?v3b—ab?—/3ab+b% 2
o= (a2+b2—a+\/§b) (2a—1) b(a2+b2—a+\/§b> (2a—1)
a?+b*>+a++/3b _ a®—a®+ab’>++/3ab—2b2 _
TrY o+ b(a2+b2fa+\/§b)(2a71)x (a2+b27a+\/§b) (2a71)y +Go=0.
(14)
(]

And, as a result of the above lemmas, in short we have the following algebraic
equations

Theorem 4. The conics H;, H,, have the equations:

H; = —b%(a® + > —a —V3b+ 1)2? — (a* — 20> + a®b? + a® — a®V/3b
—ab® 4+ v/3ab + b?)y? + b(a® + b* —a — bV3) (2a — 1) zy + b*(a®> + % +a
—V/3b)z — b(a® — a® + ab?* — V3ab — 2b)y + £ (3a® — 6a? — a®V/3b+ 3a
+3ab? — 6b> + v/3b — V/3b%)(3a + bV/3) = 0;

(15)
Ho = —b%(a® + % — a +V3b+ 1)a? — (a* — 243 + a®b? + a® 4 a®V/3b
—ab® — V/3ab + b*)y? + b(a® + % —a +V/3b) (2a — 1) zy + b*(a®> + % + a
+V/3b)x — b(a® — a® + ab? + V3ab — 20y + %(3@3 — 6a2 + a2V/3b+ 3a
+3ab? — 6b% — /3b + /3b%)(3a — v/3b) = 0.

(16)

Now, the following Proposition 5 and the Corollary 6 are consequence of a spe-
cial case of the well known elliptic motion; but we can get these results with alge-
braic arguments using the above Theorem 4:

Proposition 5. The two conics H;, H,:

1.- aredlipsesifandonly if C' ¢ N; and C' ¢ N, respectively.

2.- are a pair of coincident straight linesif and only if C € N; and C € N,,
respectively; and they are outer and the inner bisectors of the angle ZACB , re-
spectively.

3.- arecircumferencesif and only if C € B; and C' € B,,, respectively.
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Proof. The affirmation 3 has previously been shown in the proof of the previous
theorem. Then here we consider the affirmations 1 and 2 in the case C' ¢ B, and
C ¢ B,.

The equations of N; and N, are: N; = 22 + ¢? — z — —fy = 0and Ny =
$2+y2—x+%\/§y20.

Ifa = % then the affirmations 1 and 2 have previously been shown in the proof
of the previous theorem.

Let us consider then a # 3.

The algebraic parameters of H,, are:

(3a2+3b2—3a+\/§b)4 ot Ay — (3a2+3b2—3a+\/§b)2 |
144b(a2+b2—a+fb) (2a—1)3 12(a 2+b2—a+fb) (2a—1)2

T = _ 2a%h%— 2ab2+2b%+b*+/3b3+a* —2a3 +a?+a3/3b— \[ab
b(a2+b27a+\fb)(2a 1)

where b # 0, 2a — 1 # 0 and a® + b> — a + v/3b # 0 because C' ¢ B,,. Moreover if

det A =

a, [ 2 a
C ¢ Npthendet A # 0, det Agg > 0,and T'det A = — 11, ;<( :>+(; +ibf b:; (+2fb1))

with ¢(a, b) = 2a2b? — 2ab? 4 2b% + b + /363 + a* — 24> + a? + a®/3b — /3ab.
We have that ¢(1,1) > 0 and the equation ¢(a,b) = 0 has the four roots:
a =34+ 3V1+2i0V5 —4b2 —2v/3b, a = & — 1\/1 4 2ibv/5 — 4b2 — 24/3b,
a=14+1V1-2b5—4b2—2v3b,a =} - 1\/172be 4b% — 21/3b,
which are real roots only if b = 0. Therefore TdetA < 0 and then H,, is a real
non-degenerate ellipse. But, if C' € Ny then det A = 0, det Agp = 0, and

—/3(36%4+2v/3b2+a2b%/3—2V/3ab?+3a2b—3ab+a?/3+a* /3 2a3\f)(3a2+3b273a+\/§b)2

U=

3662 (a2 +b2—a+V/3b)” (2a—1)?

with U = 0. Therefore if C € Ny then H,, are two coincident straight lines; and,
by construction of #,, they are the inner bisectrix of the angle ZACB.
The algebraic parameters of #; are:

(3a2+3b2—3a—\/§b)4 det A — (3a2+3b2—3a—\/§b)2
144b(a? 52 —a—/3b)" (2a-1)*" 00— 12(02 £42 0 yB) " (20—1)?
T — _ 206> =2ab>+2b+b* —/3b% +a’ —2a%+a’ —a®v3b++/3ab

b(a2+b2—a—/3b)(2a—1)

where b = 0, 2a — 1 # 0 and a® 4+ b? —a —/3b # 0 because C ¢ B;. Moreover if
a a2 2_34_ 4
C ¢ N; then det A # 0, det Agy > 0,and T det A = — L #3038 ~3a— Vi)

det A =

144 b2 (a2+b27a7\/§b)4(2a71)4
with 1 (a, b) = 2a%b? — 2ab? + 202 + b* — /3% + a* — 243 + a® — a®\/3b+ /3ab.
We have that ¢/(1,1) > 0 and the equation v(a,b) = 0 has the four roots:
a =14+ 1V/14 25 — 462 +2v3b, a = 3 — 33V/1+ 2ibv/5 — 4b2 + 2/30,
a=1+1V1-25 46> +2v3b,a =} - 7J1—2zb\f 4b% + 21/3b,
which are real roots only if b = 0. Therefore Tdet A < 0 and then H, is a real
non-degenerate ellipse. But, if C € N; then det A = 0, det Ayg = 0, and

V/3(363 ~2v/3b2 —a2b2V/342v/3ab? +3a2b—3ab—a2 3 —a'v/3+2a%V/3) (324362 —3a—/3b) >

3662 (a2+b2—a—v/3b)” (2a—1)?

U=
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with U = 0. Therefore if C' € N; then H; are two coincident straight lines; and,
by construction of H;, they are the outer bisectrix of the angle ZACB. O

With the Lemma 2 and the Theorem 4, we can prove algebraically the following:

Corollary 6. Let {Tj, = APs . Ag 8}, =, then:
1.- H;=H1 U H3 isthe geometrical locus of the vertices P31 and Py 3.
2.- Ho=H2 U H4 isthe geometrical locus of the vertices Pg » and Pg 4.

Proof. With a very lengthy and straightforward calculation we can check the result
in all its parts and implications.

Let us see a case, let us see, for example, the explicit calculations that show that
Cuysy = Pp1 € H;. Using the Equations (1), (15) we must to prove that

AFAna’ b —a—/3b+1 2
101t Cus, +.)
4—2a3+a2b2+a2—a2\/§b—ab2+\/§ab+b2) (

gl .
+491 (Cl2 +b>—a— b\/g) (2a=1)Cuyy, Chixisy

+4(I>4ba2+b245a7\/§b C,u,,\ _ 4@4 a®—a’+ab®>—v/3ab—2b? C

z Ha++y
(3a®—6a%—a2v/3b+3a+3ab?—6b24++/3b—V/3b° ) (3a+bv/3) 0
126 -

2
CNA++y)

+4P4

Then: with a very lengthy and straightforward calculation we have

_ 41 a?+b%2—a—+/3b+1 2
¥y = —40% 1 (CHA++I)
4(1)4 (a4—2a3+a2b2+a2—a2 \/gb—ab2+\/§ab+b2) (

5 C

2
M++y) !

where

U, = —4b — 3v/3a — 4\b? + v/3b% — 80ba* + 100ba® + 4ab® — T0ba? + 26ba
—11a2b® + 4b*/3 + 6U\b® — 6ba’ + 34ba® + 2465\ — 18D°\? + 22a°b3
—12a*b® — 10a2b° + 22b°a + 3b5+/3 — 106° Wy — 46"\ — 267 \2 — 56b°a
—15822a%b3 — 78a% A% — 18U ab® + 8a?\b? — 944?263 + 20a)2b3
—44/3a3b? — 10T\ A63 — 8v/3b*\ + 64/3b*\2 + 20, /3b* — 3a*\/3b2
+3a%b*/3 + 1262 \b3 + 88a° \2b3 + 56a3A2b° + 4a°b3\ — 4a3bO\
+10a%v/3b% — 61/3ab? + 12a\b® + 168\2b%a® + 641%b°a — 9b*\/3a

—32b3 a3 — 4aVv/3b? )\ — 8v/3a*b? )\ — 16v/3a3b? )\ — 48v/3a2b* )\
+16v/3ab? )\ + 86a*v/3b2\2 — 58a®v/3b2 A% + T6a%V/3b*\? + 18a21/3b%\2
—2v/3b202a — 10U a2v/3b% — 52U, a2 \b? + 40 av/3b2 + 32v/3ab* )
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—34/3ab*\2 4 4V \/3b2\ + 20, v/3b*\ — 8a8v/3b2\ + 20a5/3b2\
—16a*v/3b*\ 4 16a°v/3b%2)02 — 60a°v/3b222 + 32a*V/3b* A% — 2a* T /3b?
—16a*T\N\D? + 842U v/3b? + 40a3v/3b* X — 80a®v/3b4 A% — 8b5+/3a2\
+166%a2v/3A2 + 4003 T a3\ — 8BPW a2\ + 2005v/3al — 200%+/3a)?
—265W /3 — 8P W \a\ — 106bW \a* X\ + 1106 \ a3\ — 54bT ya?\
+10bT\\a — 8bal U\ + 48ba® Wy \ — 363 — 166° — b7 + 54T \a?v/3b3\
—24Wav/3b2\ — 24a8X20% — 24a*N2° 4 12a* \b® + 2a°+/3b2 4 32a%b° )\
+8b"A2a — 20%v/3a — 4b7aX — 8b7a?A\2 + 4b5Wya + 6bOWH N — 8b0+/3\
+6b5v/3A2 + 2050 /3 — 82bA2a8 + 88bA2a® — 52bA\2a* 4 16bA2%a®
—2bX2a? — 8baB®\? + 40ba" N2 — 560 \/3b2\a® — 8W,/3b*a)
+6a2 W\ v/3b*N + 26a* T /302 — 4a° T\ /362X + 4a3 T ,/3b*\
+465W 5 v/3aX — 8bAa? — 22at + 183 — 22 — 4346 4 g5 — 248

+1847 + 20,502 V3X — 120,V/3Aa?® + 28a U\ V/3X — 32a° W, v/3A
—8a° U V3 4 20, a2V/3 + 12a* T, v/3 — 843U, v/3 + 3803 W a\ + 2480, /3
+17a%V/3 + 36bAa® + 6% \a — 40v/3a® + 50a*V/3 — 14ba T\ + 56ba’ A
+6ba’ Wy — 64ba* X — 35a°V/3 + 13a5v/3 + 6ba* Uy + 4ba”\ — 4ba® T
—24baS\ — 2a7/3 — 2ba?Wy/3 + 18aSW /3 — 4a" ¥ \/3\ + 2b%a®V/3,

and we have

C

Hxt4y!

\1/2:4q>4<a2+b2—a—b\/§) (2a—1)C

Hx++z
where

Uy = 3b+ v/3a + 603 + v/3b% — 5ba* — 20ba® + 32ab> + 30ba? — 16ba
—40a2b® — 14U, b® — 4bab + 12ba® — 28D°\ + 18b°\2 + 16a°b® + 4a2b°
—120%a — b9/3 + 265Ty, — 267\ + 207\ + 80b%a\ + 158)\2a*b?
+78a2\2b° + 420 ab® — 48a2 Ab® + 94a2M\?b3 — 20a\2b® — 16v/3a®b?
+10W A3 + 8v/3bA\ — 64/3b4A2 + 2W,\v/3b* + 9a*V/30? 4 3a%b*V/3
—28a2W b3 — 88a°\2b® — 56a3A2b° — 4aPb3\ + 4a3b°\ + 14a2/3b?
—6v/3ab? — 4a\b>® + 2W /3% — 168)\2b%a3 — 64\2b°a — b*V/3a

+80b3N\a® + 4av/3b2\ + 8v/3a*b2\ + 161/3a3b2 X + 48v/3a2b*\
—16v/3a2b? )\ — 86a* /322 + 58a3v/3b2\2 — 76a2\/3b*\?

—18a2v/3b2)2 + 2¢/3b2\2a + 260, a2/3b2 + 52U a2 A3 — 120 av/3b?
—32/3ab*\ + 34v/3ab*\2 — 4V /362X — 2W,/3b*\ + 8aS/3b2\

—20a° /362X + 16a*v/3b*\ — 16a5v/3b%)\2 + 60a°/3b2\2 — 32a* /34 \2
+8aW /362 4 16a* W\ \b® — 24a3 T ,/3b% — 40a3v/3b* \ + 80a3 /3 \2
+8b9v/3a2 )\ — 16b5a2v/30% — 4063 \a®\ + 8b° U a2\ — 8b* Wy av/3
—2005v/3a\ + 2008v/3ar? + 265W \\/3\ + 8BO W ra\ + 106bT \a* A
—1106Wya® X + 54b% \a? X — 106U\ Aa + 8bal W\ — 48ba’ W\ \ — 8b% + 5b°
—54W 5 a?V/302\ + 24T av/3b2\ + 24a5 2203 + 24a*N\2D° — 30a*\b?
—2a°v/3b% — 50a2b°\ — 86" A2a + 205/3a + 4b7a + 8b7a?\? — 465 a
—6b° WA\ + 8b0/3X — 6b9/3A% + 82bA2a8 — 88bA2a® + 52bA2a* — 16bA%a’
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+2bX\2a2 4 8ba®A? — 40ba” A2 + 56U \v/3b%Aa? + 8W,v/3b*a\ — 6a2 Ty v/3b4\

—26a* W \v/3b2\ + 4a° /302X — 462U\ /364X — 465T \/3a\ + 2b\a?

—2U,a2v/3\ 4+ 120,v/3Xa® — 28a* T\ v/3\ + 32a° T /3 — 3803 T \a\

—7a%V/3 — 12bAa® + 2bW ya + 20v/3a® — 30a*v/3 — 10ba? T\ — 32ba’\

+18ba3 Wy + 28ba* X + 25a°v/3 — 11a8v/3 — 14ba* Uy — 4ba"\ + 4ba® U,

+18baS\ + 2a7/3 + 8b*a? W /3 — 18a8W\v/3\ + 447U \v/3\ — 2b%a3/3,
and we have

Uy = 4ptpttitavib o

4 a3 —a?+ab%—/3ab—2b%
— 42 1 C#A++y’

A++x

where
Uy = —2X\b% + 12ba* — 8ba® — 24ab® + 2ba® + 24a%b3 + 8V ,\b°
+2ba8 — 8ba® + 4b°\ — 16a3b> + 6a*b? + 6a2b® — 8b%a + 8HO W),
+6b7 A — 24b5aX — 24U ab® + 40a2 A3 — 4V /3b* + 1642 T\ b?
—8ab® — 2W,/3b% — 48b°\a® — 16T \a?v/3b? + 8T \av/3b?
—6a*U\\/3b% + 1663 \v/3b% + 8b* W \av/3 + 1063 + 120° + 2b7
+18a* b3 + 18a2b° X — 2b5W /3 4 6bAa? + 8a° ¥ )\V/3 — 2W, a2V/3
—12a* U \v/3 + 8a3Wv/3 — 24T, /3 — 24bAa® — 8bW \a + 24ba’ T
—24ba® X — 24ba® Wy + 36ba* X + 8bat Wy, + 6ba®\ — 6b*a?Wy\/3.

And with all these, simplifying, we arrive to

3a3—6a2 —a2v/3b+3ab%+3a—6b2+/3b—/3b3) (3a++v/3b) (a2 —2a+1+b2 2
\I’1+‘I/2+\I’3:—%( )( )( )

b

3a3—6a2—a2v/3b+3a+3ab% —6b2++v/3b—/3b3) (3a+bv3
and then \IJ1+\IJ2+\IJ3_|_4(I)4( ¢ a—a aroa 95 )( @ )

0, finishing the calculation. O

Now, in the following, with the Theorem 4, we present the determination and the
construction with ruler and compass, with Equations (15), (16), of T; = AA;B;C;
the c-inscribed equilateral triangles of A ABC (Figures 2, 3). Of course the follow-
ing proposition 7 also is consequence of a special case of the well known elliptic
motion; but, with our approach, we give the algebraic formulae (17), (18):

Proposition 7. The conic H,:

1.- with C € N,, isa pair of coincident straight lines which intersect in one
point with A7. (Figure 3c)

2.- with C' ¢ N,, is an ellipse which intersect in two points with fﬁ (Figures
2, 3a, 3b, 3d)

The algebraic formula of the above intersectionsis (17).

The conic H;:

3.- with C = C;, isa pair of coincident straight lines parallel to f@ and if
C € N; ~\ C; thenisapair of coincident straight lines which intersect in one point
with f@ (Figure 3d)

4-withC e P, \N;, C € P;\N;, C € P; \ N, isan elipse which: intersect
in two points (Figures 2, 3c), is tangent (Figure 3b), not intersect (Figure 3a),
respectively with AB.

The algebraic formula of the above intersections is (18).
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Figure 2. H,, H; and T; = AA;B;C; the c-inscribed equilateral triangles of AABC.

Proof. The equation of P; is 22 — x4+ 1 = /3y, the equation of P; is 2> —z 41 <
V/3y, and the equation of P, is 22 — = + 1 > /3y with y > 0.
With Equation (16), we have that:

H oA f@ _ ( 1 3b343v/3b2+3ba?+3batv/3v/A1 0>
(0] - 5 y

6 (a2+b2—a+v/3b+1)b
A= (V3b+a®—a+1) (3b2+\/§b—3a+3a2)2,

17

and moreover 3b>°+3a%2—3a+v3b=0< C € N, = Homﬁ = (%%,

0). Note that a® + > —a + v/3b+1 > 0and v/3b+ a®> —a + 1 > 0.
With Equation (15), we have that:

) _ [ 13b3—3v3b%+3ba®+3bat/3/As
Hin j@) B (6 (a2+b2—a—/3b+1)b ’O> '

Ay = (—v3b+a? —a+1) (362 — V3b—3a + 3a2)°,

(18)

and a2 +82 —a—V/3b+1 =0 C = C; = (4, %) and 36— v/3b— 30+ 3% =
0 < C € N;. And moreover —/3b+a%2—a+1=0< C € P;;and —/3b+a%—
. . 4 — (1_0*—V3Bbt+a’+a
a+1>0&CeP, AlsoC e N; UP; :>’Hmf@_ <2a2+b27a7\/§b+1’0)'
So these calculations together Proposition 5 prove the result.

Accordingly, through the above we can arrive to the following:
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Figure 3. Several cases for H,, #; and T; = AA;B;Cj.

Corollary 8. Oneverytriangle AABC existsits c-inscribed equilateral triangles
{Tj};.jl” withm =4, m =3, m=2,ifC eP,, C € P;, C € P;, respectively.
(Figures 2, 3)

Proof. Let the triangle T; = AA;B;Cj, then by construction and with Lemma
1, necessarily C; € { Pz }7=1, and with Corollary 6 we have that C; = Pj; €
(#: 0 T8) U (1,0 TB).

If T; exists then by Lemma 1l Cy = Pg 1, C3 = Pg3,Cy = Pgoand Cy = Pg 4.

If C e P, ~ N, or C € Cj, then, by Proposition 7, Ty = AA;B1Crand T3 =
A A3B3Cs3 do not exist.

If C € P; UN; then the triangles T; = AA;B1Ciand T3 = AA3B3C3 do

not exist. This claim is true because in this case C1 = C3 = P31 = C,,,, =

Pgs = Cpuy_, = HiN f@ and #; is the outer bisectrix of the angle ZACB
(Proposition 5). And, by continuity, exists two straight lines »/, r at the both sides
of the H; which are parallel to 7; and also they are the outer bisectors of two
triangles AABC" and AABC”, respectively, which have the same N;, but which
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have C' € P; \ N;, C” € P; ~ N;. Therefore, by Proposition 7, these bisectors
r’, " intersect to 1@ in two points at distance greater than 1 from the straight line
AC" and from the straight line AC”. So, this implies that #; N f@ also is a point
at distance greater than 1 from the straight line f@

If C € P; ~ N; then H; is ellipse tangent to fﬁ then only one of the two
triangles T+, T3 exist; then by continuity the same is true the case that C' € P;NN;.

If C € P, the two triangles Ty, T3 exists and, by Lemma 1, they are not coin-
cident.

The triangles Ty = AA;ByCo, Ty = NA4B4Cy, by Lemma 1, they are not
coincident, and by Corollary 1 and Proposition 7, they always exist. O

Remark 9. If T; existsthen it is constructible with ruler and compass because the

points <HZ N f@) U (Ho N f@)) are contructible with ruler and compass; this

claimistrue because Formulae (17), (18) of Proposition 7 are quadratic rationals
of the numbers a, b, which have been already constructed, they are the coordinates

of C'. Theother points A;, B; aretrivially obtained asintersection of thesides BC,

C'A with the circumference of radius c and center point C;. Then, with Formulae
(17), (18) we can construct T; with ruler and compass, nevertheless readers can
found much more elegant constructionsin [3].
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