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Algebraic Equations of All Involucre Conics in
the Configuration of the c-Inscribed Equilateral Triangles

of a Triangle

Blas Herrera

Abstract. Let�ABC be a triangle with side length c = AB; here we present
the determination of the existence and quantity m of the c-inscribed equilateral
triangles {Tj}j=m

j=1 (i.e. Tj = �AjBjCj with Aj ∈ ←→BC, Bj ∈ ←→CA, Cj ∈←→
AB, c = AjBj) of �ABC in function of the position of vertex C respect
to a separatrix parabola Pi, and from an algebraic point of view. We give the
algebraic equations of all involucre conics –circles No, Ni; parabola Pi; ellipses
Hi,Ho– in the configuration.

1. Introduction

Many configurations linking conics and equilateral triangles with the triangle
have been described by different geometers in the past; here we give a new one. Let
�ABC be a triangle with side length c = AB; in this work we want to present the
determination of the existence and quantity of the c-inscribed equilateral triangles
{Tj}j=mj=1 (i.e. Tj = �AjBjCj with Aj ∈ ←→BC, Bj ∈ ←→CA, Cj ∈ ←→AB, c = AjBj)
of �ABC in function of the position of vertex C respect to a separatrix parabola
Pi, from an algebraic point of view. We give the algebraic equations of all involucre
conics –circles No, Ni; parabola Pi; ellipsesHi,Ho– in the configuration.

Readers can find the construction of the c-inscribed equilateral triangles [3].
And from the kinematic point of view we are considering a well known result of
planar kinematics: we consider the motion of the point X of an equilateral triangle
�PQX , where P and Q slide along straight (non-parallel) lines. It is well known
that, in the general case, the trajectory of X is an ellipse (for each of the two pos-
sible orientations of �PQX). Therefore, we consider nothing else than a special
case of the well known elliptic motion or Cardan motion [1], [2]. Nevertheless, in
this work, through long but straightforward calculations, we present not the well
known kinematic point of view, but the algebraic equations of the special case of
all the conics which are linked with the c-equilateral triangles which are sliding
on a triangle �ABC. More precisely, let �ABC be a triangle with side length
c = AB, let be their equilateral triangles, of side length c, which are sliding on
the straight lines

←→
AB,

←→
BC. In the next section we present the algebraic equations
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Figure 1. The conics linked with the c-equilateral triangles which are sliding on
a triangle.

of all the conics which are linked with these c-equilateral triangles {Tj}j=mj=1 (see
Figure 1). And with these configuration equations, we present the determination
of the existence and quantity m of the c-inscribed equilateral triangles {Tj}j=mj=1 of
�ABC in function of the position of vertex C respect to a separatrix parabola Pi,
from an algebraic point of view. (see Figures 2, 3).

Of course, the triangle �ABC has its other two similar configurations for its
other two sides b = AC, a = BC.

1.1. Elements of the configuration. In the following we fix, with precision, the
notation and the elements involved with the configuration (for the case of the side
AB).

Lemma 1. Let �ABC be a triangle in the affine euclidean plane A2, with its
length side c = AB, and (see Figures 1, 2, 3):

1.- Let {Tβ,k = �Pβ,kAβ,kβ}k=4
k=1 be its four β-sliding equilateral triangles: i.e.

β is an arbitrary point with β ∈ ←→CA, Aβ,k ∈ ←→BC, and Tβ,k has its length sides
equal to c = AB (see Figure 1, and the proof of Lemma 2) [this is a special case
of the well known elliptic motion].

2.- Let No and Ni be the circumcircle of�ABCo and�ABCi, the outer equi-
lateral triangle and the inner equilateral triangle of AB, respectively. Let Bo and
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Bi be the circumference of center Co with radius CoA and the circumference of
center Ci with radius CiA, respectively.

3.- Let Pi be the parabola such that
←→
AB and Ci are its: directrix and focus,

respectively. Let Pi and Po be the convex arc-connected region and the non-convex
arc-connected region, respectively, of S � Pi, where S is the semiplane, with side←→
AB, containing Ci and�ABC.

4.- LetH
k

be the locus of the points Pβ,k when Tβ,k is being sliding on the pair

of the straight lines
←→
BC,

←→
CA: i.e. when β is being sliding on

←→
CA (see Figure 1,

and Corollary 6) [this is a special case of the well known elliptic motion].
5.- Let {Tj}j=mj=1 be the c-inscribed equilateral triangles of �ABC: i.e. Tj =

�AjBjCj with Aj ∈ ←→BC, Bj ∈ ←→CA, Cj ∈ ←→AB, and c = AjBj (see Figures 2,
3).

The number m will be determined in the Corollary 8.
Without loss generality we can assume, along of this paper, that AB = c = 1;

also we can consider a Cartesian system of coordinates (x, y) such thatA = (0, 0),
B = (1, 0), C = (a, b) with b > 0.

2. Results

Lemma 2. Equations (1), (2), (3), (4) are algebraic formulae of {Pβ,k}k=4
k=1.

Proof. Let βλ = (λa, λb), λ ∈ R with βλ = β, be an arbitrary point on
←→
CA. Let

Aμ = (1 + μa− μ, μb), μ ∈ R, be an arbitrary point on
←→
BC.

With an easy calculation, we can observe that there are two points Aμ with
βλAμ = 1, which depend on λ, and with μ = μλ± where:

μλ± = 1
(a−1)2+b2

(λ
(
a2 − a+ b2

)− a+ 1±
√
(a− 1)2 + (2− λ)λb2).

We will put: Φ =
√
(a− 1)2 + b2 = BC, Ψλ =

√
(a− 1)2 + (2− λ)λb2

and Λλ = λ
(
a2 − a+ b2

)
.

Points Aμλ± exist if and only if Ψλ ≥ 0 ⇔ λ ∈ [
1− Φ

b , 1 +
Φ
b

]
. Points

Aμ0±exist, with λ = 0, and μ0− = 1
Φ2 (−a+ 1− |a− 1|), μ0+ = 1

Φ2 (−a + 1
+ |a− 1|); and we have:

if a− 1 ≥ 0⇒ Aμ0− = 1
Φ2

(
b2 − (a− 1)2 , 2b (1− a)

)
, Aμ0+ = B;

if a− 1 < 0⇒ Aμ0− = B, Aμ0+ = 1
Φ2

(
b2 − (a− 1)2 , 2b (1− a)

)
.

It happens that B = Aμ0− = Aμ0+ ⇔ μ = 0 ⇔ 1 = a ⇔ ∠ABC is a right
angle. Also Aμ1± exist with λ = 1 ⇒ μ1− = 1 − 1

Φ and μ1+ = 1 + 1
Φ , thus

Aμ1− =
(
a− a−1

Φ , b− b
Φ

)
and Aμ1+ =

(
a+ a−1

Φ , b+ b
Φ

)
.

In general, to any λ ∈ [
1− Φ

b , 1 +
Φ
b

] \ {0}, we have that

Aμλ± =
(
b2+(a−1)(Λλ±Ψλ)

Φ2 , b−a+1+Λλ±Ψλ
Φ2

)
.
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And the two middle points Mμλ± , of the segments A′
μλ±B

′
λ, are:

Mμλ+ =
(
(λ+1)b2+(a−1)(2Λλ+Ψλ)

2Φ2 , b (λ+1)(−a+1)+2Λλ+Ψλ

2Φ2

)
,

Mμλ− =
(
(λ+1)b2+(a−1)(2Λλ−Ψλ)

2Φ2 , b (λ+1)(−a+1)+2Λλ−Ψλ

2Φ2

)
.

Then, making a calculation, it follows that: Cμλ++
=

(
Cμλ++x

, Cμλ++y

)
, with

Cμλ++x
=

b2(λ+1)+(a−1)(
√
3b(1−λ)+2Λλ)+(a−1−√

3b)Ψλ

2Φ2 ,

Cμλ++y
=

b(λ+1)(1−a)−(λ−1)
√
3b2+2bΛλ+(b−

√
3+

√
3a)Ψλ

2Φ2 ;
(1)

and also that Cμλ+− =
(
Cμλ+−x

, Cμλ+−y

)
, with

Cμλ+−x
=

b2(λ+1)+(a−1)(−
√
3b(1−λ)+2Λλ)+(a−1+

√
3b)Ψλ

2Φ2 ,

Cμλ+−y
=

b(λ+1)(1−a)+(λ−1)
√
3b2+2bΛλ+(b+

√
3−√

3a)Ψλ

2Φ2 ;
(2)

and also that Cμλ−+
=

(
Cμλ−+x

, Cμλ−+y

)
, with

Cμλ−+x
=

b2(λ+1)+(a−1)(
√
3b(1−λ)+2Λλ)−(a−1−√

3b)Ψλ

2Φ2 ,

C ′′
μλ−+y

=
b(λ+1)(1−a)−(λ−1)

√
3b2+2bΛλ+(−b+

√
3−√

3a)Ψλ

2Φ2 ;
(3)

and also that Cμλ−− =
(
Cμλ−−x

, Cμλ−−y

)
, with

Cμλ−−x
=

b2(λ+1)+(a−1)(−
√
3b(1−λ)+2Λλ)−(a−1+

√
3b)Ψλ

2Φ2 ,

Cμλ−−y
=

b(λ+1)(1−a)+(λ−1)
√
3b2+2bΛλ+(−b−

√
3+

√
3a)Ψλ

2Φ2 .
(4)

Where Cμλ++
, Cμλ+− , Cμλ−+

, Cμλ−− , are the vertices of the equilateral triangles
�Cμλ++

Aμλ+βλ, �Cμλ+−Aμλ+βλ, �Cμλ−+
Aμλ−βλ, �Cμλ−−Aμλ−βλ, respec-

tively.

In the case of λ = 0 it happens that: if a − 1 > 0 then Cμ0++ =
(
1
2 ,

√
3
2

)
,

Cμ0+− =
(
1
2 ,−

√
3
2

)
; and if a − 1 < 0 then Cμ0−+ =

(
1
2 ,

√
3
2

)
, Cμ0−− =(

1
2 ,−

√
3
2

)
; and if a−1 = 0 then Cμ0++ = Cμ0−+ =

(
1
2 ,

√
3
2

)
, Cμ0+− = Cμ0−− =(

1
2 ,−

√
3
2

)
.

Therefore, finally we have: β = βλ, Aβ,1 = Aβ,2 = Aμλ+ , Aβ,3 = Aβ,4 =
Aμλ− , Pβ,1 = Cμλ++

, Pβ,2 = Cμλ+− , Pβ,3 = Cμλ−+
, Pβ,4 = Cμλ−− . �

With gP,θ the rotation with angle of amplitude θ and with center point P : by
construction, we have that gPβ,1,−π

3
(Aβ,1) = gPβ,2,

π
3
(Aβ,2) = gPβ,3,−π

3
(Aβ,3) =

gPβ,4,
π
3
(Aβ,4) = β; and we have that the equilateral triangles�Pβ,1Aβ,1β,�Pβ,2Aβ,2β,

�Pβ,3Aβ,3β,�Pβ,4Aβ,4β are not coincident.

Along all the paper we will put Φ =
√
(a− 1)2 + b2, Λλ = λ

(
a2 − a+ b2

)
and Ψλ =

√
(a− 1)2 + (2− λ)λb2.

The following lemma also is a Definition:
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Lemma 3. Let Hi, Ho be the two conics determined by: both conics have the
center point C, the outer and inner bisectors of the angle ∠ACB are the axes of

the both conics, the two points Ci =
(
1
2 ,

√
3
2

)
and Cμ1++ =

(
a+ a−1−b√3

2Φ , b+

b+(a−1)
√
3

2Φ

)
belong to Hi, the two points Co =

(
1
2 ,−

√
3
2

)
and Cμ1+− = (a+

a−1+b
√
3

2Φ , b+ b+(1−a)√3
2Φ

)
belong toHo.

Then we have:
Hi is circumference⇔ C ∈ Bi, in this caseHi has equation (5);
Ho is circumference⇔ C ∈ Bo, in this caseHo has equation (6);
if a = 1

2 , it happens that b 	=
√
3
2 ⇔ Hi is ellipse, in this case Hi has equation

(7);
if a = 1

2 , it happens that b = 1 +
√
3
2 ⇔ Hi is circumference, in this case Hi

has equation (8);
if a = 1

2 , it happens that b =
√
3
2 ⇔ Hi is a pair of coincident straight lines

parallel to
←→
AB, in this caseHi has equation (9);

if a = 1
2 , it happens that b 	=

√
3
6 ⇔Ho is ellipse, in this case Ho has equation

(10);
if a = 1

2 , it happens that b = 1 −
√
3
2 ⇔ Ho is circumference, in this case Ho

has equation (11);
if a = 1

2 , it happens that b =
√
3
6 ⇔ Ho is a pair of coincident straight lines

orthogonal to
←→
AB, in this caseHi has equation (12);

if a 	= 1
2 , it happens that C /∈ Bi ⇔ Hi is not circumference, in this caseHi has

equation (13);
if a 	= 1

2 , it happens that C /∈ Bo ⇔ Ho is not circumference, in this case Ho
has equation (14).

Proof. LetH be a conic, its equation isH ≡ ξx2+ζy2+Dxy+Ex+Fy+G = 0;

and M =

⎛
⎜⎝

G 1
2E

1
2F

1
2E ξ 1

2D
1
2F

1
2D ζ

⎞
⎟⎠ is its associated matrix with its algebraic parame-

ters: T = trace (M00), U = detM11 + detM22, where M00 =

(
β 1

2D
1
2D ζ

)
,

M11 =

(
G 1

2F
1
2F ζ

)
and M22 =

(
G 1

2E
1
2E ξ

)
.

From now, we consider that the inner and outer bisectors of the angle ∠ACB
are the axes ofH.

By requiring that C is the center H, we have two possibilities: the bisectors of
∠ACB are parallel to the coordinate axes, or they are not; and these two possibil-
ities are equivalent to a = 1

2 or a 	= 1
2 . Therefore, if a = 1

2 then the axes of H are
parallel to the coordinate axes; but if a 	= 1

2 then the axes of H are not parallel to
the coordinate axes unlessH is circumference.

Now, whatever the value of a, we first consider that H is circumference with
center point C. By imposing the circumference H passes through the point Ci =
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(
1
2 ,

√
3
2

)
we have

Hi ≡ x2 + y2 − 2ax− 2by − 1 + a+ b
√
3 = 0. (5)

By imposing the circumference H passes through the point Co =
(
1
2 ,−

√
3
2

)
we

have

Ho ≡ x2 + y2 − 2ax− 2by − 1 + a− b
√
3 = 0. (6)

And ifHi = Hi passes through the point Cμ1++ then a2 + b2− a− b√3 = 0; also
ifHo = Ho passes through the point C ′′

μ1+− then a2 + b2 − a+ b
√
3 = 0.

The equations of Bi and Bo are Bi ≡ x2 + y2 − x − y
√
3 = 0 and B0 ≡

x2 + y2 − x + y
√
3 = 0 respectively. Accordingly, if the conics Hi, Ho are

circumferences then C ∈ Bi, C ∈ Bo respectively.
The inverse assertion is true, i.e. if the conics Hi and Ho have their centers

C ∈ Bi and C ∈ Bo, respectively, then they are circumferences; we will prove
later this inverse assertion.

Now, regardless if H is a circumference or not, we consider the case of a = 1
2 .

Then we have that the axes ofH are parallel to the coordinate axes; which implies
that the matrix A00 has the eigenvectors {(1, 0) , (0, 1)}, which algebraically im-
poses thatD = 0. ThenH ≡ ξx2+ζy2+Ex+Fy+G = 0. But,H is conic with
center, then H is not a parabola; and then, algebraically, the value 0 is discarded
as eigenvalue of A00, so ξ 	= 0 and ζ 	= 0. Therefore, without loss generality, we
can consider that ζ = 1, and we have that H ≡ ξx2 + y2 + Ex + Fy + G = 0.
Moreover C is center point of H; then, with a = 1

2 , analytically we have that{
1
2ξ +

1
2E = 0

b+ 1
2F = 0

, which implies that H ≡ −Ex2 + y2 + Ex− 2by +G = 0. If

H also passes through the point Ci then we denote the conic asHi, and has the fol-
lowing equation: Hi ≡ − (−3 + 4b

√
3− 4G

)
x2+ y2+

(−3 + 4b
√
3− 4G

)
x−

2by +G = 0. Similarly, if H also passes through the point Co then we denote the
conic as Ho, and has the following equation: Ho ≡ − (−3− 4b

√
3− 4G

)
x2 +

y2 +
(−3− 4b

√
3− 4G

)
x− 2by +G = 0.

We impose now that Hi passes through the point C ′′
μ1++

, with a = 1
2 and b 	=

1
2

√
3, then we have thatHi = Hi with

Hi ≡ 48b2
(
2b−√3)2 x2 + 4

(
6b+

√
3
)2
y2 − 48b2

(
2b−√3)2 x

−8b (6b+√3)2 y + 3
(
8b3 + 12b2

√
3− 6b−√3) (2b+√3) = 0.

(7)

With b 	= 1
2

√
3, the conic Hi has the algebraic parameters: detA = −192b2(2b−√

3)4(6b +
√
3)4 	= 0, detA00 = 192b2

(
2b−√3)2 (6b+√3)2 > 0, T =

48b2(2b− √3)2 + 4(6b +
√
3)2 and T detA < 0; therefore Hi is a real non-

degenerate ellipse. If b = 1 + 1
2

√
3, i.e. C ∈ Bi, then

Hi ≡ x2 + y2 − x−
(
2 +
√
3
)
y + 1 +

√
3 = 0, (8)
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andHi is a circumference of radius 1. If b = 1
2

√
3then the conicHi degenerates to

Hi ≡ y2 −
√
3y +

3

4
= 0, (9)

with ξ = 0, whose algebraic parameters are: detA = 0, detA00 = 0, U = 0;
thereforeHi is the pair of coincident straight lines

{
y = 1

2

√
3
}

,
{
y = 1

2

√
3
}

.
We impose now that Ho passes through the point C ′′

μ1+− ,with a = 1
2 and b 	=

1
6

√
3, then we have thatHo = Ho with

Ho ≡ 48b2
(
2b+

√
3
)2
x2 + 4

(
6b−√3)2 y2 − 48b2

(
2b+

√
3
)2
x

−8b (6b−√3)2 y ++3
(
8b3 − 12b2

√
3− 6b+

√
3
) (

2b−√3) = 0.
(10)

With b 	= 1
6

√
3, the conic Ho has the algebraic parameters: detA = −192b2(2b+√

3)4 (6b − √3)4 	= 0, detA00 = 192b2
(
2b+

√
3
)2 (

6b−√3)2 > 0, T =

48b2(2b+
√
3)2 + 4(6b − √3)2 and T detA < 0; therefore Ho is a real non-

degenerate ellipse. If b = 1− 1
2

√
3, i.e. C ∈ Bo, then

Ho ≡ x2 + y2 − x−
(
2−
√
3
)
y + 1−

√
3 = 0, (11)

is a circumference of radius 1. If b = 1
6

√
3 then the conicHo degenerates to

Ho ≡ x2 − x+
1

4
= 0, (12)

with ζ = 0, whose algebraic parameters are: detA = 0, detA00 = 0, U = 0;
thereforeHo is the pair of coincident straight lines

{
x = 1

2

}
,
{
x = 1

2

}
.

We have just seen that if a = 1
2 and C ∈ Bi, C ∈ Bo then Hi, Ho are cir-

cumferences, respectively. Let’s see what is also true with a 	= 1
2 . If C ∈

Bo, then is easy to calculate that C is at the same distance from Co to C ′′
μ1+− .

But the three points Co, C ′′
μ1+− and C ∈ Bo, are not aligned. To prove the

above assertion: if we impose that
((
a+ a−1+b

√
3

2Φ , b+ b+(1−a)√3
2Φ

)
− (a, b)

)
−

α
((

1
2 ,−

√
3
2

)
− (a, b)

)
= (0, 0), then this implies that α = −a−1+b

√
3

Φ(2a−1) and

3a2 + 3b2 − 3a + b
√
3 = 0. But moreover a2 + b2 − a + b

√
3 = 0, then nec-

essarily C = (0, 0) = A or C = (1, 0) = B, in contradiction. Therefore: C
is at the same distance from Co to C ′′

μ1+− , they are three not aligned points, and
C is center of symmetry of the conic Ho which passes through Co and C ′′

μ1+− ;
then Ho is a circumference. Similarly: if C ∈ Bi, then is easy to calculate that
C is at the same distance from Ci to C ′′

μ1++
. But the three points Ci, C ′′

μ1++

and C ∈ Bi, are not aligned. To prove the above assertion: if we impose that((
a+ a−1−b√3

2Φ , b+ b+(a−1)
√
3

2Φ

)
− (a, b)

)
−α

((
1
2 ,

√
3
2

)
− (a, b)

)
= (0, 0), then

this implies that α = −a+1+b
√
3

Φ(2a−1) and 3a2 + 3b2 − 3a − b√3 = 0. But moreover

a2 + b2 − a − b√3 = 0, then necessarily C = (0, 0) = A or C = (1, 0) = B,
in contradiction. Therefore: C is at the same distance from Ci to C ′′

μ1++
, they are
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three not aligned points, and C is center of symmetry of the conicHi which passes
through Ci and C ′′

μ1++
; thenHi is a circumference.

Now we consider the case of a 	= 1
2 .

The axes of H are not parallel to the coordinate axes unless that any straight
line through C is axis of H, and then H is circumference. Algebraically, H is not
circumference if and only if the vector {(1, 0) , (0, 1)} are not eigenvectors ofM00,
thenH is not circumference if and only if D 	= 0.

We consider that H is not circumference (if H is circumference then is already
a studied case) and we can assume that D = 1, so that H ≡ ξx2 + ζy2 +

xy + Ex + Fy + G = 0. The vectors −→u + =

(
β − γ +

√
(β − γ)2 + 1, 1

)
,

−→u − =

(
β − γ −

√
(β − γ)2 + 1, 1

)
are eigenvectors with eigenvalues 1

2β +

1
2γ + 1

2

√
(β − γ)2 + 1, 1

2β + 1
2γ − 1

2

√
(β − γ)2 + 1, of M00, respectively. Then

−→u +, −→u −, are direction vectors of the axes of H. The inner and outer bisectors
of the angle ∠ACB are directed by −→v + = (a, b) 1√

a2+b2
+ (a − 1, b) 1√

(a−1)2+b2

, −→v − = (a, b) 1√
a2+b2

− (a − 1, b) 1√
(a−1)2+b2

. Then we have the proportionality

−→u + = ε−→v +, −→u − = ε−→v −, which implies, with a 	= 1
2 , that β = a2−b2−a

b(2a−1) + ζ;

so: H ≡
(
a2−b2−a
b(2a−1) + ζ

)
u2 + ζy2 + xy + Ex + Fy +G = 0. By imposing that

(a, b) is the centerH we have: ζ = −2a3−2a2−b2
2ab(2a−1) − E

2a , F = − a2+b2

a(2a−1) +
Eb
a , which

implies that ξ = −1
2
b+E
a . Therefore:

H ≡ −1

2

b+ E

a
x2−2a3−2a2−b2+Eb(2a−1)

2ab(2a−1) y2+xy+Ex+
(
− a2+b2

a(2a−1) +
Eb
a

)
y+G = 0.

And by imposing that H = Ho passes through the point Co =
(
1
2 ,−

√
3
2

)
, and by

computing we obtain

Go =
3a3−3a2+ab2−2b2−√

3ab−2
√
3b3+Eb(6a−2−4a2+4

√
3ab−2

√
3b)

4ab(2a−1) ,

for the conicHo.
Also, by imposing thatH = Hi passes through the point Ci =

(
1
2 ,

√
3
2

)
, and by

computing we obtain

Gi =
3a3−3a2+ab2−2b2+

√
3ab+2

√
3b3+Eb(6a−2−4a2−4

√
3ab+2

√
3b)

4ab(2a−1) ,

for the conicHi.
Now, considering that a 	= 1

2 , and also that a2 + b2 − a − b√3 	= 0 because
C /∈ Bi -H is not circumference-; by imposing that Hi = Hi passes through the
point Cμ1++ we have Ei = b a2+b2+a−b√3

(a2+b2−a−b
√
3)(2a−1)

. The above expression of Ei
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implies that:

Gi =
(3a3−6a2−a2√3b+3a+3ab2−6b2+

√
3b−√

3b3)(3a+b
√
3)

12b(a2+b2−a−b
√
3)(2a−1)

,

Hi ≡ −b a2+b2−a−√
3b+1

(a2+b2−a−b
√
3)(2a−1)

x2 − a4−2a3+a2b2+a2−a2√3b−ab2+√
3ab+b2

b(a2+b2−a−b
√
3)(2a−1)

y2

+xy + b a2+b2+a−√
3b

(a2+b2−a−b
√
3)(2a−1)

x− a3−a2+ab2−√
3ab−2b2

(a2+b2−a−b
√
3)(2a−1)

y +Gi = 0.

(13)
Similarly, considering that a 	= 1

2 , and also that a2 + b2− a+ b
√
3 	= 0 because

C /∈ B0 -H is not circumference- by imposing that Ho = Ho passes through the
point Cμ1+− we have Eo = b a2+b2+a+

√
3b

(a2+b2−a+
√
3b)(2a−1)

. The above expression of Eo

implies that:

Go =
(3a3−6a2+a2

√
3b+3a+3ab2−6b2−√

3b+
√
3b3)(3a−

√
3b)

12b(a2+b2−a+
√
3b)(2a−1)

,

Ho ≡ −b a2+b2−a+√
3b+1

(a2+b2−a+
√
3b)(2a−1)

x2 − a4−2a3+a2b2+a2+a2
√
3b−ab2−√

3ab+b2

b(a2+b2−a+
√
3b)(2a−1)

y2

+xy + b a2+b2+a+
√
3b

(a2+b2−a+
√
3b)(2a−1)

x− a3−a2+ab2+√
3ab−2b2

(a2+b2−a+
√
3b)(2a−1)

y +Go = 0.

(14)
�

And, as a result of the above lemmas, in short we have the following algebraic
equations

Theorem 4. The conicsHi,Ho have the equations:

Hi ≡ −b2(a2 + b2 − a−√3b+ 1)x2 − (a4 − 2a3 + a2b2 + a2 − a2√3b
−ab2 +√3ab+ b2)y2 + b(a2 + b2 − a− b√3) (2a− 1)xy + b2(a2 + b2 + a

−√3b)x− b(a3 − a2 + ab2 −√3ab− 2b2)y + 1
12(3a

3 − 6a2 − a2√3b+ 3a

+3ab2 − 6b2 +
√
3b−√3b3)(3a+ b

√
3) = 0;

(15)

Ho ≡ −b2(a2 + b2 − a+√3b+ 1)x2 − (a4 − 2a3 + a2b2 + a2 + a2
√
3b

−ab2 −√3ab+ b2)y2 + b(a2 + b2 − a+√3b) (2a− 1)xy + b2(a2 + b2 + a

+
√
3b)x− b(a3 − a2 + ab2 +

√
3ab− 2b2)y + 1

12(3a
3 − 6a2 + a2

√
3b+ 3a

+3ab2 − 6b2 −√3b+√3b3)(3a−√3b) = 0.
(16)

Now, the following Proposition 5 and the Corollary 6 are consequence of a spe-
cial case of the well known elliptic motion; but we can get these results with alge-
braic arguments using the above Theorem 4:

Proposition 5. The two conicsHi,Ho:
1.- are ellipses if and only if C /∈ Ni and C /∈ No, respectively.
2.- are a pair of coincident straight lines if and only if C ∈ Ni and C ∈ No,

respectively; and they are outer and the inner bisectors of the angle ∠ACB , re-
spectively.

3.- are circumferences if and only if C ∈ Bi and C ∈ Bo, respectively.
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Proof. The affirmation 3 has previously been shown in the proof of the previous
theorem. Then here we consider the affirmations 1 and 2 in the case C /∈ Bi and
C /∈ Bo.

The equations of Ni and No are: Ni ≡ x2 + y2 − x − 1
3

√
3y = 0 and N0 ≡

x2 + y2 − x+ 1
3

√
3y = 0.

If a = 1
2 then the affirmations 1 and 2 have previously been shown in the proof

of the previous theorem.
Let us consider then a 	= 1

2 .
The algebraic parameters ofHo are:

detA =
(3a2+3b2−3a+

√
3b)

4

144b(a2+b2−a+
√
3b)

3
(2a−1)3

, detA00 =
(3a2+3b2−3a+

√
3b)

2

12(a2+b2−a+
√
3b)

2
(2a−1)2

,

T = −2a2b2−2ab2+2b2+b4+
√
3b3+a4−2a3+a2+a2

√
3b−√

3ab
b(a2+b2−a+

√
3b)(2a−1)

;

where b 	= 0, 2a−1 	= 0 and a2+ b2−a+√3b 	= 0 because C /∈ Bo. Moreover if

C /∈ N0 then detA 	= 0, detA00 > 0, and T detA = − 1
144

ϕ(a,b)(3a2+3b2−3a+
√
3b)

4

b2(a2+b2−a+
√
3b)

4
(2a−1)4

with ϕ(a, b) = 2a2b2−2ab2+2b2+ b4+
√
3b3+a4−2a3+a2+a2

√
3b−√3ab.

We have that ϕ(1, 1) > 0 and the equation ϕ(a, b) = 0 has the four roots:

a = 1
2 + 1

2

√
1 + 2ib

√
5− 4b2 − 2

√
3b, a = 1

2 − 1
2

√
1 + 2ib

√
5− 4b2 − 2

√
3b,

a = 1
2 + 1

2

√
1− 2ib

√
5− 4b2 − 2

√
3b, a = 1

2 − 1
2

√
1− 2ib

√
5− 4b2 − 2

√
3b,

which are real roots only if b = 0. Therefore T detA < 0 and then Ho is a real
non-degenerate ellipse. But, if C ∈ N0 then detA = 0, detA00 = 0, and

U =
−√

3(3b3+2
√
3b2+a2b2

√
3−2

√
3ab2+3a2b−3ab+a2

√
3+a4

√
3−2a3

√
3)(3a2+3b2−3a+

√
3b)

2

36b2(a2+b2−a+
√
3b)

2
(2a−1)2

with U = 0. Therefore if C ∈ N0 then Ho are two coincident straight lines; and,
by construction ofHo, they are the inner bisectrix of the angle ∠ACB.

The algebraic parameters ofHi are:

detA =
(3a2+3b2−3a−√

3b)
4

144b(a2+b2−a−
√
3b)

3
(2a−1)3

, detA00 =
(3a2+3b2−3a−√

3b)
2

12(a2+b2−a−
√
3b)

2
(2a−1)2

,

T = −2a2b2−2ab2+2b2+b4−√
3b3+a4−2a3+a2−a2√3b+

√
3ab

b(a2+b2−a−
√
3b)(2a−1)

.

where b 	= 0, 2a−1 	= 0 and a2+ b2−a−√3b 	= 0 because C /∈ Bi. Moreover if

C /∈ Ni then detA 	= 0, detA00 > 0, and T detA = − 1
144

ψ(a,b)(3a2+3b2−3a−√
3b)

4

b2(a2+b2−a−
√
3b)

4
(2a−1)4

with ψ(a, b) = 2a2b2−2ab2+2b2+ b4−√3b3+a4−2a3+a2−a2√3b+√3ab.
We have that ψ(1, 1) > 0 and the equation ψ(a, b) = 0 has the four roots:

a = 1
2 + 1

2

√
1 + 2ib

√
5− 4b2 + 2

√
3b, a = 1

2 − 1
2

√
1 + 2ib

√
5− 4b2 + 2

√
3b,

a = 1
2 + 1

2

√
1− 2ib

√
5− 4b2 + 2

√
3b, a = 1

2 − 1
2

√
1− 2ib

√
5− 4b2 + 2

√
3b,

which are real roots only if b = 0. Therefore T detA < 0 and then Hi is a real
non-degenerate ellipse. But, if C ∈ Ni then detA = 0, detA00 = 0, and

U =
√
3(3b3−2

√
3b2−a2b2√3+2

√
3ab2+3a2b−3ab−a2√3−a4√3+2a3

√
3)(3a2+3b2−3a−√

3b)
2

36b2(a2+b2−a−
√
3b)

2
(2a−1)2
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with U = 0. Therefore if C ∈ Ni then Hi are two coincident straight lines; and,
by construction ofHi, they are the outer bisectrix of the angle ∠ACB. �

With the Lemma 2 and the Theorem 4, we can prove algebraically the following:

Corollary 6. Let {Tβ,k = �Pβ,kAβ,kβ}k=4
k=1, then:

1.-Hi=H1 ∪H3 is the geometrical locus of the vertices Pβ,1 and Pβ,3.
2.-Ho=H2 ∪H4 is the geometrical locus of the vertices Pβ,2 and Pβ,4.

Proof. With a very lengthy and straightforward calculation we can check the result
in all its parts and implications.

Let us see a case, let us see, for example, the explicit calculations that show that
Cμλ++

= Pβ,1 ∈ Hi. Using the Equations (1), (15) we must to prove that

−4Φ4ba
2+b2−a−√

3b+1
1

(
Cμλ++x

)2
−4Φ4 (a

4−2a3+a2b2+a2−a2√3b−ab2+√
3ab+b2)

b

(
Cμλ++y

)2
+4Φ4

(
a2 + b2 − a− b√3) (2a− 1)Cμλ++x

Cμλ++y

+4Φ4ba
2+b2+a−√

3b
1 Cμλ++x

− 4Φ4 a3−a2+ab2−
√
3ab−2b2

1 Cμλ++y

+4Φ4 (3a
3−6a2−a2√3b+3a+3ab2−6b2+

√
3b−√

3b3)(3a+b
√
3)

12b = 0.

Then: with a very lengthy and straightforward calculation we have

Ψ1 = −4Φ4ba
2+b2−a−√

3b+1
1

(
Cμλ++x

)2
−4Φ4 (a

4−2a3+a2b2+a2−a2√3b−ab2+√
3ab+b2)

b

(
Cμλ++y

)2
,

where

Ψ1 = −4b− 3
√
3a− 4λb3 +

√
3b2 − 80ba4 + 100ba3 + 4ab3 − 70ba2 + 26ba

−11a2b3 + 4b4
√
3 + 6Ψλb

3 − 6ba6 + 34ba5 + 24b5λ− 18b5λ2 + 22a3b3

−12a4b3 − 10a2b5 + 22b5a+ 3b6
√
3− 10b5Ψλ − 4b7λ− 2b7λ2 − 56b5aλ

−158λ2a4b3 − 78a2λ2b5 − 18Ψλab
3 + 8a2λb3 − 94a2λ2b3 + 20aλ2b3

−4√3a3b2 − 10Ψλλb
3 − 8

√
3b4λ+ 6

√
3b4λ2 + 2Ψλ

√
3b4 − 3a4

√
3b2

+3a2b4
√
3 + 12a2Ψλb

3 + 88a5λ2b3 + 56a3λ2b5 + 4a5b3λ− 4a3b5λ

+10a2
√
3b2 − 6

√
3ab2 + 12aλb3 + 168λ2b3a3 + 64λ2b5a− 9b4

√
3a

−32b3λa3 − 4a
√
3b2λ− 8

√
3a4b2λ− 16

√
3a3b2λ− 48

√
3a2b4λ

+16
√
3a2b2λ+ 86a4

√
3b2λ2 − 58a3

√
3b2λ2 + 76a2

√
3b4λ2 + 18a2

√
3b2λ2

−2√3b2λ2a− 10Ψλa
2
√
3b2 − 52Ψλa

2λb3 + 4Ψλa
√
3b2 + 32

√
3ab4λ
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−34√3ab4λ2 + 4Ψλ

√
3b2λ+ 2Ψλ

√
3b4λ− 8a6

√
3b2λ+ 20a5

√
3b2λ

−16a4√3b4λ+ 16a6
√
3b2λ2 − 60a5

√
3b2λ2 + 32a4

√
3b4λ2 − 2a4Ψλ

√
3b2

−16a4Ψλλb
3 + 8a3Ψλ

√
3b2 + 40a3

√
3b4λ− 80a3

√
3b4λ2 − 8b6

√
3a2λ

+16b6a2
√
3λ2 + 40b3Ψλa

3λ− 8b5Ψλa
2λ+ 20b6

√
3aλ− 20b6

√
3aλ2

−2b6Ψλ

√
3λ− 8b5Ψλaλ− 106bΨλa

4λ+ 110bΨλa
3λ− 54bΨλa

2λ

+10bΨλλa− 8ba6Ψλλ+ 48ba5Ψλλ− 3b3 − 16b5 − b7 + 54Ψλa
2
√
3b2λ

−24Ψλa
√
3b2λ− 24a6λ2b3 − 24a4λ2b5 + 12a4λb3 + 2a5

√
3b2 + 32a2b5λ

+8b7λ2a− 2b6
√
3a− 4b7aλ− 8b7a2λ2 + 4b5Ψλa+ 6b5Ψλλ− 8b6

√
3λ

+6b6
√
3λ2 + 2b6Ψλ

√
3− 82bλ2a6 + 88bλ2a5 − 52bλ2a4 + 16bλ2a3

−2bλ2a2 − 8ba8λ2 + 40ba7λ2 − 56Ψλ

√
3b2λa3 − 8Ψλ

√
3b4aλ

+6a2Ψλ

√
3b4λ+ 26a4Ψλ

√
3b2λ− 4a5Ψλ

√
3b2λ+ 4a3Ψλ

√
3b4λ

+4b6Ψλ

√
3aλ− 8bλa2 − 45

b a
4 + 18

b a
3 − 3

ba
2 − 45

b a
6 + 60

b a
5 − 3

ba
8

+18
b a

7 + 2Ψλa
2
√
3λ− 12Ψλ

√
3λa3 + 28a4Ψλ

√
3λ− 32a5Ψλ

√
3λ

−8a5Ψλ

√
3 + 2Ψλa

2
√
3 + 12a4Ψλ

√
3− 8a3Ψλ

√
3 + 38b3Ψλaλ+ 2a6Ψλ

√
3

+17a2
√
3 + 36bλa3 + 6bΨλa− 40

√
3a3 + 50a4

√
3− 14ba2Ψλ + 56ba5λ

+6ba3Ψλ − 64ba4λ− 35a5
√
3 + 13a6

√
3 + 6ba4Ψλ + 4ba7λ− 4ba5Ψλ

−24ba6λ− 2a7
√
3− 2b4a2Ψλ

√
3 + 18a6Ψλ

√
3λ− 4a7Ψλ

√
3λ+ 2b4a3

√
3,

and we have

Ψ2 = 4Φ4
(
a2 + b2 − a− b

√
3
)
(2a− 1)Cμλ++x

Cμλ++y
,

where

Ψ2 = 3b+
√
3a+ 6λb3 +

√
3b2 − 5ba4 − 20ba3 + 32ab3 + 30ba2 − 16ba

−40a2b3 − 14Ψλb
3 − 4ba6 + 12ba5 − 28b5λ+ 18b5λ2 + 16a3b3 + 4a2b5

−12b5a− b6√3 + 2b5Ψλ − 2b7λ+ 2b7λ2 + 80b5aλ+ 158λ2a4b3

+78a2λ2b5 + 42Ψλab
3 − 48a2λb3 + 94a2λ2b3 − 20aλ2b3 − 16

√
3a3b2

+10Ψλλb
3 + 8

√
3b4λ− 6

√
3b4λ2 + 2Ψλ

√
3b4 + 9a4

√
3b2 + 3a2b4

√
3

−28a2Ψλb
3 − 88a5λ2b3 − 56a3λ2b5 − 4a5b3λ+ 4a3b5λ+ 14a2

√
3b2

−6√3ab2 − 4aλb3 + 2Ψλ

√
3b2 − 168λ2b3a3 − 64λ2b5a− b4√3a

+80b3λa3 + 4a
√
3b2λ+ 8

√
3a4b2λ+ 16

√
3a3b2λ+ 48

√
3a2b4λ

−16√3a2b2λ− 86a4
√
3b2λ2 + 58a3

√
3b2λ2 − 76a2

√
3b4λ2

−18a2√3b2λ2 + 2
√
3b2λ2a+ 26Ψλa

2
√
3b2 + 52Ψλa

2λb3 − 12Ψλa
√
3b2

−32√3ab4λ+ 34
√
3ab4λ2 − 4Ψλ

√
3b2λ− 2Ψλ

√
3b4λ+ 8a6

√
3b2λ

−20a5√3b2λ+ 16a4
√
3b4λ− 16a6

√
3b2λ2 + 60a5

√
3b2λ2 − 32a4

√
3b4λ2

+8a4Ψλ

√
3b2 + 16a4Ψλλb

3 − 24a3Ψλ

√
3b2 − 40a3

√
3b4λ+ 80a3

√
3b4λ2

+8b6
√
3a2λ− 16b6a2

√
3λ2 − 40b3Ψλa

3λ+ 8b5Ψλa
2λ− 8b4Ψλa

√
3

−20b6√3aλ+ 20b6
√
3aλ2 + 2b6Ψλ

√
3λ+ 8b5Ψλaλ+ 106bΨλa

4λ
−110bΨλa

3λ+ 54bΨλa
2λ− 10bΨλλa+ 8ba6Ψλλ− 48ba5Ψλλ− 8b3 + 5b5

−54Ψλa
2
√
3b2λ+ 24Ψλa

√
3b2λ+ 24a6λ2b3 + 24a4λ2b5 − 30a4λb3

−2a5√3b2 − 50a2b5λ− 8b7λ2a+ 2b6
√
3a+ 4b7aλ+ 8b7a2λ2 − 4b5Ψλa

−6b5Ψλλ+ 8b6
√
3λ− 6b6

√
3λ2 + 82bλ2a6 − 88bλ2a5 + 52bλ2a4 − 16bλ2a3
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+2bλ2a2 + 8ba8λ2 − 40ba7λ2 + 56Ψλ

√
3b2λa3 + 8Ψλ

√
3b4aλ− 6a2Ψλ

√
3b4λ

−26a4Ψλ

√
3b2λ+ 4a5Ψλ

√
3b2λ− 4a3Ψλ

√
3b4λ− 4b6Ψλ

√
3aλ+ 2bλa2

−2Ψλa
2
√
3λ+ 12Ψλ

√
3λa3 − 28a4Ψλ

√
3λ+ 32a5Ψλ

√
3λ− 38b3Ψλaλ

−7a2√3− 12bλa3 + 2bΨλa+ 20
√
3a3 − 30a4

√
3− 10ba2Ψλ − 32ba5λ

+18ba3Ψλ + 28ba4λ+ 25a5
√
3− 11a6

√
3− 14ba4Ψλ − 4ba7λ+ 4ba5Ψλ

+18ba6λ+ 2a7
√
3 + 8b4a2Ψλ

√
3− 18a6Ψλ

√
3λ+ 4a7Ψλ

√
3λ− 2b4a3

√
3,

and we have

Ψ3 = 4Φ4ba
2+b2+a−√

3b
1 Cμλ++x

− 4Φ4 a3−a2+ab2−√
3ab−2b2

1 Cμλ++y
,

where
Ψ3 = −2λb3 + 12ba4 − 8ba3 − 24ab3 + 2ba2 + 24a2b3 + 8Ψλb

3

+2ba6 − 8ba5 + 4b5λ− 16a3b3 + 6a4b3 + 6a2b5 − 8b5a+ 8b5Ψλ

+6b7λ− 24b5aλ− 24Ψλab
3 + 40a2λb3 − 4Ψλ

√
3b4 + 16a2Ψλb

3

−8aλb3 − 2Ψλ

√
3b2 − 48b3λa3 − 16Ψλa

2
√
3b2 + 8Ψλa

√
3b2

−6a4Ψλ

√
3b2 + 16a3Ψλ

√
3b2 + 8b4Ψλa

√
3 + 10b3 + 12b5 + 2b7

+18a4λb3 + 18a2b5λ− 2b6Ψλ

√
3 + 6bλa2 + 8a5Ψλ

√
3− 2Ψλa

2
√
3

−12a4Ψλ

√
3 + 8a3Ψλ

√
3− 2a6Ψλ

√
3− 24bλa3 − 8bΨλa+ 24ba2Ψλ

−24ba5λ− 24ba3Ψλ + 36ba4λ+ 8ba4Ψλ + 6ba6λ− 6b4a2Ψλ

√
3.

And with all these, simplifying, we arrive to

Ψ1+Ψ2+Ψ3 = −1
3
(3a3−6a2−a2√3b+3ab2+3a−6b2+

√
3b−√

3b3)(3a+
√
3b)(a2−2a+1+b2)

2

b ,

and then Ψ1+Ψ2+Ψ3+4Φ4 (3a
3−6a2−a2√3b+3a+3ab2−6b2+

√
3b−√

3b3)(3a+b
√
3)

12b =
0, finishing the calculation. �

Now, in the following, with the Theorem 4, we present the determination and the
construction with ruler and compass, with Equations (15), (16), of Tj = �AjBjCj
the c-inscribed equilateral triangles of�ABC (Figures 2, 3). Of course the follow-
ing proposition 7 also is consequence of a special case of the well known elliptic
motion; but, with our approach, we give the algebraic formulae (17), (18):

Proposition 7. The conicHo:
1.- with C ∈ No, is a pair of coincident straight lines which intersect in one

point with
←→
AB. (Figure 3c)

2.- with C /∈ No, is an ellipse which intersect in two points with
←→
AB. (Figures

2, 3a, 3b, 3d)
The algebraic formula of the above intersections is (17).
The conicHi:
3.- with C = Ci, is a pair of coincident straight lines parallel to

←→
AB, and if

C ∈ Ni�Ci then is a pair of coincident straight lines which intersect in one point
with
←→
AB. (Figure 3d)

4.- with C ∈ Po � Ni, C ∈ Pi\Ni, C ∈ Pi � Ni, is an ellipse which: intersect
in two points (Figures 2, 3c), is tangent (Figure 3b), not intersect (Figure 3a),
respectively with

←→
AB.

The algebraic formula of the above intersections is (18).
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A2

A4

A B

C

A3

C1

C3

B3

B1

C2C4

B4

B2

Po

Pi

Pi

Hi

Ho

Figure 2. Ho,Hi and Tj = �AjBjCj the c-inscribed equilateral triangles of�ABC.

Proof. The equation of Pi is x2−x+1 =
√
3y, the equation of Pi is x2−x+1 <√

3y, and the equation of Po is x2 − x+ 1 >
√
3y with y > 0.

With Equation (16), we have that:

Ho ∩←→AB =

(
1
6
3b3+3

√
3b2+3ba2+3ba±√

3
√
Δ1

(a2+b2−a+
√
3b+1)b

, 0

)
,

Δ1 =
(√

3b+ a2 − a+ 1
) (

3b2 +
√
3b− 3a+ 3a2

)2
,

(17)

and moreover 3b2+3a2−3a+√3b = 0⇔ C ∈ No ⇒ Ho∩←→AB = (12
b2+

√
3b+a2+a

a2+b2−a+√
3b+1

,

0). Note that a2 + b2 − a+√3b+ 1 > 0 and
√
3b+ a2 − a+ 1 > 0.

With Equation (15), we have that:

Hi ∩←→AB =

(
1
6
3b3−3

√
3b2+3ba2+3ba±√

3
√
Δ2

(a2+b2−a−
√
3b+1)b

, 0

)
,

Δ2 =
(−√3b+ a2 − a+ 1

) (
3b2 −√3b− 3a+ 3a2

)2
,

(18)

and a2+b2−a−√3b+1 = 0⇔ C = Ci =
(
1
2 ,

√
3
2

)
; and 3b2−√3b−3a+3a2 =

0⇔ C ∈ Ni. And moreover−√3b+a2−a+1 = 0⇔ C ∈ Pi; and−√3b+a2−
a+ 1 > 0⇔ C ∈ Po. Also C ∈ Ni ∪ Pi ⇒ Hi ∩←→AB =

(
1
2

b2−√
3b+a2+a

a2+b2−a−√
3b+1

, 0
)

.

So these calculations together Proposition 5 prove the result. �

Accordingly, through the above we can arrive to the following:
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3a) 3b)

3d)
3c)

Ho

Ho

Ho

Ho

Hi

Hi

Hi

Hi

Figure 3. Several cases forHo,Hi and Tj = �AjBjCj .

Corollary 8. On every triangle�ABC exists its c-inscribed equilateral triangles
{Tj}j=mj=1 with m = 4, m = 3, m = 2, if C ∈ Po, C ∈ Pi, C ∈ Pi, respectively.
(Figures 2, 3)

Proof. Let the triangle Tj = �AjBjCj , then by construction and with Lemma
1, necessarily Cj ∈ {Pβ,k}k=4

k=1, and with Corollary 6 we have that Cj = Pβ,j ∈(
Hi ∩←→AB

)
∪
(
Ho ∩←→AB

)
.

If Tj exists then by Lemma 1C1 = Pβ,1, C3 = Pβ,3, C2 = Pβ,2 andC4 = Pβ,4.
If C ∈ Pi � Ni or C ∈ Ci, then, by Proposition 7, T1 = �A1B1C1and T3 =

�A3B3C3 do not exist.
If C ∈ Pi ∪ Ni then the triangles T1 = �A1B1C1and T3 = �A3B3C3 do

not exist. This claim is true because in this case C1 = C3 = Pβ,1 = Cμλ++
=

Pβ,3 = Cμλ−+
= Hi ∩ ←→AB, and Hi is the outer bisectrix of the angle ∠ACB

(Proposition 5). And, by continuity, exists two straight lines r′, r′′ at the both sides
of the Hi which are parallel to Hi and also they are the outer bisectors of two
triangles �ABC ′ and �ABC ′′, respectively, which have the same Ni, but which
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have C ′ ∈ Pi � Ni, C ′′ ∈ Pi � Ni. Therefore, by Proposition 7, these bisectors
r′, r′′ intersect to

←→
AB in two points at distance greater than 1 from the straight line←−→

AC ′ and from the straight line
←−→
AC ′′. So, this implies that Hi ∩←→AB also is a point

at distance greater than 1 from the straight line
←→
AC.

If C ∈ Pi � Ni then Hi is ellipse tangent to
←→
AB, then only one of the two

triangles T1, T3 exist; then by continuity the same is true the case thatC ∈ Pi∩Ni.
If C ∈ Po, the two triangles T1, T3 exists and, by Lemma 1, they are not coin-

cident.
The triangles T2 = �A2B2C2, T4 = �A4B4C4, by Lemma 1, they are not

coincident, and by Corollary 1 and Proposition 7, they always exist. �
Remark 9. If Tj exists then it is constructible with ruler and compass because the

points
(
Hi ∩←→AB

)
∪
(
Ho ∩←→AB

)
are contructible with ruler and compass; this

claim is true because Formulae (17), (18) of Proposition 7 are quadratic rationals
of the numbers a, b, which have been already constructed, they are the coordinates
ofC. The other pointsAj ,Bj are trivially obtained as intersection of the sides

←→
BC,←→

CA with the circumference of radius c and center point Cj . Then, with Formulae
(17), (18) we can construct Tj with ruler and compass, nevertheless readers can
found much more elegant constructions in [3].
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