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Recent advances in the study of networked systems have highlighted that our interconnected world is com-
posed of networks that are coupled to each other through different “layers” that each represent one of the many
possible subsystems or types of interactions. Nevertheless, it is traditional to aggregate multilayer data into a
single weighted network in order to take advantage of existing tools. This is admittedly convenient, but it is also
extremely problematic, as important information can be lost as a result. It is therefore important to develop mul-
tilayer generalizations of network concepts. In this paper, we analyze triadic relations and generalize the idea
of transitivity to multiplex networks. We focus on triadic relations (which yield the simplest type of transitivity)
and thus generalize the concept and computation of clustering coefficients to multiplex networks. We show how
the layered structure of such networks introduces a new degree of freedom that has a fundamental effect on
transitivity. We compute multiplex clustering coefficients for several real multiplex networks and illustrate why
generalizing standard network concepts to multiplex networks must be done with great care. We also derive
analytical expressions for our clustering coefficients in a family of random multiplex networks. Our analysis
illustrates that social networks have a strong tendency to promote redundancy by closing triads at every layer
and that they thereby have a different type of multiplex transitivity from transportation networks, which do not
exhibit such a tendency. These insights are invisible if one only studies aggregated networks.

The computation of triadic relations—that is, relation-
ships between triplets of nodes—using a clustering coeffi-
cient is one of the central ideas in network theory. Triadic
relations are the smallest structural patterns that produce
transitivity in a network, and counting them and analyz-
ing them is thus crucial to have a proper understanding of
clustering in networks. To measure transitivity in a net-
work, one computes a clustering coefficient by comparing
the number of connected triples of nodes to the number
of triangles. In the present paper, we generalize the ideas
of triadic relations and transitivity to multiplex networks,
in which entities are connected to each other via multiple
types of edges. To do this, we take into account the many
possible types of cycles that can occur in multiplex net-
works, and we show that different types of real networks
have different types of clustering patterns that cannot be
detected using traditional measures of transitivity in net-
works. Our results thus suggest that clustering mecha-
nisms are likely to be very different in different types of

networks, as we have demonstrated for social and trans-
portation networks.

The quantitative study of networks is fundamental for in-
vestigations of complex systems throughout the biological,
social, information, engineering, and physical sciences [1–
3]. The broad applicability of networks, and their success
in providing insights into the structure and function of both
natural and designed systems, has generated considerable ex-
citement across myriad scientific disciplines. Numerous tools
have been developed to study networks, and the realization
that several common features arise in a diverse variety of net-
works has facilitated the development of theoretical tools to
study them. For example, many networks constructed from
empirical data have heavy-tailed degree distributions, satisfy
the small-world property, and/or possess modular structures;
and such structural features can have important implications
for information diffusion, robustness against component fail-
ure, and more.
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Traditional studies of networks generally assume that nodes
are connected to each other by a single type of static edge that
encapsulates all connections between them. This assumption
is almost always a gross oversimplification, and it can lead
to misleading results and even the fundamental inability to
address certain problems. Instead, most real systems have
multilayer structures [4], as there are almost always multiple
types of ties or interactions that can occur between nodes, and
it is crucial to take them into account. For example, trans-
portation systems include multiple modes of travel, biologi-
cal systems include multiple signaling channels that operate
in parallel, and social networks include multiple types of re-
lationships and multiple modes of communication. We will
represent such systems using the formalism of multiplex net-
works, which allow one to incorporate multiple types of edges
between nodes.

The notion of multiplexity was introduced years ago in
fields such as engineering [5, 6] and sociology [1, 7–9], but
such discussions included few analytical tools to accompany
them. This situation arose for a simple reason: although
many aspects of single-layer networks are well understood,
it is very challenging to properly generalize even the simplest
concepts for multiplex networks. Theoretical developments
on multilayer networks (including both multiplex networks
and interconnected networks) have gained steam only in the
last few years [10–19], and even basic notions like central-
ity and diffusion have barely been studied in multiplex set-
tings [20–28]. Moreover, new degrees of freedom arise from
the multilayer structure of multiplex networks, and this brings
both new challenges [4, 29] and new phenomena. This in-
cludes multiplexity-induced correlations [18], new types of
dynamical feedbacks [25], and “costs” of inter-layer connec-
tions [30]. For reviews about networks with multiple layers,
see Refs. [4, 31].

In the present article, we focus on one of the most important
structural properties of networks: triadic relations, which are
used to describe the simplest and most fundamental type of
transitivity in networks [1, 3, 32, 33]. We develop multiplex
generalizations of clustering coefficients, which can be done
in myriad ways, and (as we will illustrate) the most appro-
priate generalization depends on the application under study.
Such considerations are crucial when developing multiplex
generalizations of any single-layer (i.e., “monoplex”) network
diagnostic. There have been several attempts to define multi-
plex clustering coefficients [34–38], but there are severe short-
comings in these definitions. For example, some of them do
not reduce to the standard single-layer clustering coefficient
or are not properly normalized (see SI Appendix).

The fact that existing definitions of multiplex clustering co-
efficients are mostly ad hoc makes them difficult to interpret.
In our definitions, we start from the basic concepts of walks
and cycles to obtain a transparent and general definition of
transitivity. This approach also guarantees that our clustering
coefficients are always properly normalized. It reduces to a
weighted clustering coefficient [39] of an aggregated network
for particular values of the parameters; this allows compari-

son with existing single-layer diagnostics. We also address
two additional, very important issues: (1) Multiplex networks
have many types of connections, and our multiplex cluster-
ing coefficients are (by construction) decomposable, so that
the contribution of each type of connection is explicit; (2) be-
cause our notion of multiplex clustering coefficients builds on
walks and cycles, we do not require every node to be present
in all layers, which removes a major (and very unrealistic)
simplification that is used in existing definitions.

Using the example of clustering coefficients, we illustrate
how the new degrees of freedom that result from the exis-
tence of a structures across layers of a multiplex network yield
rich new phenomena and subtle differences in how one should
compute key network diagnostics. As an illustration of such
phenomena, we derive analytical expressions for the expected
values of our clustering coefficients on multiplex networks in
which each layer is an independent Erdős-Rényi (ER) graph.
We find that the clustering coefficients depend on the intra-
layer densities in a nontrivial way if the probabilities for an
edge to exist are heterogeneous across the layers. We thereby
demonstrate for multiplex networks that it is insufficient to
generalize existing diagnostics in a naı̈ve manner and that one
must instead construct their generalizations from first princi-
ples (e.g., as walks and cycles in this case).

Mathematical Representation

We use the formalism of supra-adjacency matrices [20] to
represent the multiplex network structure. Let A, C, and Ā,
respectively, denote the intra-layer supra-adjacency matrix,
coupling supra-adjacency matrix, and supra-adjacency matrix
(see Materials and Methods). Supra-adjacency matrices sat-
isfy Ā = A + C and A =

⊕
αA

(α), where A(α) is the ad-
jacency matrix of layer α and

⊕
denotes the direct sum of

the matrices. We consider undirected networks, so A = AT .
Additionally, C = CT represents the set of connections be-
tween corresponding nodes (i.e., between the same entity) on
different layers. For clarity, we denote nodes in a given layer
and in monoplex networks with the symbols u, v, w; and we
denote indices in a supra-adjacency matrix with the symbols
i, j, h. We also define l(u) = {(u, α) ∈ V |α ∈ L} as the set
of supra-adjacency matrix indices that correspond to node u.

The local clustering coefficient Cu of node u in an un-
weighted monoplex network is the number of triangles that
include node u divided by the number of connected triples
with node u in the center [3, 33]. The local clustering coeffi-
cient is a measure of transitivity [32], and it can be interpreted
as the density of the focal node’s neighborhood. For our pur-
poses, it is convenient to define a local clustering coefficient
Cu as the number of 3-cycles tu that start and end at the fo-
cal node u divided by the number of 3-cycles du such that the
second step occurs in a complete graph (i.e., assuming that
the neighborhood of the focal node is as dense as possible).
In mathematical terms, tu = (A3)uu and du = (AFA)uu,
where A is the adjacency matrix of the graph and F is the ad-
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jacency matrix of a complete network with no self-loops (i.e.,
F = J− I, where J is a complete square matrix of 1s and I is
the identity matrix).

The local clustering coefficient is then Cu = tu/du. This
is equivalent to the usual definition of the clustering coeffi-
cient: Cu = tu/(ku(ku − 1)), where ku is the degree of node
u. One can obtain a single global clustering coefficient for a
monoplex network either by averaging Cu over all nodes or
by computing C =

∑
u tu∑
u du

. Henceforth, we will use the term
global clustering coefficient for the latter quantity.

Triads on Multiplex Networks

In addition to 3-cycles (i.e., triads) that occur within a sin-
gle layer, multiplex networks also contain cycles that can tra-
verse different additional layers but still have 3 intra-layer
steps. Such cycles are important for analysis of transitivity in
multiplex networks. In social networks, for example, transi-
tivity involves social ties across multiple social environments
[1, 40]. In transportation networks, there typically exist sev-
eral transport means to return to one’s starting location, and
different combinations of transportation modes are important
in different cities [41]. For dynamical processes on multiplex
networks, it is important to consider 3-cycles that traverse dif-
ferent numbers of layers, so we need to take them into account
when defining a multiplex clustering coefficient. We define a
supra-walk as a walk on a multiplex network in which, either
before or after each intra-layer step, a walk can either continue
on the same layer or change to an adjacent layer. We represent
this choice using the following matrix:

Ĉ = βI + γC , (1)

where the parameter β is a weight that accounts for the walker
staying in the current layer and γ is a weight that accounts
for the walker stepping to another layer. In a supra-walk, a
supra-step then consists either of only a single intra-layer step
or of a step that implies changing between a pair of layers
(either before or after having an intra-layer step). In the latter
scenario, we impose a further constraint that two consecutive
inter-layer steps are not allowed. The number of 3-cycles for
node i is then

tM,i = [(AĈ)3 + (ĈA)3]ii , (2)

where the first term corresponds to cycles in which the inter-
layer step is taken after an intra-layer one and the second term
corresponds to cycles in which the inter-layer step is taken
before an intra-layer one. We can simplify Eq. 2 by exploiting
the fact that both A and C are symmetric. This yields

tM,i = 2[(AĈ)3]ii . (3)

It is useful to decompose multiplex clustering coeffi-
cients that are defined in terms of multilayer cycles into
so-called elementary cycles by expanding Eq. 3 and writ-
ing it in terms of the matrices A and C. That is, we

write tM,i =
∑
E∈E wE(E)ii, where E denotes the set of

elementary cycles. We can use symmetries in our def-
inition of cycles and thereby express all of the elemen-
tary cycles in a standard form with terms in the set E =
{AAA,AACAC,ACAAC,ACACA,ACACAC}. See Fig. 1
for an illustration of elementary cycles and the SI Appendix for
details on deriving the elementary cycles. Note that the above
definition of 3-cycle is not the only possible one in multiplex
networks. In the SI Appendix, we discuss alternative defini-
tions, some of which lead to more elementary cycles than the
ones that we just enumerated.

To define multiplex clustering coefficients, we need both
the number of cycles t∗,i and a normalization d∗,i, where ∗
stands for any type of cycle. To determine the normalization,
it is natural to follow the same procedure as with monoplex
clustering coefficients and use a complete multiplex network
F =

⊕
αF

(α), where F(α) = J(α) − I(α) is the adjacency
matrix for a complete graph on layer α. We can then pro-
ceed from any definition of t∗,i to d∗,i by replacing the second
intra-layer step with a step in the complete multiplex network.
We obtain dM,i = 2(AĈFĈAĈ)ii for tM,i = 2[(AĈ)3]ii.
Similarly, one can use any other definition of a cycle (e.g.,
any of the elementary cycles or the cycles discussed in the SI
Appendix) as a starting point for defining a clustering coeffi-
cient.

The above formulation allows us to define local and global
clustering coefficients for multiplex graphs analogously to
monoplex networks. We can calculate natural multiplex ana-
log to the usual monoplex local clustering coefficient for any
node i of the supra-graph. Additionally, in a multiplex net-
work, a node u of an intra-layer network allows an interme-
diate description for clustering between local and the global
clustering coefficients. We define

c∗,i =
t∗,i
d∗,i

, (4)

C∗,u =

∑
i∈l(u) t∗,i∑
i∈l(u) d∗,i

, (5)

C∗ =

∑
i t∗,i∑
i d∗,i

, (6)

where l(u) is as defined before.
We can decompose the expression in Eq. 6 in terms of the

contributions from cycles that traverse exactly one, two, and
three layers (m = 1, 2, 3 respectively) to give

t∗,i = t∗,1,iβ
3 + t∗,2,iβγ

2 + t∗,3,iγ
3 , (7)

d∗,i = d∗,1,iβ
3 + d∗,2,iβγ

2 + d∗,3,iγ
3 , (8)

C
(m)
∗ =

∑
i t∗,m,i∑
i d∗,m,i

. (9)

We can similarly decompose Eqs. 4 and 5. Using the decom-
position in Eq. 7 yields an alternative way to average over
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contributions from the three types of cycles:

C∗(ω1, ω2, ω3) =

3∑
m

ωmC
(m)
∗ , (10)

where ~ω is a vector that gives the relative weights of the dif-
ferent contributions. There are also analogs of Eq. 10 for the
clustering coefficients defined in Eqs. 4 and 5. The clustering
coefficients in Eqs. 4–6 all depend on the values of the param-
eters β and γ, but the dependence vanishes if β = γ. Unless
we explicitly indicate otherwise, we assume in our calcula-
tions that β = γ.

Results and Discussions

We investigate transitivity in empirical multiplex networks
by calculating clustering coefficients. In Table I, we give
the values of layer-decomposed global clustering coefficients
for multiplex networks (four social networks and two trans-
portation networks) constructed from real data. To help give
context to the values, the table also includes the clustering-
coefficient values that we obtain for ER networks with match-
ing edge densities in each layer. Additionally, note that the
two transportation networks have different numbers of nodes
in different layers (i.e., they are not “node-aligned” [4]). As
we will now discuss, multiplex clustering coefficients give
insights that are impossible to infer by calculating weighted
clustering coefficients for aggregated networks or even by cal-
culating them separately for each layer of a multiplex network.

For each social network in Table I, note that CM < C
(1)
M

and C(1)
M > C

(2)
M > C

(3)
M . Consequently, the primary con-

tribution to the triadic structure of these multiplex networks
arises from 3-cycles that stay within a given layer. To check
that the ordering of the different clustering coefficients is not
an artifact of the heterogeneity of densities of the different
layers, we also calculate the expected values of the cluster-
ing coefficients in ER networks with identical edge densities
to the data. We observe that all clustering coefficients exhibit
larger inter-layer transitivities than would be expected in a ER
networks with identical edge densities, and that the same or-
dering relationship is also true. We speculate that the reason
for this observation is simple one: individuals that close tri-
ads between different layers are likely also to “meet” and then
establish relations in a single layer.

Conversely, the transportation networks that we examine
exhibit the opposite pattern. For the London Underground
metro (“Tube”) network, for example, we observe thatC(3)

M >

C
(2)
M > C

(1)
M . This reflects the fact that single lines in the Tube

are designed to avoid redundant connections. A single-layer
triangle would require a line to make a full loop within 3 sta-
tions. Two-layer triangles, which are a bit more frequent than
single-layer ones, entail that two lines run in almost parallel
directions and that one line jumps over a single station. For
3-layer triangles, the geographical constraints do not matter
because one can construct a triangle with three straight lines.

We also analyze the triadic local closure of the Kapferer
tailor shop social network by examining the local clustering-
coefficient values. In Fig. 2A, we show a comparison of
the layer-decomposed local clustering coefficients (also see
Fig. 6a of [38]). Observe that the condition c(1)

M,i > c2M,i >

c
(3)
M,i holds for most of the nodes. In Fig. 2B, we subtract the

expected values of the clustering coefficients of nodes in a
network generated with the configuration model from the cor-
responding clustering-coefficient values observed in the data
to discern whether the relative order of the local clustering
coefficients is to be expected from an associated random net-
work (with the same layer densities and degree sequences as
the data). Similar to the results for the global clustering coeffi-
cients, we see that taking a null model into account lessen the
difference between the coefficients counting different num-
bers of layers but does not completely remove it.

We investigate the dependence of local triadic structure
on degree for one social and one transportation network. In
Fig. 3A, we show how the different multiplex clustering co-
efficients depend on the unweighted degrees of the nodes in
the aggregated network in the Kapferer tailor shop. Note that
the relative order of the mean clustering coefficients is inde-
pendent of the degree. In Fig. 3B, we illustrate that the aggre-
gated network for the airline transportation network exhibits a
non-constant difference between the curves of CM,u and the
weighted clustering coefficientCZ,u (see Materials and Meth-
ods). Using a global normalization −for CZ,u, see Materials
and Methods− thus reduces the clustering coefficient around
the small airports much more than it does for the large air-
ports. That, in turn, introduces a bias.

The airline network is organized differently from the Lon-
don Tube network: each layer encompasses flights from a sin-
gle airline. We observe that the two-layer global clustering
coefficient is larger than the single-layer one for hubs (high-
degree nodes) in the airline network, but it is smaller for small
airports (low-degree nodes), as seen from Fig. 3B. However,
the global clustering coefficient counts the total number of 3-
cycles and connected triplets and it thus gives more weight
to high-degree nodes than low-degree nodes, and we find that
the global clustering coefficients for the airline network sat-
isfy C(2)

M > C
(1)
M > C

(3)
M . The intra-airline clustering coeffi-

cients have small values, presumably because it is not in the
interest of an airline to introduce new flights between two air-
ports that can already be reached by two flights via the same
airline through some major airport. The two-layer cycles cor-
respond to cases in which an airline has a connection from an
airport to two other airports and a second airline has a direct
connection between those two airports. Completing a three-
layer cycle requires using three distinct airlines, and this type
of congregation of airlines to the same area is not frequent in
the data: the three-layer cycles are more likely than the single-
layer ones only for few of the largest airports.
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Conclusions

We derived measurements of transitivity for multiplex net-
works by developing multiplex generalizations of triad rela-
tions and clustering coefficients. By using examples from
empirical data in diverse settings, we showed that different
notions of multiplex transitivity are important in different sit-
uations. For example, the balance between intra-layer versus
inter-layer clustering is different in social versus transporta-
tion networks (and even in different types of networks within
each category, as we illustrated explicitly for transportation
networks), reflecting the fact that multilayer transitivity can
arise from different mechanisms. Such differences are rooted
in the new degrees of freedom that arise from inter-layer con-
nections and are invisible to calculations of clustering coef-
ficients on single-layer networks obtained via aggregation.
In other words, this is inherently a multilayer phenomenon:
all of these diverse flavors of transitivity reduce to the same
phenomenon when one throws away the multilayer informa-
tion. Generalizing clustering coefficients for multiplex net-
works makes it possible to explore such phenomena and to
gain deeper insights into different types of transitivity in net-
works. The existence of multiple types of transitivity also has
important implications for multiplex network motifs and mul-
tiplex community structure. In particular, our work on mul-
tiplex clustering coefficients demonstrates that definitions of
all clustering notions for multiplex networks need to be able
to handle such features.

MATERIALS AND METHODS

Supra-Adjacency Matrices

We represent a multiplex network using a finite sequence
of graphs {Gα}α, with Gα = (V α, Eα), where α ∈ L
is the set of layers. Without loss of generality, we assume
that L = {1, . . . , b} and V α ⊆ {1, . . . , n}. For simplicity,
we examine unweighted and undirected multiplex networks.
We define the intra-layer supra-graph as GA = (V,EA),
where the set of nodes is V = tαV α =

⋃
α{(u, α) : u ∈

V α} and the set of edges is EA =
⋃
α{((u, α), (v, α)) :

(u, v) ∈ Eα}. We also define the coupling supra-graph
GC = (V,EC) using the same sets of nodes and the edge
set EC =

⋃
α,β{((u, α), (u, β)) : u ∈ V α, u ∈ V β , α 6= β}.

If ((u, α), (u, β)) ∈ EC , we say that (u, α) and (u, β) are
“interconnected.” We say that a multiplex network is “node-
aligned” [4] if all layers share the same set of nodes (i.e., if
V α = V β for all α and β). The supra-graph is Ḡ = (V, Ē),
where Ē = EA ∪ EC ; its corresponding adjacency matrix is
the supra-adjacency matrix.

Clustering Coefficients on Aggregated Networks

A common way to study multiplex systems is to aggregate
layers to obtain either multi-graphs or weighted networks,
where the number of edges or the weight of an edge is the
number of different types of edges between a pair of nodes [4].
One can then use any of the numerous ways to define cluster-
ing coefficients on weighted monoplex networks [42, 43] to
calculate clustering coefficients on the aggregated network.

One of the weighted clustering coefficients is a special case
of the multiplex clustering coefficient that we defined. Ref-
erences [39, 44, 45] calculated the weighted clustering coeffi-
cient as

CZ,u =

∑
vwWuvWvwWwu

wmax

∑
v 6=wWuvWuw

=
(W3)uu

((W(wmaxF)W)uu
,

(11)

where Wuv =
∑
i∈l(u),j∈l(v)Aij is the weighted adjacency

matrix W. The elements of W are the weights of the edges,
the quantity wmax = maxu,vWuv is the maximum weight in
W, and F is the adjacency matrix of the complete unweighted
graph. We can define the global version CZ of CZ,u by sum-
ming over all of the nodes in the numerator and the denomi-
nator of Eq. 11 (analogously to Eq. 6).

The coefficients CZ,u and CZ are related to our multi-
plex coefficients in node-aligned multiplex networks. Let-
ting β = γ = 1 and summing over all layers yields∑
i∈l(u)((AĈ)3)ii = (W3)uu. That is, in this special case,

the weighted clustering coefficients CZ,u and CZ are equiv-
alent to the corresponding multiplex clustering coefficients
CM,u and CM . That is, CM,u(β = γ) = wmax

b CZ,u and
CM (β = γ) = wmax

b CZ . We need the term wmax/b to match
the normalizations because aggregation removes the informa-
tion about the number of layers b, so the normalization must
be based on the maximum weight instead of the number of
layers. That is, a step in the complete weighted network is de-
scribed by using wmaxF in Eq. 11 instead of using bF . Note
that this relationship between our multiplex clustering coeffi-
cient and the weighted clustering coefficient is only true for
node-aligned multiplex networks. The normalization of our
multiplex clustering coefficient depends on how many nodes
are present in the local neighborhood of the focal node if all
nodes are not shared between all layers. This is in contrast to
the “global” normalization by wmax that the weighted cluster-
ing coefficient uses.

Clustering Coefficients in Erdős-Rényi (ER) networks

Almost all real networks contain some amount of transi-
tivity, and it is often desirable to know if a network contains
more transitivity that would be expected by chance. In order
to answer this question, one typically compares clustering-
coefficient values of a network to what would be expected
from some random network that acts as a null model. The
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simplest random network to use is an Erdős-Rényi (ER) net-
work.

The clustering coefficient in an unweighted monoplex ER
network is equal to the probability p of an edge to exist. That
is, the density of a neighborhood of a node, measured by the
clustering coefficient, is the same as the density of the whole
network for ER networks. In node-aligned multiplex networks
with ER intra-layer graphs with connection probabilities pα,
we have the same result only if all of the layers are statisti-
cally identical (i.e., pα = p for all α). However, heterogeneity
among layers complicates the behavior of clustering coeffi-
cients; if the layers have different connection probabilities,
then the expected value of the mean clustering coefficient is
a nontrivial function of the connection probabilities (e.g., it
is not always equal to the mean of the connection probabili-
ties). For example, the formulas for the expected global layer-
decomposed clustering coefficients are

〈C(1)
M 〉 =

∑
α p

3
α∑

α p
2
α

≡ p3

p2
, (12)

〈C(2)
M 〉 =

3
∑
α6=β pαp

2
β

(b− 1)
∑
α p

2
α + 2

∑
α6=β pαpβ

, (13)

〈C(3)
M 〉 =

∑
α6=β,β 6=γ,γ 6=α pαpβpγ

(b− 2)
∑
α6=β pαpβ

. (14)

See the SI Appendix for the local clustering coefficients and
for the empirical validation of our theoretical results.
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Moreno, Y, Porter, M. A, Gómez, S, & Arenas, A. (2013)
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Romance, M. (2011) A mathematical model for networks with
structures in the mesoscale. Int. J. Comp. Math. 89, 291–309.

[38] Battiston, F, Nicosia, V, & Latora, V. (2014) Structural mea-
sures for multiplex networks. Phys. Rev. E 89, 032804.

[39] Zhang, B & Horvath, S. (2005) A general framework for
weighted gene co-expression network analysis. Stat. App.
Genet. Mol. Biol. 4, 17.

[40] Szell, M, Lambiotte, R, & Thurner, S. (2010) Multirelational
organization of large-scale social networks in an online world.
Proc. Natl. Acad. of Sci. (USA) 107, 13636–13641.

[41] Gallotti, R & Barthelemy, M. (2014) Anatomy and efficiency
of urban multimodal mobility. Scientific Reports 4, 6911.
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TABLE I: Clustering coefficients CM , C(1)
M , C(2)

M , C(3)
M corresponding, respectively, to the global, one-layer, two-layer, and three-layer

clustering coefficients for various networks. “Tailor shop”: Kapferer tailor shop network (n = 39, b = 4) [46]. “Management”: Krackhardt
office cognitive social structures (n = 21, b = 21) [47]. “Families”: Padgett Florentine families social network (n = 16, b = 2) [48]. “Bank”:
Roethlisberger and Dickson bank wiring room social network (n = 14, b = 6) [49]. “Tube”: The London Underground (i.e., “The Tube”)
transportation network (n = 314, b = 14) [50]. “Airline”: Network of flights between cities, in which each layer corresponds to a single airline
(n = 3108, b = 530) [51]. The rows labeled “orig.” have the clustering coefficients for the original networks, and the rows labeled “ER” have
the expected value and the standard deviation of the clustering coefficient in an ER random network with exactly as many edges on each layer
as in the original network. For the original values, we perform a two-tailed Z-test to test if the observed clustering coefficients could have been
produced by the ER networks. Our notation is as follows: *: p < 0.05, **: p < 0.01 for Bonferroni-corrected tests with 24 hypothesis; ’:
p < 0.05, ”: p < 0.01 for uncorrected tests. We symmetrize directed networks by considering two nodes to be connected if there is at least
one edge between them. The social networks above are node-aligned multiplex graphs, but the transport networks are not. Reported values are
averages over different numbers of realizations: 1.5 × 105 for Tailor shop, 1.5 × 103 for Airline, 1.5 × 104 for Management, 1.5 × 105 for
Families, 1.5× 104 for Tube, 1.5× 105 for Bank.

Tailor shop Management Families Bank Tube Airline

CM
orig. 0.319** 0.206** 0.223’ 0.293** 0.056 0.101**
ER 0.186± 0.003 0.124± 0.001 0.138± 0.035 0.195± 0.009 0.053± 0.011 0.038± 0.000

C
(1)
M

orig. 0.406** 0.436** 0.289’ 0.537** 0.013” 0.100**
ER 0.244± 0.010 0.196± 0.015 0.135± 0.066 0.227± 0.038 0.053± 0.013 0.064± 0.001

C
(2)
M

orig. 0.327** 0.273** 0.198 0.349** 0.043 0.150**
ER 0.191± 0.004 0.147± 0.002 0.138± 0.040 0.203± 0.011 0.053± 0.020 0.041± 0.000

C
(3)
M

orig. 0.288** 0.192** - 0.227** 0.314** 0.086**
ER 0.165± 0.004 0.120± 0.001 - 0.186± 0.010 0.051± 0.043 0.037± 0.000

FIG. 1: Sketch of elementary cycles AAA, AACAC, ACAAC, ACACA, and ACACAC. The orange node is the starting point of the cycle.
The intra-layer edges are the solid lines, the intra-layer edges are the dotted lines, and the second intra-layer step is the yellow line.
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SUPPLEMENTARY INFORMATION FOR “STRUCTURE OF
TRIADIC RELATIONS IN MULTIPLEX NETWORKS”

Weighted Clustering Coefficients

There are two primary weighted clustering coefficients for
monoplex networks that provide alternatives to the one that
we discussed in the main text [52, 53]. They are

CO,u =
1

wmaxku(ku − 1)

∑
v,w

(WuvWuwWvw)1/3 , (15)

CBa,u =
1

su(ku − 1)

∑
v,w

(Wuv +Wuw)

2
AuvAuwAvw ,

(16)

where A is the unweighted adjacency matrix associated with
the weighted adjacency matrix W, the degree of node u is
ku =

∑
v Auv , the strength of u is su =

∑
vWuv , and the

quantity wmax = maxu,vWuv is the maximum weight in W.

Multiplex Clustering Coefficients in the Literature

Let A(α) denote the intra-layer adjacency matrix for layer
α. If the multiplex network is weighted W(α) is used to de-
note the weight matrix (i.e., the weighted intra-layer adja-
cency matrix) for layer α. The weight matrix of the aggre-
gated network is denoted by W (see Materials and Methods
in the main text). The clustering coefficient that was defined
in [34] for node-aligned multiplex networks is

CBe,u =

∑
v,w

∑
αA

(α)
uv
∑
β A

(β)
uw
∑
γ A

(γ)
uw∑

v,w

∑
β A

(β)
uv
∑
α max(A

(α)
uw , A

(α)
vw )

, (17)

which can be expressed in terms of the aggregated network as

CBe,u =

∑
v,wWuvWuwWvw∑

v,wWuv

∑
α max

(
A

(α)
uw , A

(α)
vw

) . (18)

The numerator of Eq. (18) is the same as the numerator of the
weighted clustering coefficient CZ,u, but the denominator is
different. Because of the denominator in Eq. (18), the values
of the clustering coefficient CBe,u do not have to lie in the
interval [0, 1]. For example, CBe,u = (n − 2)b/n for a com-
plete multiplex network (where n is the number of nodes in
the multiplex network), so CBe,u > 1 when b > n

n−2 .
References [35, 36] defined a family of local clustering co-

efficients for directed and weighted multiplex networks:

CBr,u,t =

∑
α

∑
v,w∈N(u,t)(W

(α)
wv +W

(α)
vw )

2|N(u, t)|b
, (19)

where N(u, t) = {v : |{α : A
(α)
uv = 1 and A

(α)
vu = 1}| ≥

t}, L is the set of layers, and t is a threshold. The clustering
coefficient (19) does not yield the ordinary monoplex local

clustering coefficient for unweighted (i.e., networks with bi-
nary weights) and undirected networks when it is calculated
for the special case of a monoplex network (i.e., a multiplex
network with one layer). Furthermore, its values are not nor-
malized to lie between 0 an 1. For example, consider a com-
plete multiplex network with n nodes and an arbitrary num-
ber of layers. In this case, the clustering coefficient (19) takes
the value of n − 2 for each node. If a multiplex network is
undirected (and unweighted), then CBr,u,t can always be cal-
culated when one is only given an aggregated network and the
total number of layers in the multiplex network. As an exam-
ple, for the threshold value t = 1, one obtains

CBr,u,1 =
1

kub

∑
v,w

Wvw

2
AuvAuwAvw , (20)

where A is the binary adjacency matrix corresponding to the
weighted adjacency matrix W and ku =

∑
v Auv is the de-

gree of node u.
Reference [37] defined a clustering coefficient for multiplex

networks that are not necessarily node-aligned as

CCr,u =
2
∑
α |Eα(u)|∑

α |Γα(u)|(|Γα(u)| − 1)
, (21)

where L is again the set of layers, Γα(u) = Γ(u) ∩ Vα, the
quantity Γ(u) is the set of neighbors of node u in the aggre-
gated network, Vα is the set of nodes in layer α, and Eα(u) is
the set of edges in the induced subgraph of the aggregated net-
work that is spanned by Γα(u). For a node-aligned multiplex
network, Vα = V and Γα(u) = Γ(u), so one can write

CCr,u =

∑
vw AuvWvwAwu

b
∑
v 6=w AuvAwu

, (22)

which is a local clustering coefficient of the aggregated net-
work.

Battiston et al. [38] defined two versions of clustering coef-
ficients for node-aligned multiplex networks:

CBat1,u =

∑
α

∑
β 6=α

∑
v 6=u,w 6=uA

(α)
uv A

(β)
vwA

(α)
wu

(b− 1)
∑
α

∑
v 6=u,w 6=uA

(α)
uv A

(α)
wu

, (23)

CBat2,u =

∑
α

∑
β 6=α

∑
γ 6=α,β

∑
v 6=u,w 6=uA

(α)
uv A

(γ)
vwA

(β)
wu

(b− 2)
∑
α

∑
β 6=α

∑
v 6=u,w 6=uA

(α)
uv A

(β)
wu

.

(24)

The first definition, CBat1,u, counts the number of ACACA-
type elementary cycles and the second definition, CBat2,u,
counts the 3-layer elementary cycles ACACAC. In both of
these definitions, note that the sums in the denominators al-
low terms in which v = w, so a complete multiplex network
has a local clustering coefficient of (n− 1)/(n− 2) for every
node.

Reference [29] proposed definitions for global clustering
coefficients using a tensorial formalism for multilayer net-
works; when representing a multiplex network as a third-order
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tensor, the formulas in [29] reduce to clustering coefficients
that we propose in the present article (Eq. (6) of the main
text). Parshani et al. [54] defined an “inter-clustering coeffi-
cient” for two-layer interdependent networks that can be in-
terpreted as multiplex networks [4, 55–57]. Their definition
is similar to edge “overlap” [38]; in our framework, it corre-
sponds to counting 2-cycles of type (AC)2. A few other schol-
ars [58, 59] have also defined generalizations of clustering co-
efficients for multilayer networks that cannot be interpreted as
multiplex networks [4].

In Table II, we show a summary of the properties satisfied
by several different (local and global) clustering coefficients.
In particular, we check the following properties: (1) The value
of the clustering coefficient reduces to the values of the asso-
ciated monoplex clustering coefficient for a single-layer net-
work. (2) The value of the clustering coefficient is normalized
so that it takes values that are less than or equal to 1. (All
of the clustering coefficients are nonnegative.) (3) The clus-
tering coefficient has a value of p in a large (i.e., when the
number of nodes n→∞) node-aligned multiplex network in
which each layer is an independent ER network with an edge
probability of p in each layer. (4) Suppose that we construct
a multiplex network by replicating the same given monoplex
network in each layer. The clustering coefficient for the multi-
plex network has the same value as for the monoplex network.
(5) There exists a version of the clustering coefficient that is
defined for each node-layer pair separately. (6) The clustering
coefficient is defined also for multiplex networks that are not
node-aligned.

Other Possible Definitions of Cycles

There are many possible ways to define cycles in multiplex
networks. If we relax the condition of disallowing two con-
secutive inter-layer steps, then we can write

tSM,i = [(ĈAĈ)3]ii , (25)

tSM ′,i = [(Ĉ′A+AĈ′)3]ii , (26)

where Ĉ′ = 1
2βI + γC. Unlike the matrices in definition

Eq. (2) in the main text, the matrices ĈAĈ and Ĉ′A+AĈ′ are
symmetric. We can thus interpret them as weighted adjacency
matrices of symmetric supra-graphs, and we can then calcu-
late cycles and clustering coefficients in these supra-graphs.

One might want to forbid the option of staying inside of a
layer in the first step of the second term of Eq. (26). We can
then write

tM ′,i = [(AĈ)3 + γCA(ĈA)2]ii . (27)

With this restriction, cycles that traverse two adjacent edges to
the focal node i are only calculated two times instead of four
times. Similar to Eq. (3) in the main text, we can simplify
Eq. (27) to obtain

tM ′,i = [2(AĈ)2AĈ′]ii . (28)

In Table III, we show the values of the clustering coefficient
calculated using this last definition of cycle for the same net-
works studied in the main text.

Defining Multiplex Clustering Coefficients Using Auxiliary
Networks

An elegant way to generalize clustering coefficients for
multiplex networks is to define a new (possibly weighted)
auxiliary supra-graph GM so that one can define cycles of
interest as weighted 3-cycles in GM . Once we have a
function that produces the auxiliary supra-adjacency matrix
M = M(A, C), we can define the auxiliary complete supra-
adjacency matrix MF = M(F , C). One can then define a
local clustering coefficient for node-layer pair i with the for-
mula

ci =
(M3)ii

(MMFM)ii
. (29)

As for a monoplex network, the denominator written in terms
of the complete matrix is equivalent to that usual one written
in terms of connectivity. We thereby consider the connectivity
of a node in the supra-graph induced by the matrix M. We
refer to the matrixM as the multiplex walk matrix because it
encodes the permissible steps in a multiplex network. When
M is equal toAĈ or ĈA, the induced supra-graph is directed,
so one needs to distinguish between the in-connectivity and
out-connectivity degrees.

A key advantage of defining clustering coefficients using an
auxiliary supra-graph is that one can then use the it to calculate
other diagnostics (e.g., degree or strength) for nodes. One can
thereby investigate correlations between clustering-coefficient
values and the size of the multiplex neighborhood of a node.
(The size of the neighborhood is the number of nodes that are
reachable in a single step via connections defined by matrix
M.)

The symmetric multiplex walk matrices of Eqs. (25)
and (26) are

MSM =ĈAĈ , (30)

MSM ′ =(Ĉ′A+AĈ′) . (31)

To avoid double-counting intra-layer steps in the definition of
MSM ′ , we need to rescale either the intra-layer weight pa-
rameter β (i.e., we can write Ĉ′ = β′I + γC = 1

2βI + γC)
or the inter-layer weight parameter γ [i.e., we can write
Ĉ′ = βI + γ′C = βI + 2γC and also define MSM ′ =
1
2 (AĈ′ + Ĉ′A)].

Consider a supra-graph induced by a multiplex walk ma-
trix. The distinction between the matricesMSM andMSM ′

is that MSM also includes terms of the form CAC that take
into account walks that have an inter-layer step (C) followed
by an intra-layer step (A) and then another inter-layer step (C).
Therefore, in the supra-graph induced byMSM , two nodes in
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TABLE II: Summary of the properties of the different multiplex clustering coefficients. The notation C∗(,u) means that the property holds for
both the global version and the local version of the associated clustering coefficient.

Property CM(,u) CBe,u CZ(,u) CBa,u CO,u CBr,u CCr,u CBat(1,2),u

(1) Reduces to monoplex c X X X X X X

(2) C∗ ≤ 1 X X X X X X

(3) C∗ = p in multiplex ER X X

(4) Monoplex C for copied layers X X X X X

(5) Def. for node-layer pairs X

(6) Def. for non-node-aligned X X

TABLE III: Clustering coefficients (rows) for the same networks (columns) from Table 1 in the main text. For the Tube and the Airline
networks, we only calculate clustering coefficients for non-node-aligned networks.

CC Families Bank Tailor shop Management Tube Airline
CM′ 0.218 0.289 0.320 0.206 0.070 0.102
C

(1)

M′ 0.289 0.537 0.406 0.436 0.013 0.100
C

(2)

M′ 0.202 0.368 0.338 0.297 0.041 0.173
C

(3)

M′ - 0.227 0.288 0.192 0.314 0.086
CM′( 1

3
, 1
3
, 1
3
) 0.164 0.377 0.344 0.309 0.123 0.120

CCr,u 0.342 0.254 0.308 0.150 0.038 0.329
CBa,u 0.195 0.811 0.612 2.019 - -
CBr,u 0.674 1.761 4.289 1.636 - -
CO,u 0.303 0.268 0.260 0.133 - -
CBe,u 0.486 0.775 0.629 0.715 - -
CBat1,u 0.159 0.199 0.271 0.169 - -
CBat2,u - 0.190 0.282 0.179 - -

the same layer that are not connected in that layer can be con-
nected nodes if the same nodes are connected in another layer.

The matrix Ĉ sums the contributions of all node-layer pairs
that share the same node when β = γ = 1. In other words, if
we associate a vector of the canonical basis ei to each node-
layer pair i and denote by ΓC((u, α)) = {(u, β)|β ∈ L} all
node-layer pairs sharing the same node, then

Ĉei =
∑

j∈ΓC(i)

ej (32)

produces a vector with entries equal to 1 for nodes that belong
to the basis vector and 0 for nodes that do not. Consequently,
MSM is particularly interesting, because it is related to the
weighted adjacency matrix of the aggregated graph for β =
γ = 1. That is,

(ĈAĈ)ij = Wuv, i ∈ l(u), j ∈ l(v). (33)

One can also write the multiplex clustering coefficient in-
duced by Eq. (2) in terms of the auxiliary supra-adjacency
matrix by considering Eq. (3), which is a simplified version of
the equation that counts cycles only in one direction:

MM =
3
√

2AĈ . (34)

The matrixMM is not symmetric, which implies that the as-
sociated graph is a directed supra-graph. Nevertheless, the
clustering coefficient induced byMM is the same as that in-
duced by its transposeMT

M if A is symmetric.

Expressing Clustering Coefficients Using Elementary 3-Cycles

We now give a detailed explanation of the process of de-
composing any of our walk-based clustering coefficients into
elementary cycles. An elementary cycle is a term that consists
of products of the matricesA and C (i.e., there are no sums) af-
ter one expands the expression for a cycle (which is a weighted
sum of such terms). Because we are only interested in the di-
agonal elements of the terms and we consider only undirected
intra-layer supra-graphs and coupling supra-graphs, we can
transpose the terms and still write them in terms of the ma-
trices A and C rather than also using their transposes. There
are also multiple ways of writing non-symmetric elementary
cycles [e.g., (AACAC)ii = (CACAA)ii].

We adopt a convention in which all elementary cycles are
transposed so that we select the one in which the first element
is A rather than C when comparing the two versions of the
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term from left to right. That is, for two equivalent terms, we
choose the one that comes first in alphabetical order. To calcu-
late the clustering coefficients that we defined in the present
supplement, we also need to include elementary cycles that
start and end in an inter-layer step. The set of elementary
3-cycles is thus E = {AAA, AACAC, ACAAC, ACACA,
ACACAC, CAAAC, CAACAC, CACACAC}.

We now write our clustering coefficients using elementary
3-cycles. We obtain the normalization formulas by using the
elementary 3-cycles, but replacing the second A term with
F . This yields a standard form for any of our local multiplex
clustering coefficients:

c∗,i = t∗,i/d∗,i , (35)

where

t∗,i = [wAAAAAA+ wAACACAACAC + wACAACACAAC
+ wACACAACACA+ wACACACACACAC
+ wCAAACCAAAC + wCAACACCAACAC
+ wCACACACCACACAC]ii (36)

d∗,i = [wAAAAFA+ wAACACAFCAC + wACAACACFAC
+ wACACAACFCA+ wACACACACFCAC
+ wCAAACCAFAC + wCAACACCAFCAC
+ wCACACACCACFCAC]ii , (37)

where i is a node-layer pair and the wE coefficients are scalars
that correspond to the weights for each type of elementary
cycle. (These weights are different for different types of clus-
tering coefficients; one can choose whatever is appropriate for
a given problem.) Note that we have absorbed the parameters
β and γ into these coefficients (see below and Table IV). We
illustrate the possible elementary cycles in Fig. 1 of the main
text and in Fig. 4 of the present supplement.

One can even express the cycles that include two consecu-
tive inter-layer steps in the standard form of Eqs. (36)–(37) for
node-aligned multiplex networks, because CC = (b − 1)I +
(b−2)C in this case. Without the assumption that β = γ = 1,
the expansion for the coefficient cSM is cumbersome because
it includes coefficients βkγh with all possible combinations
of k and h such that k + h = 6 and h 6= 1. Furthermore,
in the general case, it is not possible to infer the number of
layers in which a walk traverses an intra-layer edge based on
the exponents of β and γ for cSM and cSM ′ . For example,
in cSM ′ , the intra-layer elementary triangle AAA includes a
contribution from both β3 (i.e., the walk stays in the original
layer) and βγ2 (i.e., the walk visits some other layer but then
comes back to the original layer without traversing any intra-
layer edges while it was gone). Moreover, all of the terms with
b arise from a walk moving to a new layer and then coming
right back to the original layer in the next step. Because there
are b − 1 other layers from which to choose, the influence of
cycles with such transient layer visits is amplified by the total
number of layers in a network. That is, adding more layers
(even ones that do not contain any edges) changes the relative
importance of different types of elementary cycles.

In Table IV, we show the values of the coefficients wE

for the different ways that we defined 3-cycles in multiplex
networks. In Table V, we show their corresponding expan-
sions in terms of elementary cycles for the case β = γ = 1.
These cycle decompositions illuminate the difference between
cM.i, cM ′,i, cSM,i, and cSM ′,i. The clustering coefficient cM,i

gives equal weight to each elementary cycle, whereas cM ′,i

gives half of the weight toAAA andACACA cycles (i.e., the
cycles that include an implicit double-counting of cycles) as
compared to the other cycles.

A Simple Example

We now use a simple example (see Fig. 5) to illustrate the
differences between the different notions of a multiplex clus-
tering coefficient. Consider a two-layer multiplex network
with three nodes in layer a and two nodes in layer b. The
three node-layer pairs in layer a form a connected triple, and
the two exterior node-layer pairs of this triple are connected to
the two node-layer pairs in layer b; these last two node-layer
pairs are connected to each other.

The adjacency matrix A for the intra-layer graph is

A =


0 1 1 0 0

1 0 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

 , (38)

and the adjacency matrix C of the coupling supra-graph is

C =


0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

 . (39)

Thus, the supra-adjacency matrix is

Ā =


0 1 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 0 0 1

0 0 1 1 0

 . (40)

The multiplex walk matrixMM is

MM =
3
√

2


0 1 1 1 1

1 0 0 0 0

1 0 0 0 0

0 0 1 0 1

0 1 0 1 0

 , (41)

and we note that it is not symmetric. For example, node-layer
pair (2, b) is reachable from (1, a), but node-layer pair (1, a)
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FIG. 4: Sketches of elementary cycles for which both the first and the last step are allowed to be an inter-layer step. These elementary cycles
are CAAAC, CAACAC, and CACACAC. The orange node is the starting point of the cycle; we show intra-layer edges as solid lines, intra-
layer edges as dotted curves, and the second intra-layer step as a yellow line. Note that the elementary cycle CACACAC also includes three
“degenerate” versions, in which the 3-cycle returns to a previously-visited layer.

FIG. 5: A simple, illustrative example of a multiplex network.

is not reachable from (2, b). The edge [(1, a), (2, b)] in this
supra-graph represents the walk {(1, a), (2, a), (2, b)} in the
multiplex network. The symmetric walk matrixMSM ′ is

MSM ′ =


0 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 1 0

 . (42)

The matrix MSM ′ is the sum of MM and MT
M with

rescaled diagonal blocks in order to not double-count the
edges [(1, a), (2, a)] and [(1, a), (3, a)]. Additionally,

MSM =


0 1 1 1 1

1 0 1 0 1

1 1 0 1 0

1 0 1 0 1

1 1 0 1 0

 , (43)

which differs from MSM ′ in the fact that node-layer pairs
(2, a) and (3, a) are connected through the multiplex walk
{(2, a), (2, b), (3, b), (3, a)}.

The adjacency matrix of the aggregated graph is

W =

 0 1 1

1 0 1

1 1 0

 . (44)

That is, it is a complete graph without self-loops.

We now calculate c∗,i using the different definitions of a
multiplex clustering coefficient. To calculate cM,i, we need to
compute the auxiliary complete supra-adjacency matrixMF

M

according to Eq. 34:

MF
M =

3
√

2FĈ =
3
√

2


0 1 1 1 1

1 0 1 0 1

1 1 0 1 0

0 0 1 0 1

0 1 0 1 0

 . (45)

The clustering coefficient of node-layer pair (1, a), which is
attached to two triangles that are reachable along the direc-
tions of the edges, is

cM,(1,a) =
1

2
. (46)

For node-layer pair (2, a), we get

cM,(2,a) = 1 , (47)

which is the same as the clustering-coefficient values of the
remaining node-layers.

To calculate cSM ′,i, we need to computeMFSM′ , which we
obtain using equation (31)

MF
SM ′ = (FĈ + ĈF) =


0 1 1 1 1

1 0 1 0 1

1 1 0 1 0

1 0 1 0 1

1 1 0 1 0

 . (48)

In the supra-graph associated with the supra-adjacency matrix
FĈ + ĈF , all node-layers are connected to all other node-
layers except those that correspond to the same nodes. The
clustering coefficient of node-layer pair (1, a), which is at-
tached to six triangles, is

cSM ′,(1,a) =
1

2
= cM,(1,a) . (49)
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The clustering coefficient of node-layer pair (2, a), which is
attached to one triangle, is

cSM ′,(2,a) = 1 . (50)

To calculate cSM,i, we computeMF
SM using equation (30)

MF
SM = ĈFĈ =


0 1 1 1 1

1 0 2 0 2

1 2 0 2 0

1 0 2 0 2

1 2 0 2 0

 . (51)

The only difference between the graphs ĈFĈ and (FĈ+ ĈF)

is the weight of the edges in ĈFĈ that take into account the
fact that intra-layer edges might be repeated in the two layers.

The clustering coefficient of node-layer pair (1, a), which
is attached to eight triangles, is

cSM,(1,a) =
8

12
=

2

3
. (52)

The clustering coefficient of node-layer pair (2, a), which is
attached to four triangles, is

cSM,(2,a) =
4

6
=

2

3
. (53)

Because we are weighting edges based on the number of
times an edge between two nodes is repeated in different lay-
ers among a given pair of nodes in the normalization, none
of the node-layer pairs has a clustering coefficient equal to
1. By contrast, all nodes have clustering coefficients with
the same value in the aggregated network, for which layer
information has been lost. In particular, they each have a
clustering-coefficient value of 1, independent of the definition
of the multiplex clustering coefficient.

Further Discussion of Clustering Coefficients in Erdős-Rényi
(ER) Multiplex Networks

The expected values of the local clustering coefficients in
ER multiplex networks are

〈cAAA,i〉 =
1

b

∑
α

pα ≡ p (54)

〈cAACAC,i〉 =
1

b

∑
α

pα ≡ p (55)

〈cACAAC,i〉 =
1

b

∑
α

∑
β 6=α p

2
β∑

β 6=α pβ
(56)

〈cACACA,i〉 =
1

b

∑
α

pα ≡ p (57)

〈cACACAC,i〉 =
1

b(b− 1)

∑
α

∑
β 6=α;γ 6=β,α pβpγ∑

γ 6=α pγ
. (58)

Note that c(1)
M,i = cAAA,i and c(3)

M,i = cACACAC,i, but the 2-

layer clustering coefficient c(2)
M,i arises from a weighted sum

of contributions from three different elementary cycles.
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FIG. 6: (A, B, C) Global and (D, E, F) local multiplex cluster-
ing coefficients in multiplex networks that consist of ER layers.
The markers give the results of simulations of 100-node ER node-
aligned multiplex networks that we average over 10 realizations.
The solid curves are theoretical approximations (Eqs 12-14 of main
text). Panels (A, C, D, F) show the results for three-layer networks,
and panels (B, E) show the results for six-layer networks. The
ER edge probabilities of the layers are (A, D) {0.1, 0.1, x}, (B, E)
{0.1, 0.1, 0.1, 0.1, x, x}, and (C, F) {0.1, x, 1− x}.

In Fig. 6, we illustrate the behavior of the global and lo-
cal clustering coefficients in multiplex networks in which the
layers consist of ER networks with varying amounts of hetero-
geneity in the intra-layer edge densities. Although the global
and mean local clustering coefficients are equal to each other
when averaged over ensembles of monoplex ER networks, we
do not obtain a similar result for multiplex networks with ER
layers unless the layers have the same value of the parame-
ter p. The global clustering coefficients give more weight to
denser layers than the mean local clustering coefficients. This
is evident for the intra-layer clustering coefficients, c(1)

M,i and

C
(1)
M , for which the mean local clustering coefficient is always

equal to the mean edge density, but the global clustering co-
efficient has values that are greater than or equal to the mean
edge density. This effect is a good example of a case where
the situation in multiplex networks departs from the results
and intuition from monoplex networks.

In particular, failing to take into account the heterogeneity
of edge densities in multiplex networks can lead to incorrect
or misleading results when trying to distinguish among values
of a clustering coefficient that are what one would expect from
an ER random network versus those that are the signature of
a triadic-closure process (see Fig. 6).
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