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• We provide analytical expressions for the centrality of random walks in interconnected multilayer networks.
• Wecheck the theoretical resultswith extensiveMonte Carlo simulations of randomwalkers in different topologies, and achieve an excellent agreement.
• Our results are useful for the ranking of nodes in multi-categorical systems.
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a b s t r a c t

Real-world complex systems exhibit multiple levels of relationships. In many cases they require to be
modeled as interconnected multilayer networks, characterizing interactions of several types simultane-
ously. It is of crucial importance in many fields, from economics to biology and from urban planning to
social sciences, to identify the most (or the less) influent nodes in a network using centrality measures.
However, defining the centrality of actors in interconnected complex networks is not trivial. In this paper,
we rely on the tensorial formalism recently proposed to characterize and investigate this kind of complex
topologies, and extend twowell known randomwalk centralitymeasures, the randomwalk betweenness
and closeness centrality, to interconnectedmultilayer networks. For each of themeasures we provide an-
alytical expressions that completely agree with numerically results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is common practice in many studies involving networks to
assume that nodes are connected by a single type of edge that en-
capsulates all relations between them. In a myriad of applications
this assumption oversimplifies the complexity of the system, lead-
ing to inaccurate or wrong results. Examples can be found in tem-
poral networks, where neglecting time-dependence washes out
the memory of sequences of human contacts in transmission of
diseases [1], in co-authorship networks, where neglecting the ex-
istence of multiple relationships between actors might alter the
topology which may lead to misestimating crucial node’s prop-
erties [2–7] or in transportation networks where the multilayer
topology must be considered to accurately model the dynamics to
a posteriori predict congested locations [8].

Historically, the termmultiplexwas coined to indicate the pres-
ence of more than one relationship between the same actors of a
social network [9]. This type of network iswell understood in terms
of ‘‘coloring’’ (or labeling) the edges corresponding to interactions
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of different nature. For instance, in a social network the same in-
dividual might have connections to other individuals based on fi-
nancial interests (e.g., color red) and connections with the same or
different individuals based on friendship (e.g., color blue). In other
real-world systems, like the transportation network of a city, the
same geographical position can be part, for instance, of the net-
work of subway or the network of bus routes, simultaneously. In
this specific case, an edge-colored graphwould not capture the full
structure of the network, since information about the cost tomove
from the subway network to the bus route is missing. This cost can
be economic or might account for the time required to physically
commute between the two layers. It is in this cases where an inter-
connected multilayer network provides a better representation of
the system. Fig. 2 shows an illustration of an interconnected mul-
tilayer (Fig. 2(A)) and the classical representation with an aggre-
gated network (Fig. 2(C)). It is evident that a simple projection of
the former –mathematically equivalent to sumup the correspond-
ing adjacency matrices of the individual layers – would provide a
network where the information about the relation type is lost. On
the other hand, an edge-colored graph (Fig. 2(B)) cannot account
for interconnections. For further details about the classification of
such multilayer networks we refer to [10] and references therein.
In the rest of the paper interconnectedmultilayer networks will be
referred in short as multilayer networks.
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The remainder of this paper is organized as follows. In Section 2
we briefly describe the tensorial notation, defined in [11], adopted
overall the paper. In Section 3 we capitalize on this notation to
extend some random walk centrality descriptors, well known in
the case of single layer networks, to interconnected multilayer
networks. Finally, we discuss our findings in Section 4.

2. Tensorial notation

Edge-colored graphs can be represented by a set of adjacency
matrices [12–15]. However, standard matrices, used to represent
networks, are limited in the complexity of the relationships that
they can capture, i.e., they do not represent a suitable framework in
the case ofmultilayer networks. This is the case ofmultiple types of
relationships – that can also change in time – between nodes. Such
a level of complexity can be characterized by considering tensors
and algebras of higher order [11].

A great advantage of tensor formalism developed in [11] relies
on its compactness. An adjacency tensor can be written using a
more compact notation that is very useful for the generalization of
network descriptors tomultilayer networks. In this notation, a row
vector a 2 RN is given by a covariant vector a↵ (↵ = 1, 2, . . . ,N),
and the corresponding contravariant vector a↵ (i.e., its dual vector)
is a column vector in Euclidean space. A canonical vector is
assigned to each node and the corresponding interconnected
multi-layer network is represented by a mixed rank-4 adjacency
tensor.

However, in the majority of applications, it is not necessary to
performcalculations using canonical vectors and tensors explicitly.
In this cases, a classical single-layer network can be represented
by a rank-2 mixed adjacency tensor W↵

� [11], where the layer
information is disregarded. But, in general, systems may exhibit
several types of relationships between pairs of nodes and a more
general system represented as a multilayer object – in which each
type of relationship is represented within a single layer ↵ (↵ =
1, 2, . . . , L) of the network – is required.1 In these cases, we use
an intra-layer adjacency tensor for the 2nd-order tensorWi

j (↵) that
indicates the relationships between nodes within the same layer
↵ and the 2nd-order inter-layer adjacency tensor Ci

j (↵�) to encode
information about relationships that incorporate multiple layers.

It has been shown that the mathematical object accounting
for the whole interconnected multilayer structure is given by
a 4th-order (i.e., rank-4) multilayer adjacency tensor Mi↵

j� . This
tensor might be simply thought as a higher-order matrix with four
indices. It is the direct generalization of the adjacency matrix in
the case of single layer networks and encodes the intensity of the
relationship (which may not be symmetric) from a node i in layer
↵ to a node j in layer � [11].

To reduce the notational complexity in the tensorial equations
the Einstein summation convention is adopted. It is applied to
repeated indices in operations that involve tensors. For example,
we use this convention in the left-hand sides of the following
equations:

Ai
i ⌘

NX

i=1

Ai
i, Ai

jB
j
i ⌘

NX

i=1

NX

j=1

Ai
jB

j
i,

Ai↵
j�B

k�
i� ⌘

NX

i=1

LX

�=1

Ai↵
j�B

k�
i� ,

1 To avoid confusion, in the following we refer to nodes with Latin letters and
to layers with Greek letters, allowing us to distinguish indices that correspond to
nodes from those that correspond to layers in tensorial equations.

whose right-hand sides include the summation signs explicitly.
It is straightforward to use this convention for the product of
any number of tensors of any order. In the following, we will
use the tth power of rank-4 tensors, defined by multiple tensor
multiplications:

(At)i↵j� = (A)i↵j1�1
(A)

j1�1
j2�2

. . . (A)
jt�1�t�1
j� . (1)

Repeated indices, such that one index is a subscript and the
other is a superscript, is equivalent to performa tensorial operation
known as a contraction. Moreover, one should be very careful in
performing tensorial calculations. For instance, using traditional
notation the product aibj would be a number, i.e., the product
of the components of two vectors. However, in our formulation,
the same calculation denotes a Kronecker product between two
vectors, resulting in a rank-2 tensor, i.e., a matrix.

3. Random walk centrality measures in multilayer networks

In practical applications one is often interested in assigning
a global measure of importance to each node. If the system we
deal with contains several types of relations between actors we
expect that the measures, in some way, consider the importance
obtained from the different layers. A simple choice could be to
combine the centrality of the nodes – obtained from the different
layers independently – according to some heuristic choice. This is
a viable solution when there is no interconnection between layers,
i.e., in the case of edge-colored graphs [16,17]. However, the main
drawback of this approach is that it depends on the choice of the
heuristics and thus might not evaluate the actual importance of
nodes. Our approach accounts for the higher level of complexity
of such systems without relying on external assumptions and
naturally extends the well-known centrality measures adopted for
several decades in the case of single layer networks.

A random walk is one of the simplest dynamical process
that can occur on a network, and random walks can be used to
approximate other types of diffusion processes[18,19]. Random
walks on networks [18,20,19] have attracted considerable interest
because they are both important and easy to interpret. They
have yielded important insights on a huge variety of applications
and can be studied analytically. For example, random walks
have been used to rank Web pages [21] and sports teams [22],
optimize searches [23], investigate the efficiency of network
navigation [24,25], characterize cyclic structures in networks [26],
and coarse-grain networks to highlight meso-scale features such
as community structure [27–29]. Another interesting application
of random walks is to calculate the centrality of actors in complex
networks when there is no knowledge about the full network
topology but only local information is available. In such cases,
centrality descriptors based on shortest-paths, e.g., betweenness
and closeness centrality, should be substituted by centrality
notions based on randomwalks [20,30]. In the followingwe extend
these measures to multilayer networks.

First of all,wedefine a discrete-time randomwalk, between two
individuals o and d, o ! d, on a multilayer network consisting
of L layers and N nodes per layer, as a random sequence of nodes
which starts from node o in any layer and finish in node d in any
layer where each edge’s endpoints are the preceding and following
vertices in the sequence. The reasoning behind this definition is
that the different node replicas in the different layers correspond
to the same individual and so anything traveling between them is
independent on the starting and ending layer. Fig. 1 shows and
example of a random walk between two nodes in a multilayer
network where it is evident the introduction of non-trivial effects
because of the presence of inter-layer connections that affects its
navigation in the networked system [31].
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Fig. 1. Schematic of a walk (dotted trajectories) between two individuals o
and d using a multilayer network. A walker can jump between nodes within
the same layer, or it might switch to another layer. This illustration evidences
how multilayer structure allows a walker to move between nodes that belong to
different (disconnected) components on a given layer (L1).

Random walk occupation centrality. Let T i↵
j� denote the tensor of

transition probabilities for jumping between pairs of nodes and
switching between pairs of layers. Covariant indexes i↵ indicate
source node and layer and contravariant indexes j� destination
node and layer. Similarly to the single layer case, the sum of the
probabilities for each outgoing edges of any node adds one. That
is, ui↵ = T i↵

j� u
j� where ui↵ and uj� are tensors whose components

are all ones. In addition, let pi↵(t) be the time-dependent tensor
that gives the probability to find a walker at a particular node
in a particular layer. Hence, the covariant master equation that
governs the discrete-time evolution of the probability from time
t to time t + 1 is pj�(t + 1) = T i↵

j� pi↵(t). The steady-state
solution of this equation, i.e., for t �! 1, is given by ⇧i↵ which
quantifies the probability to find a walker in the node i of layer ↵.
In the case of single layer networks, the steady-state solution can
be obtained by calculating the leading eigenvector corresponding
to the unitary eigenvalue. Similarly, in the case of multilayer
networks, the solution can be obtained by calculating the leading
eigentensor, solution of the higher-order eigenvalue problem

T i↵
j� ⇧i↵ = �⇧j� . (2)

We refer to Appendix A for the mathematical details to solve this
problem. The probability ⇧j� , defined as random walk occupation
centrality, accounts for the full interconnected structure of themul-
tilayer network. Although different exploration strategies can be
adopted to define the transition tensor T i↵

j� walk in a multilayer
network [31], here we only focus on the natural extension of well-
known randomwalks in single layer networks [20]. In this process,
the walker in node i and layer ↵ might jump to one of its neighbors
j 6= i – within the same layer – or might switch to its counterpart
i in a different interconnected layer � 6= ↵ with equal probability.
That is, the inter-layer connection is treated as an edge that can
be chosen randomly among all outgoing edges of the node. In the
more general case of weighted networks, the jumping probability
is usually defined proportional to theweight of the edges. Let us in-
dicate with si↵ the strength of node i in layer ↵, including the inter-
layer connections. The multi-strength vector, whose components
indicate the strength of each node accounting for the full multi-
layer structure, is given by summing up its strengths across all lay-
ers, i.e., by Si = si↵u↵ . We indicate with Di↵

j� the strength tensor
whose entries are all zeros, except for i = j and ↵ = � where
the entries are given by si↵ . This tensor represents the multilayer

extension of the well-known diagonal strength matrix in the case
of single layer networks. Therefore, the transition tensor is given
by T i↵

j� = Mk�
j� D̃i↵

k� , where D̃i↵
j� is the tensor whose entries are the

inverse2 of the non-zero entries of the strength tensor and Mk�
j� is

the weighted adjacency tensor. For this classical random walk, it
can be easily shown that ⇧i↵ / si↵ [31].

This centrality, as others in the rest of the paper, assigns a mea-
sure of importance to each node in each layer, accounting for the
full-interconnected structure of the multilayer network. However,
in practical applications one is often interested in assigning a global
measure of importance to each node, aggregating the information
obtained from the different layers. The choice of the aggregation
method is in general not trivial and it strongly influences the final
estimation and might lead to wrong results.

However, this is not case for the occupation probability.
Since the centrality ⇧i↵ is calculated accounting for the full
interconnected structure of the whole system we do not require
any arbitrary combination of the information from different
layers. In our framework, the most intuitive type of aggregation,
i.e., summing up over layers, represents the unique and correct
choice. Let ⇡i = ⇧i↵u↵ be the random walk centrality measure
obtained by aggregating over the layers. Here, ⇡i indicates the
probability of finding the walker in node i, regardless of the layer.
It is worth noting that this probability, as well as in single layer
networks is, is proportional to si↵u↵ , i.e., themulti-strength of node
i. Therefore, in this specific case, the computation of the centrality
bymeans of the aggregatednetworkwould provide the same result
of the calculation accounting for the multilayer structure, if inter-
layer edges are mapped to self-loops. Unfortunately, this is not the
case for the other centrality measures discussed in the rest of this
study, where calculating the diagnostics from the aggregate might
lead to wrong conclusions.

A measure related to random walk occupation centrality is the
Page Rank [32] that has been recently extended to interconnected
networks [8]. In fact, the Page Rank centrality can be seen as
the steady-state solution of the random walk master equation
governed by the transition tensor Ri↵

j� , where the walker jumps to a
neighbor with rate r and teleport to any other node in the network
with rate 1 � r . This rank-4 tensor is given by

Ri↵
j� = rT i↵

j� + (1 � r)
NL

ui↵
j� , (3)

where ui↵
j� is the rank-4 tensor with all components equal to 1. The

steady-state solution of the master equation corresponding to this
transition tensor provides the Page Rank centrality for multilayer
networks.

Randomwalk betweenness centrality. The betweenness is amea-
sure of network centrality that instead of accounting for topolog-
ical centrality accounts for the importance of nodes in terms of
dynamical processes that run over the network. In particular, the
betweenness measures to which extent a node lies in the path be-
tween any two other nodes [30]. One can think of packets traveling
in internet, in this case the betweenness measures the influence
of nodes in the controlling of information. The most common be-
tweenness is the shortest path betweenness [33] where the cen-
trality of a node j is relative to the number of shortest paths, for
any pair (o, d) of origin and destination nodes, that pass through
j. However, in real networks, entities (rumors, messages or pack-
ets over the Internet) that travel the network do not always take
the shortest path [34,35]. Consider, for instance, rumors that can

2 It is worth remarking that, in general, this is different from the inverse of a
tensorAi↵

j� , that is defined as the tensor Bi↵
j� such thatAi↵

k� B
k�
j� = �i↵

j� , where �i↵
j� = �i

j�
↵
� .
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B C

Fig. 2. (A) An interconnected multilayer network representing the same actors exhibiting different relationships on different levels. The cost to move from one layer to the
other is represented by dotted vertical lines. (B) Edge-colored graph representing the same actors with the same relations in (A) with two different types of interactions
(solid and dashed edges). In this case the representation does not allowmodeling the cost to move between layers. (C) Classical approach of representing the different types
of relations using an aggregated network. The network represents the same actor and relation in (A) and (B) but disregarding the type of relation. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

be wandering around the network or packets trying to avoid over-
loaded routers. In such cases, the shortest path betweenness is not
always a good proxy for the centrality of nodes. For these scenarios
the randomwalk betweenness of a node j is defined as the amount
of randomwalks between anypair (o, d)of nodes that pass through
j [30].

To analytically compute the number of random walks visiting
a particular node, it is often convenient to use the concept of
absorbing random walk, where the absorbing state is selected to
be the destination node d [30,19]. To extend this concept to the
case of interconnected multilayer networks, we consider random
walks that begin, pass and end in nodes in different layers while
accounting for the existence of several replicas of the same node.

Specifically, to extend the concept of random walks to
interconnected networks, we define the absorbing transition
tensor on a particular node d by

�
T[d]

�o�
j� =

⇢
0 j = d
To�
j� else. (4)

Random walkers governed by this transition tensor will vanish
once they arrive to any absorbing state [19]. Note that T[d] has one
absorbing state for each replica of node d in different layers. It can
be shown (see Appendix B) that the average number of times a
random walk (with origin in node o in layer � and destination
d independently of the layer) will pass by a node j in layer � ,
regardless of the time step, is given by
�
⌧[d]

�o�
j� =

h�
� � T[d]

��1
io�

j�
, (5)

where �i↵
j� = �i

j�
↵
� and � is the Kronecker delta. Note that the

average number of times that thewalkwill visit node j still depends
on the layer where j is located and on the originating layer � . Since
we are interested on node properties, regardless of the layer, we
average over all possible starting layers � and aggregate the walks
that pass through j in the different layers,

�
⌧[d]

�o
j = 1

L

�
⌧[d]

�o�
j� u�u� . (6)

The overall betweenness centrality is obtained by averaging over
all possible origins and destinations:

⌧j = 1
N(N � 1)

NX

d=1

�
⌧[d]

�o
j uo. (7)

The comparison between the values of ⌧i obtained from simu-
lations and theoretical predictions are shown in Fig. 3(A)–(C). As
expected, the results are in excellent agreement. It is worth re-
marking that the equivalence holds regardless of the number of
nodes in the network, the topology and the number of layers.
Fig. 3(D)–(F) shows the relative difference of the betweenness
computed using the aggregated network and the multilayer net-
work. The results show that in general the betweenness computed

on the aggregated network tends to underestimate the between-
ness of the multilayer network.

Random walk closeness centrality. The distance between two
nodes in a network is given by shortest-path which separates
them. The farness of an individual is given by the sum of all
geodesics from that node to any other node. In general, the inverse
of this farness provides a measure of the closeness of the node.
Such a diagnostic is related to how fast information is expected to
spread from a given actor to the others in the network. A variant
of the closeness when random walks are considered is given by
the random walk closeness centrality. In the case of single layer
networks, it has been introduced to quantify how central a node
is located regarding its potential to receive information randomly
diffusing over the network [20].

We define the randomwalk closeness centrality of a node i in a
multilayer network as the inverse of the average number of steps
that a random walker, starting from any other node in the mul-
tilayer network, requires to reach i for the first time. The compu-
tation of the closeness centrality is generally based on the mean
first-passage time (MFPT), that is defined as the average number
of steps to reach a node d, starting from a given node o. The MFPT
matrix can be computed analytically by means of Kemeny–Snell
fundamental matrix Z [36,37] or by means of absorbing random
walks [38,19]. In this study, we adopt the second approach as
for the calculation of random walk betweenness centrality. The
following calculation involve the use of the transition tensor T
governing random walks over multilayer networks and the corre-
sponding absorbing transition tensor T[d]. Hence, the tensor

po�j� (t) =
�
T t
[d]

�o�
j� (8)

indicates the probability of visiting node j in layer � , after t time
steps, considering that thewalk originated in node o in layer� . This
transition tensor is absorbing on node d regardless of the layer and,
consequently, any walker reaching an absorbing state will vanish,
i.e., po�d�(t) = 0 for any � and t . The probability that the walker is
absorbed in some node d at a time h equal or smaller than t , re-
gardless of the layer, is given by
�
q[d]

�o�
(t) = uo� �

�
T t
[d]

�o�
j� uj� . (9)

Note that we have a rank-2 tensor q for each choice of d andwe put
in evidence this dependence by means of [d]. From each tensor q
we can calculate the probability that the first passage time for node
d is exactly t by
�
q[d]

�o�
(h = t) =

�
q[d]

�o�
(t) �

�
q[d]

�o�
(t � 1)

=
⇥�
T t�1
[d]

�
�

�
T t
[d]

�⇤o�
j�

uj� . (10)

Considering the walk starts from node o in layer � , each tensor en-
coding the mean first passage time to node d is obtained from Eq.
(10) as

�
H[d]

�o� =
1X

t=0

t
�
q[d]

�o�
(h = t) =

h�
� � T[d]

��1
io�

j�
uj� . (11)
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Fig. 3. (A, B, C) Comparison of the randomwalk betweenness centrality obtained by simulation and by our analytical approach for differentmultilayer network topologies. (D,
E, F) Relative difference of the betweenness,

�
⌧j � ⌧

agr
j

�
/⌧

agr
j , computed using the aggregated network as shown in Fig. 2 and themultilayer network. Nodes in the horizontal

axis are sorted according to the betweenness relative difference. In all experiments, each multilayer network is composed of two layers with 1000 nodes per layer. (A, D)
Results on a multilayer network with two ErdÆs–Rényi networks as layers. (B, E) Results on a multilayer network with one ErdÆs–Rényi network and one Barabási–Albert
network as layers. (C, F) Results on a multilayer network with two Barabási–Albert networks as layers.

Note the presence of the individual betweenness contributions as
in Eq. (5).

The geometric series in Eq. (11) converges since the maximum
eigenvalue of T[d] is strictly smaller than one, and the sum can be
calculated exploiting the self-similarity of the series. Themean first
passage time to d still depends on the origin of the walk, i.e., node
o in layer � .

The average mean first passage time h[d] to node d is obtained
by averaging

�
H[d]

�o� over all possible starting nodes and layers as

h[d] = 1
(N � 1)L

uo�
�
H[d]

�o� + 1
N

⇡�1
[d] , (12)

where ⇡[d] is the occupation probability of node d and the term
1
N ⇡�1

[d] is included explicitly to account for the average return time,
that is not accounted for when using absorbing random walks.

Finally, the random walk closeness centrality of node d is
defined as the inverse of h[d]. We introduce the vector ⇠i whose
components are given by the inverse of the corresponding values
of h.

The comparison between the values of ⇠i obtained from
simulations and theoretical predictions are shown in Fig. 4(A)–(C).
As in the betweenness centrality, the results are in excellent
agreement and it is worth remarking that the equivalence holds
regardless of the number of nodes in the network, the topology and
the number of layers. Fig. 3 panels D–F show the relative difference
of the closeness computed using the aggregated network and the
multilayer network. The results show that the closeness centrality
computed on the aggregated network tends to overestimate the
closeness of the multilayer network.

4. Conclusions and discussion

We have extended the main random walk centrality measures
to interconnected multilayer networks and gave interpretation

of their meaning. In addition, we have presented analytical
approaches, based on the tensorial formalism defined in [11], for
their computation. The comparison of the predictions given by
our analytical approach with the results obtained by simulations
showaperfect agreement, concluding that the presented analytical
expressions are ready to be applied to the analysis of real complex
networks. We expect that the presented results are useful in
many interdisciplinary applications ranging from social sciences to
transportation networks.
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Appendix A. Eigenvalue problem with tensors

The eigenvalue problem for a rank-2 tensor, i.e., a standard
matrix, is defined by Wi

j vi = �vj. The extension of this problem
to rank-4 tensors leads to the equation

Mi↵
j�Vi↵ = �Vj� . (A.1)

To solve this problem, it is worth noting that any tensor can be
unfolded to lower rank tensors [39]. For instance, a rank-2 tensor
like Wi

j , with N2 components, can be flattened to a vector wk with
N2 components. In the case of the rank-4 multilayer adjacency
tensor Mi↵

j� , although any unfolding is allowed, it is particularly
useful for some applications to choose the ones flattening to a
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Fig. 4. (A, B, C) Comparison of the random walk closeness centrality obtained by simulation and by our analytical approach for different multilayer network topologies. (D,
E, F) Relative difference of the closeness,

�
⇠i � ⇠

agr
i

�
/⇠

agr
i , computed using the aggregated network as shown in Fig. 2 and the multilayer network. Nodes in the horizontal

axis are sorted according to the closeness relative difference. In all experiments, eachmultilayer network is composed of two layers with 1000 nodes per layer. (A, D), results
on a multilayer network with two ErdÆs–Rényi networks as layers. (B, E), results on a multilayer network with one ErdÆs–Rényi network and one Barabási–Albert network
as layers. (C, F), results on a multilayer network with two Barabási–Albert networks as layers.

squared rank-2 tensor M̃k
l with NL ⇥ NL components, where L

indicates the number of layers [40]. In fact, this unfolding produces
asmany block adjacencymatrices, named supra-adjacencymatrices
in some applications [40,31,41], as the number of permutations of
diagonal blocks of size N2, i.e., L!. However, such unfoldings do not
alter the spectral properties of the resulting supra-matrix and can
be used to solve the eigenvalue problem for rank-4 tensors. In fact,
the solution of the eigenvalue problem

M̃k
l ṽk = �̃1ṽl, (A.2)

is a supra-vector with NL components which corresponds to the
unfolding of the eigentensor Vi↵ .

Appendix B. Mean number of crossing times

Given M random walks starting in node o on layer � and
ending when reaching node d, regardless of the layer, the expected
number of times a random walk will pass by node j on layer � is
given by

�
⌧[d]

�o�
j� = lim

M!1
1
M

MX

m=1

1X

t=0

zo�j� (t,m), (B.1)

where zo�j� (t,m) = 1 if walkmwas visiting node j in layer� at time
step t and zo�j� (t,m) = 0 otherwise.

Following the frequentist interpretation, the probability of
being in node j in layer � at time step t , provided that the walk
originated in node o in layer � , is given by

po�j� (t) = lim
M!1

1
M

MX

m=1

zo�j� (t,m). (B.2)

Substituting (B.2) in (B.1) we obtain that
�
⌧[d]

�o�
j� =

1X

t=0

po�j� (t) =
1X

t=0

�
T t
[d]

�o�
j�

=
h�

� � T[d]
��1

io�

j�
(B.3)

where T[d] corresponds to the absorbing transition tensor defined
in Eq. (4).
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