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The study of networks plays a crucial role in investigating the structure, dynamics, and func-

tion of a wide variety of complex systems in myriad disciplines. Despite the success of tra-

ditional network analysis, standard networks provide a limited representation of these sys-

tems, which often includes different types of relationships (i.e., “multiplexity”) among their

constituent components and/or multiple interacting subsystems. Such structural complex-

ity has a significant effect on both dynamics and function. Throwing away or aggregating

available structural information can generate misleading results and provide a major ob-

stacle towards attempts to understand the system under analysis. The recent “multilayer”

approach for modeling networked systems explicitly allows the incorporation of multiplex-

ity and other features of realistic networked systems. On one hand, it allows one to couple

different structural relationships by encoding them in a convenient mathematical object. On
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the other hand, it also allows one to couple different dynamical processes on top of such in-

terconnected structures. The resulting framework plays a crucial role in helping to achieve

a thorough, accurate understanding of complex systems. The study of multilayer networks

has also revealed new physical phenomena that remained hidden when using the traditional

network representation of graphs. Here we survey progress towards a deeper understand-

ing of dynamical processes on multilayer networks, and we highlight some of the physical

phenomena that emerge from multilayer structure and dynamics.

Introduction

Networks provide a powerful representation of interaction patterns in complex systems1–3. The

structure of social relations among individuals, interactions between proteins, food webs, and many

other situations can be represented using networks. Until recently, the vast majority of studies

in network science have focused networks that consist of a single type of entity, with different

entities connected to each other via a single type of connection. Such networks are now called

single-layer (or monolayer) networks. The idea of incorporating additional information — such

as multiple types of interactions, subsystems, and time-dependence — has long been pointed out

in various fields, such as sociology4, 5 and engineering6, but an effective unified framework for the

mathematical treatment of such multidimensional structures, which are usually called multilayer

networks, has been developed only recently7, 8.

Multilayer networks can be used to model many complex systems. For example, relation-

ships between humans include different kinds of interactions — such as relationships between fam-

ily members, friends, and coworkers — that constitute different layers of a social system. Different

layers of connectivity also arise naturally in natural and human-made systems in transportation9,

ecology10, neuroscience11, and numerous other areas. The potential of multilayer networks for rep-

resenting complex systems more accurately than was previously possible has led to an explosion
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of work on the physics of multilayer networks.

The main question posed a few years ago concerned the implications of multilayer structures

for the dynamics of complex systems, and several seminal papers about interdependent networks

— a special type of multilayer network — revealed that such structures can change the qualitative

behaviors in a significant way12, 13. These findings thus posed the challenge for how to account for

multiple layers of connectivity in a consistent mathematical way. An explosion of recent papers

has developed the field of multilayer networks into its modern form, and there is now a suitable

mathematical framework14 and novel structural descriptors15–19 for studying these systems. Many

studies have also started to highlight the importance of analyzing multilayer networks, instead of

relying on their monolayer counterparts20, 21, to gain new insights about empirical systems.

Nowadays, we know that the study of multilayer networks is fundamental for enhancing our

understanding of dynamical processes on real networked systems, such as flow (or its congestion)

in transportation network22, 23, cascading failures in interdependent infrastructures12, and informa-

tion and disease spreading in social networks24–27. For instance, when two spreading process are

coupled in a multilayer network, the onset of one disease-spreading process depends on the on-

set of the other one, yielding a curve of critical points in the phase diagram of the parameters

that govern a system’s spreading dynamics25. Such a curve reveals the existence of two distinct

regimes, such that the criticality of the two dynamics may or may not be interdependent. Simi-

larly, cooperative behavior can be enhanced by multilayer structures, providing a novel way for

cooperation to survive in structured populations28. For additional examples, see various reviews

and surveys7, 8, 13, 24, 29–31 on multilayer networks and specific topics within them.

A multilayer framework allows a natural representation of coupled structures and coupled

dynamical processes. Here, after a brief overview on the representation of multilayer networks,

we will focus on dynamical processes in which multilayer analysis has revealed new physical be-
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havior. Specifically, we will discuss two cases: (i) a single dynamical process, such as continuous

and discrete diffusion, running on the top of a multilayer structure; and (ii) different dynamical

processes, each one running on the top of each layer and coupled/mixed by a multilayer structure.

Structural representation of multilayer networks

One can represent a monolayer network mathematically by using an adjacency matrix, which is a

2nd-order tensor. This tensor encodes information about (possibly directed and/or weighted) rela-

tionships among entities in a network. Because multilayer networks include multiple dimensions

of connectivity, called aspects, that have to be considered simultaneously, their structure is much

richer than that of ordinary networks. Possible aspects include different types of interactions or

communication channels, different subsystems, different spatial locations, different points in time,

and more. One uses higher-order tensors to encode the connectivity of multilayer networks as

(multi)linear-algebraic objects7, 14. Multilayer networks include three types of edges: intra-layer

edges (connecting nodes within the same layer), inter-layer edges between replica nodes (i.e.,

copies of the same entity) in different layers, and inter-layer edges between nodes that represent

distinct entities.

Let N be the number of nodes in a multilayer network, and let L is be the number of layers.

The components mjβ
iα of a 4th-order tensor M encode the relationship between any node i in layer

α and any node j in layer β in the system (i, j ∈ {1, 2, . . . , N} and α, β ∈ {1, 2, . . . , L}).

We use δji and δβα, respectively, to indicate the Kronecker delta function for indices corre-

sponding to nodes and layers. We separate the contributions of node–node relationships within
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and across layers of the multilayer network as

mjβ
iα = mjβ

iαδ
β
αδ

j
i +mjβ

iαδ
β
α(1− δji )︸ ︷︷ ︸

intra-layer relationships

+mjβ
iα(1− δβα)δji +mjβ

iα(1− δβα)(1− δji )︸ ︷︷ ︸
inter-layer relationships

= miα
iα︸︷︷︸

self-relationships

+ mjα
iα︸︷︷︸

endogenous

+ mjβ
iα︸︷︷︸

exogenous

+ miβ
iα︸︷︷︸

intertwining

= Siα(M) + Nj
iα(M) + Xjβ

iα(M) + Iβiα(M) . (1)

We call Eq. (1) the “structural (SNXI) decomposition” of the multilayer adjacency tensor M. Dif-

ferent types of multilayer networks arise from contributions of different SNXI components in the

tensorial representation of a network. In Fig. 1, we illustrate some common types of multilayer

networks.

Once the connectivity of the nodes and layers are encoded in a tensor, one can define novel

measures to characterize the multilayer structure. However, this is a delicate process, as naively

generalizing existing concepts from monolayer networks can lead to qualitatively incorrect or non-

sensical results7. Studies of structural properties of multilayer networks include descriptors to iden-

tify the most central nodes according to a specific notion of importance14–18 and quantify triadic re-

lations such as clustering and transitivity14, 17, 19. Significant advances have been achieved to reduce

the structural complexity of a multilayer system32, to unveil mesoscale structures (e.g., communi-

ties of densely-connected nodes) 33–35, and to quantify intra-layer and inter-layer correlations36–38

in empirical networked systems.

The structural properties depend crucially on how layers are coupled together to form a mul-

tilayer structure. Inter-layer edges provide the coupling and help encode structural and dynamical

features of a system, and their presence (or absence) produces fascinating structural and dynami-

cal effects. For example, in multimodal transportation systems, in which layers represent different

transportation modes, the weight of inter-layer connections might encode an economic or tempo-
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ral cost to switching between two modes39. In multilayer social networks, inter-layer connections

allow models to tune, in a natural way, an individual’s self-reinforcement in opinion dynamics40.

Depending on the relative importance of intra-layer and inter-layer connections, a multilayer net-

work can act either as a system of independent entities, in which layers are structurally decoupled,

or as a single-layer system, in which layers are indiscernible in practice. In some multilayer net-

works, one can even derive a sharp transition between these two regimes41, 42.

Single and mixed dynamics on multilayer networks

There are two different categories of dynamical processes on multilayer networks: (i) a single

dynamical process on top of the coupled structure of a multilayer network (see Fig. 2a); and (ii)

two or more dynamical processes are defined on each layer separately and are coupled together by

the presence of inter-layer connections between nodes, mixing their effects (see Fig. 2b).

As in the case of structure, it is possible to introduce a unifying framework, in terms of a

dynamical SNXI decomposition, to describe dynamics on multilayer networks (this is in the same

spirit of coupled-cell networks43, but we are explicitly separating the structural and dynamical ef-

fects.). Let x[`]iα (where ` ∈ {1, 2, . . . , C}) denote the `th component of a C-dimensional vector xiα

that represents the state of node i in layer α. The most general (and possibly nonlinear) dynamics
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governing the evolution of each state is given by the systems of equations

ẋiα(t) = Fiα(X(t)) =
L∑
β=1

N∑
j=1

f jβiα (X(t))

=
L∑
β=1

N∑
j=1

f jβiα (X(t))δβαδ
j
i +

L∑
β=1

N∑
j=1

f jβiα (X(t))δβα(1− δji )︸ ︷︷ ︸
intra-layer dynamics

+
L∑
β=1

N∑
j=1

f jβiα (X(t))(1− δβα)δji +
L∑
β=1

N∑
j=1

f jβiα (X(t))(1− δβα)(1− δji )︸ ︷︷ ︸
inter-layer dynamics

= f iαiα (X(t))︸ ︷︷ ︸
self-interaction

+
∑
j 6=i

f jαiα (X(t))︸ ︷︷ ︸
endogenous interaction

+
∑
β 6=α

∑
j 6=i

f jβiα (X(t))︸ ︷︷ ︸
exogenous interaction

+
∑
β 6=α

f iβiα (X(t))︸ ︷︷ ︸
intertwining

= Siα(X(t)) + Niα(X(t)) + Xiα(X(t)) + Iiα(X(t)) , (2)

where X(t) ≡ (x11,x21, . . . ,xN1,x12,x22, . . . ,xN2, . . . ,x1L,x2L, . . . ,xNL).

Similar to the structural decomposition in Eq. (1), we have decoupled the different contribu-

tions of intra-layer and inter-layer dynamics, allowing us to classify different dynamical processes

in terms of the corresponding dynamical SNXI components. In the next two sections, we review

a few emblematic examples in which the observed physical behavior is a direct consequence of

multilayer interactions.

Single dynamics. In this section, we analyze physical phenomena that arise from a single dy-

namical process on top of a multilayer structure. The behavior of such a process depends both on

intra-layer structure (i.e., the usual considerations in networks) and on inter-layer structure (i.e.,

the presence and strength of interactions between nodes on different layers).

One of the simplest types of dynamics is a diffusion process (either continuous or discrete).

The physics of diffusion, which has been analyzed thoroughly in multiplex networks44, 45 (i.e., it
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networks of SNI type), reveals an intriguing and unexpected phenomenon: diffusion can be faster

in a multiplex network than in any of the layers considered independently44.

One can understand diffusion in multiplex networks in terms of the spectral properties of a

(combinatorial) Laplacian tensor, obtained from the adjacency tensor of the multilayer network,

that governs the diffusive dynamics. One first “flattens”46 — without loss of information, provided

one keeps the layer labels — the Laplacian tensor14 into a special lower-order tensor called “supra-

Laplacian matrix”44. The supra-Laplacian matrix has a block-diagonal structure, where diagonal

blocks encode the associated Laplacian matrices corresponding to each layer separately and off-

diagonal blocks encode inter-layer connections.

The time scale of diffusion is controlled by the the smallest positive eigenvalue Λ2 of the

supra-Laplacian matrix. In Fig. 3, we show a representative result that evinces the existence of

two distinct regimes in multiplex networks as a function of the inter-layer coupling. The regimes

illustrate how multilayer structure can influence the outcome of a physical process. For small

values of the inter-layer coupling, the multilayer structure slows down the diffusion; for large

values, the diffusion speed converges to the mean diffusion speed of the superposition of layers.

In many cases, the diffusion in the superposition is faster than that in any of the separate layers.

The transition between the two regimes is a structural transition41, a characteristic of multilayer

networks that can arise also in other contexts47, 48.

The above phenomenology can also occur in discrete processes. Perhaps the most canonical

examples of discrete dynamics are random walks, which are used to model Markovian dynamics on

monolayer networks and which have yielded numerous insights over the last several decades49, 50.

In a random walk, a discretized form of diffusion, a walker jumps between nodes through available

connections. In a multilayer network, the available connections include layer switching via an

inter-layer edge, a transition that has no counterpart in monolayer networks and which enriches
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random-walk dynamics33, 39, 42. An important physical insight of the interplay between multilayer

structure and the dynamics of random walkers is “navigability”39, which we take to be the mean

fraction of nodes that are visited by a random walker in a finite time, which (similar to the case

of continuous diffusion) can be larger than the navigability of an aggregated network of layers.

In terms of navigability, multilayer networks are more resilient to uniformly random failures than

their individual layers, and such resilience arises directly from the interplay between the multilayer

structure and the dynamical process.

Another physical phenomenon that arises in multilayer networks is related to congestion,

which arises from a balance between flow over network structures and the capacity of such struc-

tures to support flow. Congestion in networks was analyzed many years ago in the physics liter-

ature 51–53, but it has only recently been studied in multilayer networks 23, 54, which can be used

to model multimodal transportation systems. It is now known that the multilayer structure of a

multiplex network can induce congestion even when a system would remain decongested in each

layer independently23. This seemingly surprising effect is explained by the multilayer structure:

the intertwining favors shortest paths in one of the layers, causing a flow overload across those

paths an thereby congesting them.

Mixed dynamics. Mixed dynamical processes are a second archetypical family of dynamics in

which multilayer structure plays a crucial role. Thus far, the best studied examples are mixed

spreading processes, which are crucial for understanding phenomena such as the spreading dy-

namics of two concurrent diseases in two-layer mutliplex networks26, 30, 55–57 and spread of disease

coupled with the spread of information or behavior24, 25, 27, 58, 59. We illustrate two basic effects: (i)

the two spreading processes can enhance each other (e.g., one disease facilitates infection by the

other26), and (ii) one process can inhibit the spread of the other (e.g., a disease can inhibit infection

by another disease26 or the spreading of awareness about a disease can inhibit the spread of the
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disease25). Interacting spreading processes also exhibit other fascinating dynamics, and multilayer

networks provide a natural means to explore them 24.

The corresponding phenomenology is characterized by the existence of a curve of critical

points that separate the endemic and non-endemic phases. This curve exhibits a crossover between

two different regimes: (i) a regime in which the critical properties of one spreading process are

independent of the other, and (ii) a regime in which the critical properties of one spreading process

do depend on those of the other. The point at which this crossover occurs is called a “metacritical”

point.

In Fig. 4, we show (left) a phase diagram of the incidence in one layer of two reciprocally

enhanced disease spreading processes; and (right) a phase diagram of the incidence in one layer

of one inhibiting disease spreading process acting on the other. The metacritical point delineates

the transition between independence (dashed line) and dependence (solid curve) of the critical

properties of the two processes.

Conclusions and outlook

In most natural and engineered systems, entities interact with each other in complicated patterns

that include multiple types of relationships and/or multiple subsystems, change in time, and in-

corporate other complications. The theory of multilayer networks seeks to take such features into

account to improve our understanding of such complex systems.

In the last few years, there have been intense efforts to generalize traditional network theory

by developing and validating a framework to study multilayer systems in a comprehensive fashion.

The implications of multilayer network structure and dynamics are now being explored in fields as

diverse as neuroscience21, 60, transportation9, 61, ecology10, granular materials 62, evolutionary game
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theory 31, and many others. Despite considerable progress in the last few years7, 8, much remains

to be done to obtain a deep understanding of the new physics of multilayer network structure and

multilayer network dynamics (both dynamics of and dynamics on such networks). In seeking such

a deep understanding, it is crucial to underscore the inextricable interdependence of the structure

and dynamics of networks.

Recent efforts have revealed fundamental new physics in multilayer networks. The richer

types of spreading and random-walk dynamics can lead to enhanced navigability, induced conges-

tion, and the emergence of new critical properties. Such new phenomena also have a major impact

on practical goals such as coarse-graining networks to examine mesoscale features and evaluating

the importance of nodes — two goals that date back to the beginning of investigations of networks

1, 3, 63. For multilayer networks to achieve their vast potential, there remain crucial problems to ad-

dress. For example, it is much easier to measure edge weights reliably for intra-layer edges than for

inter-layer edges. Moreover, inter-layer edges not only play a different role from intra-layer ones,

but they also play different roles in different applications, and the research community is only

scratching the surface of the implications of their presence and the new phenomena to which they

leas. The correlation structure across different layers and the cost of moving across layers affects

both structural and dynamical properties. For example, which structures slow down the spread of

information and diseases, and which ones speed it up? Which structures promote robustness, and

which ones hinder it? Which structures promote synchronous dynamics and which ones impede it?

The answers to such questions can be different for different types of dynamical processes (and for

different variants of the same type of process), and it is crucial to further explore the new physical

phenomena emerging from multilayer networks to answer these questions.
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Figure 1: Multilayer networks. (a) An edge-colored multigraph, in which nodes can be connected

by different types (i.e., colors) of interactions; structural intertwining and exogenous terms are

absent and the others are present, so this is an SN multilayer network. (b) A multiplex network,

which consists of an edge-colored multigraph along with inter-layer edges that connect entities

with their replicas on other layers; there are no structural exogenous terms but all other terms are

present, so this is an SNI multilayer network. (c) An interdependent network, in which each layer

contains nodes of a different type (circles, squares, and triangles) and includes inter-layer edges to

nodes in other layers; in this case, all terms are present except for the structural intertwining term,

so this is an SNX multilayer network.
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Single dynamics Coupled dynamics

(a) (b)

Figure 2: Dynamical processes on multilayer networks. (a) Schematic of a single type of dy-

namical process running on all layers of a multiplex network. (Arcs of the same color represent

the same dynamical process.) (b) Schematic of two dynamical processes, each of which is running

on a different layer, that are coupled by the interconnected structure of a multilayer network.
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Figure 3: Single dynamics on multilayer networks. The speed of Laplacian diffusion dynamics

of SNI type is characterized by the second smallest eigenvalue Λ2 of the corresponding combi-

natorial Laplacian tensor. We consider a pair of coupled Erős–Rényi (ER) networks in which we

independently vary the probability to connect two nodes within the same layer between 0 and 1.

The condition44 to observe faster diffusion in the multilayer network than diffusion in each layer

separately is Λmultiplex
2 ≥ max{Λlayer 1

2 ,Λlayer 2
2 }. In the central panel, we see that the condition is

satisfied when the two layers have similar edge-connection probabilities. In the side panels, we

show the behavior of Λ2 as a function of the inter-layer coupling in the two different regions of

behavior.
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Figure 4: Mixed dynamics on multilayer networks. Two (left) reciprocally-enhanced and (right)

reciprocally-inhibited disease-spreading processes of susceptible–infected–susceptible (SIS) type.

We computed these diagrams for multiplex networks formed by two layers of 5000-node Erdős–

Rényi graphs of 5000 with mean intra-layer degree 〈k〉 = 7. The colors in the figure represent the

prevalence levels of the diseases at a steady state of Monte-Carlo simulations. Note the emergence

of a curve of critical points (at a “metacritical point”) in which the spreading in one layer depends

on the spreading on the other.
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