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Abstract
Human mobility in a city represents a fascinating complex system that combines
social interactions, daily constraints and random explorations. New collections of data
that capture human mobility not only help us to understand their underlying
patterns but also to design intelligent systems. Bringing us the opportunity to reduce
traffic and to develop other applications that make cities more adaptable to human
needs. In this paper, we propose an adaptive routing strategy which accounts for
individual constraints to recommend personalized routes and, at the same time, for
constraints imposed by the collectivity as a whole. Using big data sets recently
released during the Telecom Italia Big Data Challenge, we show that our algorithm
allows us to reduce the overall traffic in a smart city thanks to synergetic effects, with
the participation of individuals in the system, playing a crucial role.

Keywords: personalized routing; collective behavior; smart city; potential energy
landscape; big data

1 Introduction
Rapid development of wireless communication and mobile computing technologies call
new research that explores the responses of urban systems to the flow of instant infor-
mation. Thus, the analysis of spatial signals becomes an increasingly important research
theme.

The required four steps to model trips consist of calculating trip generation, trip distri-
bution, modal split and route assignments. The sources to inform these steps traditionally
have come from travel diaries and census data []. However, the presence of new infor-
mation and communication technologies (ICT) provide big data sources that are allowing
novel research and applications related to human mobility. Recent studies have advanced
the knowledge on trip generation by studying the number of different locations visited by
individuals through mobile phones and quantifying their frequent return to previously
visited locations. These have demonstrated that the majority of travels occur between
a limited number of places, with less frequent trips to new places outside an individual
radius [, ]. In the domain of trip distributions, new models have helped us to predict
number of commuting trips when lacking data for calibration [].

An important topic is to explore route assignments in the context of smart multimodal
systems [, ], where individual daily trips follow recommendations based on personal
and global constraints. This is of special interest towards efficient cities, where individuals
could be automatically routed reducing the probability of traffic congestion and at the
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same time reducing the environmental impact. From the individual’s point of view, for
instance, one might want to choose a trip which minimizes the amount of traffic along the
route, or to avoid routes across areas with high criminality level, or to favorite routes across
more touristic areas, etc. On the other hand, the choices of certain routes at individual
level, without accounting for the state of the system, often leads to traffic congestion [, ]
which, in turn, is responsible for increasing pollution while decreasing the quality of the
environment, with evident impact on the community.

In this work we model the trips in an urban system as interacting particles with data-
driven origin-destination pairs that can be routed in their trips. Their route choices are
based in a time-varying potential energy landscape that seeks to satisfy individual’s and
community’s requirements simultaneously. Main streams methods for distributed routing
seek to avoid congestion by global travel time reduction based on optimization methods [,
]. More recently, adaptive path optimization on networks (London underground network
and global airport network) related the problem to physics of interacting polymers []. In
this work we go one step forward in that direction and use a framework based on potential
energy landscapes to integrate diverse layers of constraints to favor certain routes and to
study the effects of the level of adoption of the proposed recommendations. In this work
our main focus is to explore a new framework of analysis to study routing strategies for
urban mobility, while the road network constrains are left to further studies.

2 Data-driven routing of human mobility
We consider a geographic area of interest (e.g., a city, a district, etc.) and we discretize
it into a grid G with size L × L′. In the following, for sake of simplicity, we will consider
squared grids with size L.

We model individuals moving within the grid as a complex system of interacting sen-
tient particles whose goal is to move between two geographic points according to certain
criteria. Each criterion is encoded by a matrix C, with the same dimension of the grid,
where each entry indicates the state of the corresponding cell in G . In the same spirit of
physical models of an electromagnetic surface, we use the convention that Cij >  indicates
a repelling cell, i.e., a geographic area that should be avoided. Similarly, Cij <  indicates
an attracting cell, i.e., a geographic area that should be involved for routing. Areas where
Cij =  are considered as neutral.

The origin of a constraint can be of different nature. In fact, there are constraints at indi-
vidual level, i.e., the ones corresponding to requirements of the single user (e.g., avoid areas
with high criminality level), and at global level, i.e., the ones corresponding to the require-
ment of the whole community (e.g., keep minimum the pollution level). Moreover, there
are static (or quasi-static) constraints corresponding to restrictions that do not change
over time or change over large temporal scales, and dynamic constraints corresponding
to rapid changes within the system itself, like the traffic flow or the weather. On one hand
we should account for individuals’ goals and requirements, while on the other hand it is
crucial to satisfy constraints imposed for the wealth of the community.

In the following, we consider the set of all constraints, static and dynamic at individual
and collective level, and we assign to each of them a time-varying matrix C(α)(t), where
α = , , . . . , M and M is the total number of constraints. In the case of static constraints, the
matrix is considered constant over time. Moreover, the entries of each matrix are rescaled
to the range  ≤ C(α)

ij ≤ , for all values of i, j and α to assign a relative importance to each
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constraint and to settle on a common scale. Finally, the total constraint matrix is defined
by the linear combination of such constraints at each time step:

C(t) =
M∑

α=

wα(t)Cα(t),
M∑

α=

wα(t) = , ()

where the coefficients wα(t) are empirical and define a trade-off between individual’s and
global constraints. It is worth remarking that these coefficient might vary over time be-
cause, depending on the circumstances (special events, incidents, etc.), it could be neces-
sary to change their value to satisfy different priorities.

We define another matrix, D�(t) (� = , , . . . , N(t)), encoding the starting and destina-
tion cells of each individual in the system, where the starting point is considered to be
a repelling or neutral area and the destination point is an attractor. The number of in-
dividuals N(t) is allowed to change over time. The matrix D�(t) might change over time
because, in principle, the individual might change destination during his or her travel,
and for simplicity we assume that – ≤ Dij ≤  for each individual. It is worth remarking
that attracting cells are in general associated to destinations and should be encoded in the
set of matrices D�(t), whereas repelling cells are associated to constraints and should be
encoded only in the set of matrices Cα(t).

We interpret the set of matrices C(t) and D�(t) as potential energy landscapes and the
routing of individuals is performed by means of a gradient descent, where each user moves
along geodesics while reducing his or her potential energy until he or she reaches the des-
tination. For simplicity, we assume no dependence on time for matrices D�(t). We consider
the case of a gravitational field in two dimensions permeating the areas encoded by D�(t).
More specifically, let (i�, j�) and (i(d)

� , j(d)
� ) denote the cells of the underlying grid and desti-

nation point of the journey of individual �, respectively, and let r =
√

(i(d)
� – i�) + (j(d)

� – j�)

indicate their distance. The potential energy landscape is defined by

D�(r) =

{
– �√

r , (i�, j�) �= (i(d)
� , j(d)

� ),
– �√

–– , (i�, j�) = (i(d)
� , j(d)

� ),
()

where � is a constant factor, defining the scale of the potential which should guarantee that
the potential is strong enough in each cell. In our simulations, we considered � = L

√
.

The choice of the value of the potential at the destination is somehow arbitrary and, as
a rule of thumb, it should be a number smaller than the potential of the neighbors (whose
distance is r =  or r =

√
, the latter if movements along diagonals are allowed), but not

so small to avoid a potential well so deep that the rest of the landscape is almost flat.
To guarantee the convergence of the gradient descent even in presence of constraints or

noise resulting in potential wells, we weight the overall landscape for each particle by

V�(r, t) = γ (t)D�(r) +
(
 – γ (t)

)
C(r, t), ()

where C(r, t) is the potential energy landscape corresponding to constraints encoded by
matrix C(t). The weighting factor γ (t) should be a function ranging between  and  ac-
counting for the importance given to the constraints with respect to the destination. The
key to ensure the convergence of the gradient descent, while accounting at the same time



De Domenico et al. EPJ Data Science  (2015) 4:1 Page 4 of 11

for the constraints, is to make this function changing over time from an initial value up
to . A candidate function is given by

γ (t; a, b) =  – ( – b)e–at , ()

where a is a non-negative number whose inverse τ = a– defines the time scale for con-
vergence to  and b is the relative importance to be assigned at time t =  to constraints
and destination. A reasonable choice is to balance the two potential energy landscapes to
allow the particles to be routed according to the constraints and the destination up to a
time scale τ , above which the influence of the destination becomes more important. Small
values of b might give more importance to the constraints rather than destination, leading
to a routing less oriented to the final destination during the first time steps. Therefore, we
require γ () ≥  – γ () leading to b ≥ ..

We rewrite Eq. () to put in evidence the terms corresponding to different constraints.
Let Cσ (r) and Cδ(r, t) denote the potential due to all static and dynamical constraints,
respectively, which are not related to the state of the other particles of the system. For in-
stance, Cσ (r) might encode the landscape corresponding to crimes, supposed to change
over very long time scales, while Cδ(r, t) might encode the areas where it is raining, snow-
ing or being affected by other meteorological events. On the other hand, we make the
realistic assumption that not all individuals follows the routing provided by the smart sys-
tem. While the information about the traffic of all individuals can be available by sensors
properly disseminated across the grid, it is not possible to predict the behavior of a certain
fraction p of individuals. To account for such a fraction p of individuals, we consider a set
of N( – p) individuals moving along shortest paths between pairs of origin and destina-
tion, sampled from real data as discussed further in the text, and a set Np of individuals
moving randomly in the city, i.e., following random walks instead of shortest paths. We in-
dicate by Fin(r, t) the potential corresponding to the flow of individuals within the system,
i.e., those ones following suggestions from the smart system, and by Fout(r, t) the poten-
tial corresponding to the flow of individuals out of the system. The latter is modeled by a
noisy flow in terms of random walking individuals, although other mobility models can be
used. In order to preserve conservation of the flow, we rescale each term by the number
of particles in the most visited cell, i.e., by a weight m(t) = max[F(t)], being F(t) the matrix
accounting for the flow of individuals in the city at time t, with

∑
cell∈G F(t) = N(t). The

matrix F(t) is not weighted by the factor [ – γ (t)] as in the case of Cσ (r) and Cδ(r, t), be-
cause it would wash out the contribution of F(t) to the potential landscape for increasing
time. This choice makes our model more realistic: in fact, while it is possible to decide
to traverse an undesirable area to balance the time spent looking for alternatives, it is
not possible to traverse those areas which are congested or overcrowded. Therefore, the
potential energy landscape accounting for the traffic flow should not be weighted by the
function  – γ (t), whose existence is justified only to introduce a trade-off between the
needing to reach the destination and the time spent to achieve this goal while accounting
for personalized constraints. Finally, Eq. () maps to

V�(r, t) = γ (t)D�(r) +
(
 – γ (t)

)[
Cσ (r) + Cδ(r, t)

]

+ m(t)
[
( – p)Fin(r, t) + pFout(r, t)

]
. ()
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Figure 1 City of Milan. Area of Milan (Italy) considered in the present study. The area is divided into a
squared grid with 10,000 cells of size 55,225 m2.

This model is rather general, accounting for the presence of traffic and, simultaneously,
for personalized and collective, static and dynamic, constraints. However, in this study we
focused only on static constraints and we aggregated time-varying constraints for sim-
plicity. It is worth remarking here that the potential landscape V�(r, t) experienced by in-
dividual � still changes over time, because of the traffic flow term. Moreover, if agents are
distributed in the grid according to the underlying population distribution and they move
along shortest-path adapting over time in the evolving potential landscape, it is not pos-
sible to perform quantitative predictions about the state of the full system at a given time
without numerical simulations.

3 Overview of the dataset
Most of the datasets used in this work were acquired as part of the Telecom ‘Big Data
Challenge’ and all of them are related to the city of Milan, Italy (see Figure ).

The constraints encoded by matrices Cα(t) can be represented as different ‘layers’ of the
city, as shown in Figure . The weighted combination of such layers, as in Eq. (), allows to
build the potential energy landscapes Cσ (r), Cδ(r, t), Fin(r, t) and Fout(r, t) influencing the
overall landscape defined by Eq. ().

For simplicity, we considered four static layers obtained from the provided datasets and
here we explain how the layers were generated. The ‘pollution’ layer was generated from
readings of  sensors scattered around the city, taken hourly over the course of  months.
Because these sensors are very sparse in space, we smoothed their readings conveniently.
The ‘events’ layer was generated by looking at the number of tweets coming from each grid
of the city. It contains , geolocated tweets generated over a -day period. Lastly,
the ‘crime’ layer was generated from a list of crimes, manually curated, and sourced from
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Figure 2 Layered potential energy landscapes. Each layer represents a potential energy landscape
corresponding to a specific individual or collective constraint. The potential energy landscape in the bottom
of the figure represents an example of weighted combination of such potentials.

newspaper articles.a It contains  crimes happened during the course of  months in
Milan and reported by newspapers and local media.

Finally, we used data about the total number of calls and texts generated in Milan by all
users of a mobile carrier, over a period of two months. We used the aggregated fraction
of calls and texts between areas of the city, aggregated over the whole -month period, to
determine the distribution of trip origin and destination, as detailed in the next session.

4 Simulation of personalized routing
We performed massive simulations of personalized routing in Milan to gain insights about
which factors influence the time required to complete a journey.

We started by exploring different ways to sample origin and destination cells for each
individual in the city. The simplest strategy would be to choose both origin and destination
with uniform probability on the grid. Of course, this strategy can not be realistic for several
reasons. On one hand, the population is never uniformly distributed over metropolitan
areas like Milan, where there is a high concentration of individuals in the ‘core’ of the
city, while the population density decreases for increasing distance from the city centre
[]. In fact, assuming a uniform distribution of origins implicitly considers a population
uniformly distributed. On the other hand, the choice of a random destination, regardless
of the origin, is not representative of real urban mobility, where individual’s journeys show
a high degree of spatio-temporal regularity, with a few highly frequented locations [–]
and high predictability of the underlying trajectories [, , ].

For this reason, we employed a data-driven approach accounting for intrinsic correla-
tions in human mobility and leading to a more realistic distribution of origin-destination
pairs. As a proxy for the population distribution, we have used the human activity mea-
sured by calls and texts generated by mobile phones. The calls dataset also provided infor-
mation about the distribution of calls across all the pairs of grids; we exploited this infor-
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Figure 3 Simulation of origin and destination.
Different strategies for the simulation of origin and
destination affect the distribution of time required
to complete a journey. ‘Approximated’ indicates a
random geographical area, whereas ‘data-driven’
indicates a simulation where origin is sampled from
the population distribution and destination is
sampled according to the origin-destination
probability matrix.

Figure 4 Simulation of personalized routing in
Milan. Data-driven simulations where a certain
fraction of individuals traveling in the city are routed
by our system. The average time required to
complete a journey decreases for increasing
synergy, i.e., for increasing adoption of the
personalized routing. The distribution of journey
duration is shown in the ideal case, i.e., the
non-physical scenario where each individual travels
without constraints of any type, such as traffic, etc.

mation to sample a realistic ensemble of origin-destination pairs and to build an origin-
destination probability matrix. Although this is a strong assumption, recent works [–]
show how one of these quantities can be used to measure the other. Our simulations, sum-
marized in Figure , show that the time required to complete a journey is, on average, faster
when a data-driven strategy is employed vs. the one approximated by random origin and
destinations.

We capitalized on this result to perform data-driven simulations by varying the frac-
tions of individuals traveling by adopting our routing system. For each individual, we cal-
culated again the time required to complete his or her journey, sampled according to the
origin-destination probability matrix. To understand how the efficiency of our re-routing
algorithm is affected by the fraction of individuals adopting the recommended routes, we
define this fraction ( – p) as the synergy of the system and we calculate the time required
to reach the destination for each individual. The remaining fraction p of individuals does
not follow the recommended routes. We found that the underlying synergy has a non-
negligible effect on the way individuals experience mobility the city. Our results, shown in
Figure , put in evidence that the average time required to complete a journey decreases
for increasing synergy, i.e., for increasing adoption of the personalized routing. This result
was expected: when only a small fraction of individuals moves along the routes suggested
by our system, it is not possible to calculate efficient trajectories because the only informa-
tion available to the system is about the traffic generated by other people, while the infor-
mation about their origin and destination is unknown. Conversely, when a large number
of individuals adopts the suggested routes the potential energy landscape is less subjected
to noisy fluctuations and a more efficient calculation of trajectories can be performed.
For comparison, we show in the same figure the distribution of journey duration in the
non-physical scenario where each individual travels without constraints of any type, such
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as traffic, etc. This optimal case, shown in figure for comparison, is a free-flow scenario
where every person goes to their destination undisturbed by other people. Individuals’
routes were sampled according to origin-destination matrix also in this case. While it is
not possible to fit the distribution of the ideal journey duration, our results show that a
% synergy produces a distribution close to the ideal one. It is worth remarking that this
analysis would be able to quantify the benefits of synergy for urban traffic if information
on the individual adoption of routing technology could be available to researchers.

Our routing system also allows to monitor mobility of the city from a new point of view.
Interpreting individuals as particles moving in a thermodynamical system, it is possible to
calculate the ‘temperature’ of the city. For each particle � we calculate the mean speed at
time t by

v�

(
t; t()

�

)
=

√
[i�(t) – i�(t()

� )] + [j�(t) – j�(t()
� )]

t – t()
�

, ()

i.e., as the ratio between the distance travelled up to time t and the time required to travel.
Here t()

� indicates the time at which the particle has been injected into the system, i.e.,
the time at which the individuals leaves the origin of his or her route. The temperature of
this system can be defined as the mean squared speed 〈v

�〉�. This measure is better un-
derstood in terms of permeability (or connectivity) of the city, as defined in urban studies
allowing us to quantify how fast individuals flow through the city. Therefore, we define
the permeability by

P(t) =
〈
v
�(t)

〉
�

=


Nin(t)

Nin(t)∑

�=

v
�(t), ()

where the sum and the average are limited to individuals adopting the routing system,
because of the lack of information about origin-destination of the others. Nevertheless,
P(t) is indirectly affected by the traffic generated by Nout(t) individuals, therefore it is a
robust measure of permeability. Higher the value of P(t) faster the flow of individuals
trough the city and, conversely, lower the value of P(t) and slower the movements in the
city, i.e., higher the probability that there are congested areas or, in the worst case, ‘frozen’
cells in the grid. In the upper panel of Figure  we show how the permeability changes
over time for a data-driven simulation with N =  individuals, a = ., b = . and p = ,
i.e., for % synergy. The color gradient codes the status of the city with respect to its
historical permeability. The existence of congested areas is more evident when the time
series of anomaly A(t) is observed. The anomaly is defined as the departure of P(t) from
the historical average μP (t) with respect to the historical standard deviation σP (t)

A(t) =
P(t) – μP (t)

σP (t)
, ()

where

μP (t) =

t

t∑

τ=

P(τ ), ()
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Figure 5 Monitoring traffic congestion in the city. Permeability of the city and corresponding anomaly
versus time in the case of a data-driven simulation with N = 100 individuals, a = 0.1, b = 0.5 and p = 0. The
horizontal lines in the bottom panel corresponds to different possible levels of ‘traffic congestion alert’. The
color gradient codes the status of the city with respect to its historical permeability (see the text for further
detail).

σP (t) =

√√√√
t

t∑

τ=

P(τ ) –

[

t

t∑

τ=

P(τ )

]

. ()

In the bottom panel of Figure  we show the anomaly changing over time. The traffic
experiences large fluctuations for large values of t, positive and negative ones, alternat-
ing periods of high permeability with a few periods of low permeability. This is due to a
few overcrowded cells that are quickly and automatically uncrowded by the system itself.
Therefore, it is possible to monitor the traffic of the city by looking at the permeability and
its anomaly over time, programming different alert levels such as low (– ≤ A(t) < –.),
medium (–. ≤A(t) < –) or critical A(t) < –..

5 Discussion and conclusions
We have presented a strategy to route individuals between pairs of points of interest ac-
cording to constraints of different type. Our method accounts for the simultaneous inter-
playing between personalized constraints, as avoiding specific areas of the city because
of personal choices, and collective constraints, from pollution reduction in certain areas
of the city to the presence of adverse atmospherical conditions requiring targeted inter-
vention. We have shown that the synergy plays a fundamental role in designing a smart
city: only when all individuals take part in the routing system and move according to the
recommended routes, the overall traffic in the city is closer to the most ideal mobility sce-
nario. In the presence of real time information, our method allows to monitor the state
of the city in real time, automatically identifying areas that are experiencing a temporary
congestion and giving authorities the possibility to intervene timely.

Finally, the potential applications of our routing strategy are multiple. For instance, for
certain values of the parameters (i.e., a = b = , leading to γ (t) = ), we obtain a routing
strategy from an origin and without a fixed destination, while accounting for specified con-
straints. This case could be useful to perform automated routing of objects or individuals
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through the city. For instance, it would be possible to route cars or drones which are col-
lecting data about the city (as Google cars) and to route people in charge of social services
like cleaning the streets or performing targeted intervention, as disseminating salt in areas
with snow. An additional application could be in the field of social security, to route police
cars in areas with high crimes rate. Finally, our framework can help decision-makers to
real-time application of urban mobility policies in responses to crisis, e.g. the emergence
of hotspots of infection in specific areas of the city (or a larger area) can be incorporated
into the model to avoid people passing through dangerous areas before physical quaran-
tine is employed.
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