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Abstract

The study of the sub-structure of complex networks is of major importance
to relate topology and functionality. Many efforts have been devoted to the
analysis of the modular structure of networks using the quality function known
as modularity. However, generally speaking, the relation between topological
modules and functional groups is still unknown, and depends on the semantic of
the links. Sometimes, we know in advance that many connections are transitive
and, as a consequence, triangles have a specific meaning. Here we propose the
study of the modular structure of networks considering triangles as the building
blocks of modules. The method generalizes the standard modularity and uses
spectral optimization to find its maximum. We compare the partitions obtained
with those resulting from the optimization of the standard modularity in several
real networks. The results show that the information reported by the analysis
of modules of triangles complements the information of the classical modularity
analysis.
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1. Introduction

The study of the modular (or community) structure of complex networks
has become a challenging subject [1] with potential applications in many dis-
ciplines, ranging from sociology to computer science, see reviews [2, 3, 4]. Un-
derstanding the modular units of graphs of interactions (links) between nodes,
representing people and their acquaintances, documents and their citation re-
lations, computers and their physical or logical connections, etc., is of utmost
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importance to grasping knowledge about the functionality and performance of
such systems. One of the most successful approaches to identify the underlying
modular structure of complex networks, has been the introduction of the quality
function called modularity [5, 6]. Modularity encompasses two goals: (i) it im-
plicitly defines modules as those subgraphs that optimize this quantity, and (ii)
it provides a quantitative measure to find them via optimization algorithms. It
is based on the intuitive idea that random networks are not expected to exhibit
modular structure (communities) beyond fluctuations [7].

A lot of effort has been put into proposing reliable techniques to maximize
modularity [8, 9, 10, 11, 12, 13, 14, 15, 16], see review [17]. To a large extent,
the success of modularity as a quality function to analyze the modular structure
of complex networks relies on its intrinsic simplicity. The researcher interested
in this analysis is endowed with a non-parametric function to be optimized:
modularity. The result of the analysis will provide a partition of the network
into communities such that the number of edges within each community is larger
than the number of edges one would expect to find by random chance. As a
consequence, each community is a subset of nodes more connected between them
than with the rest of the nodes in the network. The user has to be aware of some
aspects about resolution limitations that avoid grasping the modular structure
of networks at low scales using modularity [18]. The problem can be solved
using multiresolution methods [19, 20].

The mathematical formulation of modularity was proposed for unweighed
and undirected networks [5] and generalized later to weighted [6] and directed
networks [21]. The generalized definition is as follows

QO =53 <w - %) 3(Ci,C5) 1)

i=1 j=1

where w;; is the strength of the link between the nodes 7 and j of the network,
wiut = Zj w; is the strength of links going from ¢, w;" = ), w;; is the strength
of links coming to j, and the total strength of the network is 2w = Zij Wy -
Finally, C; is the index of the community to which node i belongs to, and d(x, y)
is the Kronecker function assigning 1 only if x = y, and 0 otherwise.

A close look to Eq.(1) reveals that the building block of the community struc-
ture we are looking for, within this formulation, is the link between two nodes.
Every term in Eq.(1) accounts for the difference, within a module, between the
actual existence of a link with weight w;; and the probability of existence of
such a link just by chance, preserving the strength distribution.

However, in many cases the minimal and functional structural entity of a
graph is not a simple link but a small structure (motif) of several nodes [22].
Motifs are small subgraphs that can be found in a network and that correspond
to a specific functional pattern of that network. Statistical over-representation
of motifs (compared with the random occurrence of these sub-structures) has
been a useful technique to determine minimum building blocks of functionality
in complex networks, and several works exploit their identification [22, 23, 24].
Among the possible motifs, the simplest one is the triangle which represents
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Figure 1: List of all possible three-nodes motifs.

the basic unit of transitivity and redundancy in a graph, see Figure 1. This
motif is over-represented in many real networks, for example motifs 12 and 13
in Figure 1, the feedback with two mutual dyads and the fully connected triad
respectively, are characteristic motifs of the WWW. Motif 7 (feed-forward loop)
is over-represented in electronic circuits, neurons connectivity and gene regula-
tory transcription networks. The reason for this over-representation relies on
the functionality of such small subgraphs on the evolution and performance
of the specific network. In the WWW as well as in social networks, the fully
connected triad is probably the result of the transitivity of contents or human
relations, respectively. The feed-forward loop is related to the reliability or fail
tolerance of the connections between important elements involved in commu-
nication chains. The idea we propose here is that finding modules containing
such motifs as building blocks could improve our information about the mod-
ular structure of complex networks. The importance of transitivity is traced
back to the seminal paper [25] where it is proposed the clustering coefficient, a
scalar measure quantifying the total number of triangles in a network through
the average likelihood that two neighbors of a vertex are neighbors themselves.

The main goal of our work is to determine communities using as building
blocks triangular motifs. We propose an approach for triangle community de-
tection based on modularity optimization using the spectral algorithm decom-
position and optimization. The resulting algorithm is able to identify efficiently
the best partition in communities of triangles of any given network, optimizing
their correspondent modularity function.

2. Spectral decomposition for triangle community detection

Let G = (V,A) be a weighted undirected graph representing a complex
network, where V represents the vertices set and A the edges set. The objective



is to identify communities of triangles, i.e. a partition with the requirement that
the density of triangles formed by any three nodes ¢, 7 and k inside the same
module is larger than the triangles formed outside the module. We will define
this objective using a proper adaptation of modularity.

2.1. Triangle modularity tensor

In [26] some of us introduced a mathematical formalism to cope with modu-
larity of motifs of any size. Capitalizing on this work, here we study the speci-
ficity of triangle modularity Qa(C) of a certain partition C of an undirected
graph (the extension to directed graphs is straightforward, although a little bit
more intricate, we present this extension in the Appendix). The mathematical
definition is

Qa(0) :ZZZBijk5(Ci,Cj)(s(cjack)(s(ck,ci), (2)
i j ok
where C; is the index of the community which node i belongs to, and B,
1
Biji = —wijwjrwe; — —— (wiw;) (wjwe) (wpw;) (3)
Ta TN

is a three indices mathematical object (triangle modularity tensor, from now on)
that evaluates for each triad 4, j, k, the difference between the actual density
of strength of the triangle in the graph and the expected density of this trian-
gle in a random configuration with the same strength distribution (null case).
The normalization constant T is the total number of triads of nodes forming
triangles in the network,

To =220 witmw, 4)
i j ok
and its counterpart Ty for the null case term is

Ty = > > (ww;)(wjwe)(wews). (5)
% J k

It is straightforward to check that the triangle modularity tensor satisfies:

Bijk = Bjri = Buij (6)
ZZZBU’C:O‘ (7)
i Kk

2.2. Spectral optimization of triangle modularity

The computation of the triangle modularity is demanding due to the combi-
natorial number of triads that can be formed. The proposal of any optimization
algorithm for this function must be aware of this cost. Among the possibil-
ities already stated in the literature we devise that the spectral optimization



scheme, first proposed in [16], is a candidate to perform this task efficiently.
The idea behind this algorithm is to use the eigenspectrum of the modularity
matrix, which plays a role in community detection similar to that played by the
graph Laplacian, and use a recursion splitting reminiscent of graph partition-
ing calculations. The problem we have is that a direct mapping to the usual
spectral modularity optimization is not straightforward given the structure of
Eq.(2). Basically we need to transform Eq.(2) in a function with the following

structure:
Q(C) X E E SiMiij, (8)
ig

where the leading eigenvector of M;;, the modularity matrix, will induce the
first recursion step, splitting the network in two parts.

We propose the following transformation: let us assume a partition of the
network in two communities, introducing the variables s;, which are +1 or —1
depending on the community to which node ¢ belongs to, and taking into account
that

1
5(01,0]) = 5(1 + Sisj)a (9)
then
1
0(Ci, C5)0(Cy, Ci)o(Cr, Ci) = (14 sisg)(1+ s;50) (1 + swsi)
1
= Z(1+Si8j+5j5k+5ksi); (10)

where we have made use of s? = +1. Therefore, using Eqgs. (6) and (7),

Qa(S) = EZZZBijk(l""Sisj+Sj8k+3k8i)
i3k
= IX Y Busisy (1)
i3k

Defining the triangle modularity matriz
M;; = Z Bk
k

1 1
= Wi E ikWki — 7 (Wwiw; )(wjw; E : 12
TGw] d Wik W T (wiw; ) (wjw;) d (wrwy) (12)

then

i

3
QA(S) = ZZZSiMiij. (13)
J
Thus, we have been able to reduce the optimization of the triangle modularity
into the standard spectral algorithm given in [16].

For the case of undirected networks, this matrix is symmetric and the com-
putation of its eigenspectra gives real values. However, if the network is directed,



this property is not necessarily true, and then a symmetrization of the matrix
is needed before computing its spectrum (see Appendix).

Once a first division of the network in two parts has been obtained, it is
possible to iterate the process, while modularity improves, by a recursive ap-
plication of the spectral splitting to each subgraph. To this end, we need the
value of the triangle modularity matrix for any subgraph. Supposing we have
a subgraph g to be divided into g; and gs, the change in triangle modularity is
given by

AQa(g — 91,92) = Z Bijr + Z Bijr — Z Bijk

4,9,k€91 1,5,k€g2 1,5,k€g

3
= 1 Z Z Bijrsis; — Z Bijk

keg \i,j€g 1,J€9

= 2% siMy(9)s; (14)

1,j€Y
where

M;;i(g) = Z Biji — 05 ZBwk ; (15)

keg leg
and s; is +1 for nodes in g; and —1 for nodes in go. Therefore, the new triangle
modularity matrix is not just a submatrix of the original one, but additional
terms appear to take into account the connectivity with the rest of the network.

2.3. Algorithm

Once the triangle modularity has been transformed to the proper form to be
optimized by spectral decomposition, we can proceed to formulate a complete
decomposition-optimization algorithm. After the first analysis of the eigenspec-
tra, the eigenvector associated to the largest eigenvalue is used to determine the
elements that will be assigned to one of the two communties according to the
sign of their eigenvector component. this process is recursively executed until
no new splits are obtained. The decomposition given by the spectral partition-
ing can be improved by a fine-tuning of the nodes asignments after the process
ends.

We use the Kernighan-Lin optimization method to improve the modularity
as explained in [16]. The main idea is to move vertices in a group to another
increasing the modularity. We move all vertices exactly once. At each step,
we choose to move the vertex giving the best improvement (largest increase
in the modularity). When all vertices are moved, we repeat the process until
no improvement is possible. Some computational issues should be considered
here: the computation of the largest eigenvalue and its corresponding eigenvec-
tor can be efficiently determined using the iterative Lanczos method [27]; the
computation of QA (S) is, in principle, of order O(N?), however it can be done
very efficiently by pre-computing and storing the values of Ty and T, and the



Algorithm 1 Triangle community detection

Require: Connected network G(V,E)

Ensure: Triangle communities C, Triangle modularity of the partition QA (C)
Read network

Current subgraph g <+ G

Build modularity matrix M (g)

Compute Qa(g)

Compute leading eigenvalue and eigenvector of M (g)

Decomposition of group g in two groups: gl and ¢2, using the signs of
eigenvector components

Compute the modularity Qa (g1, ¢g2) of the initial split of group g
Improve Qa (g1, g2) using KL optimization between gl and g2

Compute the modularity QA (g1, g2) of the split of group g

10: if Qa(gl,92) > QA(g) then

11:  goto 3 with g « g1

12:  goto 3 with g « g2

13: end if

lists of triangles to which each node belongs to; finally, the KL post-processing
stage which is eventually the computational bottleneck of the process, must be
parameterized according to the number of nodes we pretend to move and the
relative improvement of modularity observed.

3. Results

In this section we show the results of the algorithm, applied to several real
networks. We have used the following networks:

e Football [1], a network of American football games between Division TA
colleges during regular season Fall 2000.

e Zachary [28], a social network of friendships between 34 members of a
karate club at a US university in the 1970s.

e Dolphins [29], an undirected social network of frequent associations be-
tween 62 dolphins in a community living off Doubtful Sound, New Zealand.

e Adjnoun [30], adjacency network of common adjectives and nouns in the
novel David Copperfield by Charles Dickens.

e Elec s208 [22], benchmark of sequential logic electronic circuit.
e Neurons [31], network of neural connectivity of the nematode C.elegans.

e Cortex [32], network of connections between cortical areas in the cat brain.



Network  Nodes Links Q Qr  A(Q,Qnr)

Football 115 613 0.604 0.924 0.529
Zachary 34 78 0.419 0.706 0.685
Dolphins 62 159 0.528 0.817 0.547

Adjnoun 112 425 0.308 0.299 -0.029
Elec s208 122 189 0.686 0.998 0.454
Neurons 279 2287 0.405 0.433 0.069
Cortex 55 564 0.372 0.708 0.903

Table 1: Comparison of standard and triangle modularities.

To evaluate the information provided by the new triangle modularity, we per-
form a comparison with the standard modularity Eq.1. We have developed a
comparison in both the values of the optimal modularity, and the partitions
obtained.

8.1. Modularities comparison

Table 1 shows the best standard, and triangle modularities found using spec-
tral optimization. We define a new parameter A(Q,Qa) = (Qa — Q)/Q that
measures the relative difference between both. Positive values of A(Q,QA) in-
dicate that the contribution of triangles to communities is larger than standard
modularity communities, and the contrary for negative values.

From Table 1 we observe that in Adjnoun, which is almost a bipartite net-
work, the standard modularity is larger than the triangle modularity, in ac-
cordance with the absence of these motifs. On the other side, for the Zachary
network, a human social network where transitivity is implicit in many acquain-
tances, the triangle modularity becomes more informative than the standard
modularity. Indeed, the optimal standard modularity proposes a decomposition
of this network in four groups, while the optimal triangle modularity is achieved
for a partition in two groups plus two isolated nodes (nodes 10 and 12) that
do not participate in any triangle. Moreover the partition in two groups is in
accordance with the observed split of this network after a fight between the
administrator and the instructor of the club, see Figure 2.

3.2. Communities comparison

A deeper comparison consist in to analyze the different modules obtained
using the standard and triangle modularity. To this end, we need some mea-
sures to analyze the difference in the assignments of nodes to modules, taking
into account that we will also have different modular partitions. Here, we use
two measures, the Normalized Mutual Information (NMI) and the Asymmetric
Wallace Index (AW).

In [33] the authors define the NMI to compare two clusterings. The idea is
the following: let be a clustering A with ¢4 communities and a clustering B with
cp communities, and let us define the confusion matrix N whose rows correspond
to the communities of the first clustering (A) and columns correspond to the
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Figure 2: Zachary network partitions. Best partitions found by optimization of (a) triangle
modularity and (b) standard modularity. The real splitting of the network is represented by
the shape of the symbols (squares and circles). Colors indicate the assignment of nodes to the
modules found.

communities of second clustering (B). The elements of the confusion matrix,
Nag, represent the number of common nodes between community o of the
clutering A and community (§ of the clustering B, the partial sums N, =
ZB Nog and Ng = ) Nag are the sizes of these communities, and N, =
Yoa Zﬂ Nyp is the total number of nodes. The measure NMI between two
clusterings A and B is

N NasN.
92 Z Z Nqglog <Na.ﬁN.é)

a=1 =1
CA N CcCB Nﬁ
N, log [ =% N glog [ ==£
> s () + 3 s (57

If the partitions are identical, then NMI takes its maximum value of 1. If
the partitions are totally independent, NMI = 0. It measures the amount of
information that both partitions have in common.

The Asymmetric Wallace Index [34] is the probability that a pair of elements
in one cluster of partition A (resp. B) is also in the same cluster of partition B
(resp. A). Using the same definitions as for the NMI, the two possible Asym-

NMI(A, B) = (16)




Networks  NMI AW, AW,

Football  0.8903 0.8488 0.6901
Zachary 0.6380 0.7945 0.5524
Dolphins  0.6663 0.4810 0.7838
Adjnoun  0.4888 0.3136 0.3845
Elec s208 0.6098 0.0307 0.9091
Neurons 0.6045 0.7276 0.6954
Cortex 0.8361 0.6841 1.0000

Table 2: Comparison of partitions obtained using standard and triangles modularities. The
different measures are explained in the text.

metric Wallace Indices are:

cA cB

YD Nag(Nap —1)

a=1p=1

AW, (4,B) = =2
> Na(Na. —1)
a=1

: (17)

CA CB

Z ZNaﬁ(Naﬁ —-1)

a=18=1

cB
D Ns(Ng—1)
B=1

AW, (A, B) = (18)

The asymmetric Wallace index shows the inclusion of a partition in the other.

In Table 2, we observe that the largest NMI is for the communities of football
network. That means that the standard and triangle communities found in that
network are very similar. Indeed, the structure of the football network is very
dense and almost all nodes participate in triangles. For the the AW of the
cortex network is equal to 1, that means that all the triangle communities are
included in the standard ones.

4. Conclusions

We have designed an algorithm to compute the communities of triangular
motifs using an spectral decomposition of the triangle modularity matrix. The
algorithm provides partitions where transitive relations are the building blocks
of their internal structure. The results of these partitions are complementary
to those obtained maximizing the classical modularity, that accounts only for
individual links, and can be used to improve our knowledge of the mesoscopic
structure of complex networks.
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5. Appendix

Here we show the computation of the triangle modularity matrix for a di-
rected motif, in particular motif 7 in Figure 1, although as will be shown the
process is equivalent for any other motif configuration. In this case, we have

Qa(C) =D """ Bijrd(Ci, C)3(Cy, Ci)3(Cr, Cs) (19)
i j ok
where By, is
1 1 out, in out, in out, in
Biji = - wigwjntons = Ty (i) (W ) (Wi ) (20)

The normalization constant T are now
To =3 2 D Wit (21)
i j ok

and

Ty = Z Z Z(wgutw}n)(w?utw}Cn)(wzutwin) ' (22)
i ik
Using the transformation proposed in Eq. (10)
Mij = Z Bijk
k

1 1 t,,.in t,..in t, .in
T_Gwij zk:wjkwki - E(wf‘l w; )(wz?“ wj )Xk:(w?‘ wy') . (23)

then

Owing to the fact that the graph is directed, the modularity matrix M;; may
be not symmetric, which causes technical problems. However, it is possible to
restore the symmetry thanks to the scalar nature of Q4 (S) [35]. A symmetriza-
tion of the triangle modularity matrix M,

!
M = 5(M+MT), (25)
yields

Qa(S)

$(Qa(8) +Qa(5)7)
ZZZSiM;ij y (26)

recovering the necessary symmetry to apply the standard spectral optimization.

11



In the same manner, we can define the modularity matrix for all possible

motifs of Figure 1 just by modifying B;;;. For example, for motif 13 in Figure 1

we have:
1
Bijr = T_Gwijwjiwjkwkjwkiwik
1 . . .
- o @ P P Wl @)
To = DD wijiwrwi Wik, (28)
ik
Ty = 303 S Wl ) Pl (29)
ik
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