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Chapter # 

A Modified Dual Priority Scheduling in Hard Real 

Time Systems to Improve Energy Saving. 

M.Angels Moncusí*, Alex Arenas* and Jesus Labarta’ 
*Dpt d'Enginyeria Informàtica i Matemàtiques-Universitat Rovira i Virgili. ‘Dpt d’Arquitectura 

de Computadors-Universitat Politècnica de Catalunya 

Abstract: We present a modification of the Dual Priority scheduling algorithm, for hard 

real-time systems, that takes advantage of its performance to efficiently 

improve energy saving. The approach exploit the priority scheme to lengthen 

the runtime of tasks reducing the speed of the processor and the voltage 

supply, thereby saving energy by spreading run cycles up to the maximal time 

constraints allowed. We show by simulation that our approach improves the 

energy saving obtained with a pre-emptive Fixed Priority scheduling. 

Key words: energy-aware, on-line scheduling, hard real-time, dual-priority. 

1. INTRODUCTION 

The design of portable digital systems has a major drawback in the 

constraint of low power consumption [1] from the operability and lifelong of 

the systems point of view. A lot of efforts have been made during the last 

decade to minimize this problem, but the high performance of modern 

micro-processors and micro-controllers jointly with the increasing 

functionality of them obtained via software still requires improvements in 

the power-efficiency context.  

In the use of scheduling strategies to save energy there exist two main 

approaches to reduce power consumption of processors, these approaches 

are speed reduction of the processor and power-down. The first approach 

consist in to turn low the clock frequency along with the supply of voltage 

whenever the system does not require its maximum performance. The 

second approach simply turns off the power when there are not tasks to 

execute in prevision, apart from the minimal amount of energy required by 
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the idle processor state (clock generation and timer circuits). Both 

approaches are well suited for energy saving but their applicability should be 

accurately designed to obtain reliable operability, especially in hard real-

time systems [2,3]. 

Recently, Shin and Choi [4] have proposed a power-efficient version of 

the Fixed Priority scheduling for hard real-time system that deal with the two 

approaches presented before. The main idea in their study is the use of a pre-

emptive Fixed Priority scheduling (Rate Monotonic scheduling RMS [5] or 

Deadline Monotonic scheduling DMS) to organize the tasks according with 

the pre-emptive priority scheduler into a run queue that is used to exploit 

both, execution time variation and idle time intervals, to save energy by 

reducing speed and voltage or power down. The process ensures that all 

tasks meet their deadlines. However, the strategy of Shin and Choi [4] can 

only reduce the speed of the processor when there is only one task in the run 

queue, or bring the processor to power-down mode when there is an idle 

interval, otherwise the processor works at the maximum speed. 

In this paper we present an improvement of the strategy followed by Shin 

and Choi [4] by using a modification of the Dual Priority scheduling, first 

proposed by Davis and Wellings [6]. We harness the ability of the Dual 

Priority to execute periodic tasks as late as possible to save energy. 

The Dual Priority scheme was designed to execute aperiodic tasks 

without deadlines as soon as possible while preserving the deadline 

constraints of the periodic tasks.  The algorithm is implemented as a three 

queue structure. The upper run queue, the aperiodic run queue and the lower 

run queue. Whenever a periodic task is ready to be executed enters the lower 

run queue, eventually this task can be pre-empted by an aperiodic task, and 

finally, if the task can not be delayed more because otherwise its deadline 

could be compromised, the task promotes to the upper run queue where its 

execution is prioritized. 

This scenario is interesting even when no aperiodic tasks are present, as 

in our case of study, in this particular case the algorithm needs only two 

queues. The energy-reduction is obtained mainly by means of speed and 

voltage reduction and sometimes using power-down. Our approach consist 

in to run the tasks at the lowest speed that makes possible that the active task 

and the rest of tasks meet their timing constraints, without imposing the 

constraint of Shin and Choi [4] of only one task in the run queue to save 

energy, and power-down the processor when there is an idle interval.  

This approach is especially interesting because the quadratic dependency 

of the power dissipation, in CMOS circuits, in the voltage supply [1]. The 

power dissipation satisfies approximately the formula  

clk

2

ddLt fVCpP ≅  
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where pt is the probability of switching in power transition, CL is the 

loading capacitance, Vdd the voltage supply and fclk the clock frequency. That 

means that it is always energetically favourable to perform slowly and at low 

voltage than quickly at high voltage. 

The basic idea of the modified algorithm we present is to organize the 

run tasks in two levels of priorities. In the highest level there are the periodic 

tasks that their execution can no longer be delayed by tasks from the lower 

priority level otherwise they can miss their deadlines. The second level is 

occupied by those periodic tasks whose execution time can still be delayed 

without compromising the meeting of their deadlines. In its turn, each of the 

two levels is hierarchically organized according to any static priority 

assignment. To obtain an extra save in power another slight modification is 

introduced, the lower run queue is sorted by the promotional times instead of 

by fixed priorities. This approach is simple enough to be implemented in 

most of the kernels, in comparison with Shin and Choi [4], we only use an 

extra run queue and a promotion time for each periodic task in the system. 

Then, the amount of extra complexity introduced by this new algorithm is 

minimal.  

The paper is organized as follows, in the next section we describe the 

basics of the Dual Priority scheduling. Section 3 is devoted to the 

modification of the algorithm to reduce energy consumption. Finally, in 

section 4 we present the experimental results and the comparison with Power 

Low Fixed Priority scheduling, and in section 5 we draw the conclusions.  

2. DUAL PRIORITY SCHEDULING 

We assume that the framework of the hard real-time system we are going 

to deal with is made up of periodic tasks
1
. These tasks — numbered 1 ≤ i ≤ n 

— are specified by their periods, worst case execution times and deadlines 

(Ti, Ci and Di respectively). 

The system is organized as concurrent tasks ruled by a pre-emptive 

priority-based scheduler whose details are described below. The computation 

times for context switching and for the scheduler are assumed to be 

negligible, this enable us to perform the analysis straightforward without 

danger of loosing generality. The extent to which these assumptions are 

realistic is discussed in the analysis of the algorithm given in [6], and it turns 

 

1 The results are not exclusive for periodic tasks. We have considered only periodic tasks as a matter of 

simplicity. 
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out to be practical if the switch is subsumed to the worst case execution 

times of the different tasks. 

The mechanics of the Dual Priority Scheduling algorithm is the 

following: Let us consider that the tasks have some initial priorities assigned 

according to a fixed priority criterion in such a way that two different 

periodic tasks have never the same priority. This initial priorities are altered 

by the scheduler according to the following scheme, first, two levels of 

priorities are organized, the highest level, or upper run queue (URQ) is for 

tasks that can no longer be delayed by less priority tasks otherwise they 

could miss their deadlines. The second level, or lower run queue (LRQ) is 

occupied by those periodic tasks whose execution time can still be delayed 

without compromising the meeting of their deadlines. 

The scheduling algorithm is driven by the activation times of the tasks 

and the promotion instants from the LRQ to the URQ, whenever one of this 

time signals appears, in the following way, if: 

a) The signal is the activation time (taik) for the k
th
 instance of the periodic 

task i. In this case for all tasks with activation times less or equal to the 

current time t, the relative promotion time instant of task i (tpi) is pre-

computed as tpi = Di – Ri (Ri corresponds to the worst case response time 

of task i [8]), this value can be computed off line and provides the 

maximum time a task can be delayed so that it can still meet its deadline. 

Those tasks with tpi=0 are promoted to the URQ, and the rest are queued 

in the LRQ. After that, we compute the absolute promotion time instant 

for the k
th
 activation of task i in the LRQ as tpik = taik + Li, and a timer is 

activated to this value. 

b) The signal is a promotion time instant (tpik) for the k
th
 instance of the 

periodic task i. In this case, all tasks in the LRQ with tpik ≤ tc (current 

time) are moved to the URQ. Now, tpik corresponds to tpik = Dik – Ri, 

where Dik is the absolute deadline for the k
th
 activation of task i (t0i+ kTi+ 

Di), where t0i is the first instant arrive time. 

Finally, the next executing task is selected by picking the highest priority 

task from the highest non empty priority levels (i.e. URQ or LRQ, in this 

order). It executes until its termination or a pre-emption of a higher priority 

task.  

The on-line scheduling solution that Dual Priority Scheduling algorithm 

presented is operative in the vast majority of kernels and computationally 

efficient [6,7]. This algorithm was conceived to schedule tasks with hard 

deadlines in a hard real-time environment containing periodic, an aperiodic 

tasks coexisting. The goal of the Dual Priority Scheduling algorithm is to 

give good response time to aperiodic tasks delaying as much as possible the 

periodic tasks without compromising their deadline. In this hard real time 

scenario there appears spare time due to tasks not consuming all its worst 
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case execution time. The Dual Priority algorithm can use this spare time to 

execute aperiodic tasks sooner, giving them a good response time. Our goal 

is to take advantage of this performance from the energy saving point of 

view, the scheduling algorithm can be modified to extract the maximum time 

extension allowed by the real-time system, and this lengthen of time 

execution will be accompanied of a speed and voltage supply reduction, and 

finally energy reduction, as we explain in the next section. 

3. POWER-LOW MODIFIED DUAL PRIORITY 

SCHEDULING 

We have modified the Dual Priority Scheduling algorithm to help power 

saving in a hard real-time system. The original Dual Priority guarantees to 

meet the periodic temporal constraints, then our modification only needs to 

care about when and how to reduce energy by slowing speed and voltage 

jointly (we are assuming a linear relation between speed and voltage supply 

decreasing).  

We have ordered the URQ by the static priority of the tasks and the LRQ 

by their absolute promotion time Lik. The decision to order the LRQ this way 

responds to the fact that the task with the lowest Lik will promote earlier and 

then it will execute earlier than the others. If the URQ is empty, the first task 

of the LRQ will begin to execute as low as possible until its promotion or a 

pre-emption of another task. Figure 1 shows the pseudo code for the PLMDP 

(Power Low Modified Dual Priority Scheduling) The algorithm work as 

follows: 

a) If both queues URQ and LRQ are empty, then the power-down mode is 

activated until the arrival of the next task instance taik (lines L1-L4 of 

Figure 1). 

b) If the queue URQ is empty but there are tasks in LRQ then the k
th
 

activation of the task i with the highest priority in the LRQ (that is 

ordered in terms of absolute promotion time tpik) is activated (line L6 of 

Figure 1). Before the execution of this tasks the algorithm needs to fix the 

ratio of processor speed according with the maximum spreading in time 

that is allowed to execute this task i. The speed ratio is calculated 

following the heuristics proposed by Shin and Choi [4] that is built on the 

assumption that the delay is negligible. The safeness of the system under 

these conditions is proved on theorem 1 of the cited work. In this case, 

we calculate the time the current active task promotes, tpik, as the taik plus 

the deadline Di, and minus Ri (worst case response time of task i), see 

line L7 of Figure 1. After that, we determine the time we dispose before 
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some other task will promote to the URQ to calculate the maximum 

speed reduction allowed. Here we describe the different scenarios we can 

find: 

 

L1 if empty(URQ) then 

L2  if empty(LRQ) then 

L3   Set timer to (next taj - wake up delay) 

L4   Enter power-down mode 

L5  else 

L6   Active task = LRQ.head  -- active task=Taski 

L7   tpi = tai + Di - Ri 

L8   if tak < tpi and tpk < tpi then 

L9    

tcta

1
Speed

k −
=  -- minimum speed 

L10   else 

L11    if tpi < tpj and Pi < Pj then  -- j∈hp(i) 

L12     
tc)td,tp(min

))C(remainig,tptpmin(
Speed

ij

iij

−

−
=  

L13    else tpi < tpm < tpj and Pm < Pi < Pj 

L14     
tc)td)),C(remainigtp,tp(max(min

))C(remaining,tptpmin(
Speed

iiim

iij

−+

−
=  

L15    endif 

L16   endif 

L17   Execute active task 

L18  endif 

L19 else 

L20  Active Task = URQ.head; 

L21  if URQ.head.next = NIL then 

L22   
tc)td,tp(min

))C(remainig,tctpmin(
Speed

ik

ik

−

−
=  

L23  else 

L24   Speed = 1.0 -- maximum speed 

L25  endif 

L26  Execute active task 

L27 endif 

Figure 1. Pseudo code for the Power Low Modified Dual Priority Scheduling 

If there exists some task j, not yet arrived, with a promotion time (tpj) 

shorter than the promotion time of the active task (task i), then, as soon as 

this task j arrives, it will pre-empt the active task. Before the arrival time 

of this new task j we have an interval time to execute the active task with 
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a speed reduction (see L8-L9 of figure 1). In this case the speed of the 

processor should be the minimum possible speed. 

On the other hand, if the next promotion time will be the promotion time 

of the active task, then there is no reason to restrict the speed reduction 

until the following promotion time (tpk) of any task k.  

If the priority of task k in the URQ is higher than the priority of active 

task then we can execute the active task i, until this time tpk, reducing 

speed (line L11 of Figure 1). To assign the corresponding speed, in this 

case, we calculate the amount of work that the task should execute (Γk) to 

do not compromise the temporal constraints. Γk will be the minimum 

time of the difference between the promotion time of task k and the 

promotion time of task i and the remaining execution time of Ci. We also 

calculate the time we have to execute this work Γk, i.e. the difference 

between the minimum time of the promotion time of task k and the 

deadline of task i and the current time. (line L12 of Figure 1). 

If the priority of task k is lower than the priority of active task (L13) we 

should look for the promotion time of a higher priority task of active task, 

because task k will never pre-empt task i. (see Figure 2 for a graphic 

explanation). Γk is calculated as explain before, and to calculate the time 

the task dispose to do the work Γk we have to calculate the difference 

between the minimum time between the maximum between tpk and the 

tpi plus the remaining Ci, and the deadline of task i, and the current time 

tc (L14). (see Figure 2 for a graphic explanation of the different 

possibilities). 

 

Figure 2. Maximum extension time in three different situations 

c) If the URQ has only one task to execute, then this is the active task (line 

L20 of Figure 1) and the processor speed is calculated as the quotient 

between the minimum time of the next promotion time and the remaining 

+P 

 

 

-P 

tpj tpj tpj 

tpi tpi tpi 

tpm tpm tpm 

tc tc tc 
tpj-tc tpm-tc tpi+Ci-tc 

Graph a) Graph b) Graph c) 
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Ci and the total time available to execute this tasks, that now is the 

minimum between the next promotion time and the current task deadline 

(see L21-L22 of Figure 1) 

d) If there are more than one task in the URQ, the first task is executed at the 

maximum speed allowed by the processor (see L24 of Figure 1). 

At practice it is obvious that only certain discrete values of the frequency 

of the clock, and then speed, are available, in this case the selection is always 

a frequency equal or larger than the calculated one to ensure time 

constraints.  

In this algorithm, the speed is calculated in the basis that all tasks 

consume its WCET, but at practice, the tasks execute only part of this 

WCET nevertheless it is impossible for the scheduler to know a priory the 

fraction of WCET they will used. This implies that, the speed calculated is 

the minimal that guarantee the theoretical time constraints. The difference 

between the theoretical time constraints and the time consumed at practice 

could be normally used for the next executing task, to reduce its speed. 

Now we present an example to better appreciate the functioning of our 

algorithm (PLMDP) in comparison with the LPFPS. The benchmark used is 

the same presented by Shin and Choi [4], Table 1. In the Figures 3 and 4 we 

represent the execution of both algorithms (LPFPS and PLMDP), when all 

tasks consume the 100% of their WCET, and in the Figures 5 and 6 we 

represent the execution of the algorithms, when all tasks consume the 50 % 

of its WCET. In all these Figures, the vertical up arrows represent the arrival 

of the task to the system, the vertical down arrows represent the promotion 

time of the task, and finally the horizontal arrows stands for the time the task 

could lengthen its execution time. Each box represent five time units 

(although our minimal calculation unit corresponds to 1 time unit), and each 

line corresponds to task T1, T2 and T3 respectively. The shaded circles 

represent idle time in the system, observe that in Figures 3 and 4 there is no 

idle time, that is, the tasks use all possible time. 

 

Task T D WCET R D-R P 

T1 50 50 10 10 40 1 

T2 80 80 20 30 50 2 

T3 100 100 40 80 20 3 

Table 1. Benchmark task set used by Shin and Choi[4] 

 

In Figure 3 we have represented the behaviour of the LPFPS. The LPFPS 

algorithm is driven by the Fixed Pre-emptive Priority Scheduling. This 

algorithm consist on executing tasks as low as possible while satisfying time 

constraints. LPFS reduce clock speed along with voltage supply only when 

there is a unique task ready to be executed, otherwise the scheduling does 
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not guarantee the time constraints of the rest of the system tasks. It also 

powers down the processor when there are not ready tasks (see Shin and 

Choi [4] for an extended explanation). 

 

Figure 3. Execution time in LPFPS when all tasks use 100% WCET. 

 

Figure 4. Execution time in PLMDP when all tasks use 100% WCET. 

Now, let focus our attention in Figure 4, that represents the behaviour of 

our algorithm, it is as follows: At t=0, all three tasks arrive to the system and 

then they are placed at the LRQ sorted by its promotion time (tpT3=20, 

tpT1=40, tpT2=50), the first task to promote according with our scheme will 

be T3, then it is activated. Its promotion time arrives at t=20, and we can 

200 250 300 350 400 
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T1 
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T3 
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T3 
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execute this task until t=40 (promotion time instant of T1) without any 

problem. Executing T3 as late as possible implies that the execution time of 

T3 should start at its promotion time (t=20) and it would be pre-empted at 

t=40, that means that it has 40 time units to execute 20 time units, we can 

then reduce the speed and the power supply. At t=40, T1 is promoted and 

pre-empt T3 because T1 has a higher priority. T1 is now the active task, and 

has to execute at maximum speed because T3 is in the URQ. T1 executes 10 

units time and finishes by its deadline, at time t=50. At that moment, T2 

promotes and as it is the higher task in the URQ, it executes at the maximum 

speed until it finishes, at T=90. At this time T3 is the unique task in the URQ 

so it can be executed until the next promotion time, T=90. T3 executes 40 

units time it can execute at low speed, but as it remain 40 units at maximum 

to finish its WCET, it has to execute at maximum speed. The algorithm 

continues with this behaviour until time 200. At time t=200 we have, again, 

all task in the LRQ, but now the first promotion time corresponds to T2 

(tpT2=210). T2 is the active task. In order to know how much time this task 

could execute its remaining time, we should look for the maximum value 

between tpT2=210 plus the remaining time (20 units time) and tpT3=220 so 

T2 continues until t=230, and T2 finishes. After that, T3 is the active task, it 

is alone in the URQ but  its remaining time is 40 units and at t=250 there will 

be a promotion time of T1, so T3 has to execute at maximum speed during 

20 units time. The algorithm continues with this behaviour during all its 

hyper-period. After that the tasks will repeat the same pattern. 

 

Figure 5. Execution time in LPFPS when all tasks use 50% WCET.  

 0 50 100 150 200 

T1 
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Figure 6. Execution time in PLMDP when all tasks use 50% WCET. 

In this way the algorithm uses the exceeding time to work at slow 

processor speed and low voltage. In the Figures 5 and 6 we represent the 

execution of both algorithms, in a different situation, when all tasks consume 

the 50% of its WCET.  

In Figure 5 we have represented the behaviour of the LPFPS (Shin and 

Choi [4]), and in Figure 6 we represent the behaviour of our algorithm. 

Although the main behaviour of the algorithm is identical to the behaviour 

described before, this new situation provokes more idle time of the processor 

that should be used in energy saving. At time 0, all three tasks arrive to the 

system, but now, task T3 finishes at time 40 because it only executes the 50 

% of its WCET. Task T1 is now the active task in the URQ, it executes 5 

units time at maximum speed because its WCET is 10 and its deadline is 50, 

but this task finishes at time 45 because it now executes only 5 units. After 

that, there is only task T2 in the LRQ that promotes at time 50 to the URQ. 

At time 50 it will arrive task T1, it enters the LRQ and promotes to the URQ 

at time 90. Then we can reduce the clock speed expecting to finish at its 

deadline at time 80, the minimum between the deadline of the active task 

(t=80) and the promotion time of a higher priority task (t=90). As task T2 

executes only a half of its WCET, it finishes at time 63 and the processor 

continues with task T1 that now can reduce speed again, expecting to finish 

by its deadline that is in this case the minimum between the promotion time 

of task T2 and the deadline task T1. After that, task T1 executes at low speed 

and finishes by time 80. At time 80 it arrives task T2 to the LRQ and it 

stands alone until time 100 when task T1 and task T3 arrive. The promotion 

time of task T3 occurs at time 120 while the promotion time of task T2 
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T3 
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occurs at time 130, so that in the LRQ task T3 will have the highest priority 

because the promotion time is earlier. For that reason task T2 should execute 

at the lowest possible speed only until task T3 arrives and pre-empt task T2. 

To summarize the comparison, in Figures 3 and 4, when tasks consume 

all its WCET, nor LPFPS nor PLMDP have idle interval times. In this 

particular case there is not big differences between the performance of both 

algorithms. The only difference is that the energy saving occurs at different 

times but globally the total amount is the same. On the other hand when 

tasks consumes its 50 % of WCET, Figures 5 and 6, PLMDP has only 20 

units of idle time, while LPFPS has 167 free units time, this effect translates 

in our algorithm in an energy saving of around 300 % with respect to 

LPFPS. 

In general, real time systems behave in a mixed situation with a few tasks 

consuming 100% of its WCET and the rest consuming fractions of its 

WCET, then our algorithm shows to improve the energy saving obtained 

with a fixed priority scheduling algorithm.  

4. EXPERIMENTAL RESULTS 

To check the capabilities of the PLMDP approach, we have simulated 

several task sets (synthetic and real) and compared the total energy results 

per hyper-period obtained in front of the Low Power Fixed Priority 

Scheduling (LPFPS) proposed by Shin and Choi [4]. For completeness, we 

have plot the performance of both schemes in the example task set explained 

before and represented by Table 1, the results of this comparison are exposed 

in Figure 7. In the experiment we vary the percentage of consumption of the 

worst case execution time (WCET) of tasks to better analyse the 

performance in different situations. 
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Figure 7. Comparison of both algorithms in the task set proposed by Shin and Choi [4] 
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In this example the average improvement calculated as the ratio between 

the energy consumption of LPFPS and the energy consumption of PLMDP, 

is 1,62 i.e. we save the 38,27% of the average energy consumed by LPFPS. 

Note that, even when the 100% of the WCET is consumed (see Figures 3 

and 4), the total consumption energy is improved by our algorithm. This 

difference in energy is due to the use of the idle time to reduce the processor 

speed in different instants during the hyper-period. 

To test our algorithm, we have also performed several experiments using 

100 different synthetic task sets for each experiment. All tasks sets are 

formed by 10 schedulable periodic tasks, and for each task, we vary from 

10% to 100% of the WCET consumption. In all the experiments, we check 

how harmonicity could affect the results, using harmonic task set and non-

harmonic task set, and we also check how workload could change the results 

varying both the workload of the system, and the tasks workload. To 

summarize we have made three groups of experiments: 

a) Varying the load of the system between 50% to 90%. The maximum task 

workload was fixed to 20%. The periods range from 100 to 1000 time 

units for the non-harmonic task sets and from 1024 to 131072 for the 

harmonic task sets (Figure 8-11) 

b) Varying the ratio between the maximum task period (Tmax) and the 

minimum task period (Tmin) from 0,1 to 0,00001. The periods range 

from Tmin to Tmax. The workload of the system is fixed to 80 % and the 

maximum task workload was fixed to 20%. (Figure 12) 

c) Varying the maximum of task workload between 10% and 40%. The 

workload of the system was fixed to 80% and the periods are range from 

100 to 1000 units of time for the non-harmonic task sets and from 1024 

to 131072 for the harmonic task sets. (Figure 13) 
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Figure 8. Comparison of both algorithms when the workload of the system is 80%. 
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In Figure 8 we can see the influence of the usage of different percentage 

of WCET in the efficiency of energy consumption. When all the tasks 

consume all its WCET, the improvement of our algorithm is not 

representative, but as tasks consume lower percentages of WCET our 

algorithm improvement is very important. The normalized mean deviation of 

the energy consumption for the LPFPS is 0,014, being the maximum 

normalized deviation 0,018 and the minimum normalized deviation 0,004. 

This implies that the accuracy of our results is within the 2,57% of error. 

And for the PLMDP, the normalized mean deviation of the energy 

consumption is 0,026, being the maximum normalized deviation 0,040 and 

the minimum normalized deviation is 0,002. In that case the accuracy of the 

results is within the 6,13%. The average improvement of our algorithm in 

this case is 1,25 times the energy efficiency obtained by LPFPS . 
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Figure 9. System workload variation when all tasks consume the 100% of WCET. 
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Figure 10. System workload variation when all tasks consume the 50% of WCET 
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In Figures 9 and 10, we can see the influence of the system workload 

variation when all tasks consume its 100 % of WCET and its 50 % of WCET 

respectively. In the former, the average improvement of our algorithm is 

1.02 times the energy efficiency obtained by LPFPS, while the improvement 

increases as the percentage of WCET consumption decreases, being 1.42 in 

the case of 50% of WCET consumption. In the extreme case of 10% of 

WCET consumption the improvement achieves the ratio value of 34.98. The 

reason of this increment is because our algorithm can adapt its behaviour to 

the real load of the system, executing almost always at reduced speed. The 

conclusion is that the system workload affects to both algorithms being the 

interval of differences in the energy consumption [0,01 - 0,02] when tasks 

consume 100%, [0,17 - 0,26] when tasks consumption is 50% of its WCET. 

These differences in energy consumption between both algorithms are 

practically constant when varying the workload of the system. 
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Figure 11. System workload and harmonicity of the tasks periods variation 

In Figure 11, note that the normalized energy consumption is represented 

in logarithmic scale, we can compare the improvement of energy 

consumption of our algorithm (PLMDP) in front of the LPFPS, when all task 

consume its 50% of the WCET, in two different situations: when the task 

periods are harmonic (LPFPS-h, PLMDP-h) and when the task periods are 

non-harmonic. In the former, the mean improvement achieved by our 

algorithm is 1,42 and in the latter is 1,29. The accuracy of our results are 

within a 6,15% in the case of LPFPS with harmonic task, 18,5% in the case 

of PLMDP with harmonic task and for the non-harmonic tasks is 5,17% and 

9,85% in the case of LPFPS and PLMDP respectively. In general we see that 

the differences in the accuracy of the results due to the statistics is  lower for 

LPFPS than for PLMD because while the LPFPS reduces speed when there 
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is a unique task ready to be executed, the behaviour of PLMD is more 

complex and dependent of the particular task set. 
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Figure 12. Maximum task workload variation. Non-harmonics periods 

We checked the performance of the system when the maximum task 

workload varies (Figure 12). In this situation, we can not see significant 

differences in energy consumption independently if the task set is harmonic 

or not. Finally, the performance is evaluated when the ratio of periods 

enlarges. The results represented in figure 13 show that the variations in 

energy consumption. 
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Figure 13. Tmin/Tmax variation 

To conclude the present analysis, we have also collected some real time 

applications: the Avionics task set [9], an Inertial Navigation System (INS) 

[10], and a Computerized Numerical Control Machine (CNC) [11]. 

The two first sets represent critical mission applications and the last one 

is an automatic control for specific machinery. The characteristics of the 
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tasks sets are the followings (Table 2 to 4): 

 

Task T D WCET 

T1 100 100 5,1 

T2 20000 20000 300 

T3 2500 2500 200 

T4 2500 2500 500 

T5 4000 4000 100 

T6 5000 5000 300 

T7 5000 5000 500 

T8 5900 5900 800 

T9 8000 8000 900 

T10 8000 8000 200 

T11 10000 10000 500 

T12 20000 20000 300 

T13 20000 200000 100 

T14 20000 20000 100 

T15 20000 20000 300 

T16 100000 100000 100 

T17 100000 100000 100 
Table 2. Avionics benchmark task set[9] 

 

Task T D WCET 

T1 250 250 118 

T2 4000 4000 428 

T3 62500 62500 1028 

T4 100000 100000 2028 

T5 100000 100000 10028 

T6 125000 125000 2500 
Table 3. INS benchmark task set[10] 

 

Task T D WCET 

T1 2400 2400 35 

T2 2400 2400 40 

T3 4800 4800 180 

T4 4800 4800 720 

T5 2400 2400 165 

T6 2400 2400 165 

T7 9600 9600 570 

T8 7800 7800 570 
Table 4. CNC benchmark task set [11] 
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The results of energy consumption for each application are pictured in 

Figures 14 to 16. The average factor of improvement of our algorithm in 

front of LPFPS is 1,18 times for the avionics data set, 1,21 times for the INS 

task set and 2.09 times for the CNC data set.  
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Figure 14. Comparison of both algorithms in the avionics task set[9] 
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Figure 15. Comparison of both algorithms in the INS task set[10] 
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Figure 16. Comparison of both algorithms in the CNC task set [11] 

If we pay attention to the specific behaviour of the individual 

benchmarks we observe that the relationship between periods and WCET’s 

are responsible of the main differences between both approaches, i.e., for 

example in the avionics and INS task sets, there is a sub-set of tasks that 

have a very large period compared with the respective WCET, this fact 

implies that for a long time there is a unique task in the system, and then our 

algorithm behaves very similar to LPFPS. 

On the other hand, we observe also that both algorithms behave similar 

when the WCET is exhausted, in three of the four case studies, that is so 

because in general, in this case, there is not any extra time to consume, and 

then no more energy could be saved using only a scheduling strategy. 

However, in the CNC task set there appears a particular configuration of 

tasks that have very large ratio between the periods and WCET, but still it is 

possible to take advantage of many short times with significant reduction of 

speed even when the tasks are using the whole WCET, while LPFPS, in this 

same situation, has usually a few large time intervals where the speed can be 

reduced (see Figure 16). In the opposite situation, i.e. when the tasks 

consume less than a 10% of the WCET, it is difficult to perceive the 

differences. Finally, when the utilization of the WCET is around its half the 

differences between both performances are more relevant. 

All the experiments represent the results of the normalized average 

energy obtained, varying the consumed worst execution time from 10% to 

100%. We run the simulation over one hyper-period (that is, the minimum 

common multiple of the task’s period). 
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5. SUMMARY  

We have presented a modification of the Dual Priority Scheduling to 

improve the Fixed Priority Scheduling power aware while maintaining the 

low complexity of the algorithmic. This approach has been shown to over-

perform the mentioned LPFPS power saving by an average factor than range 

from 1,17 up to 2,09 depending on the real time application. The algorithm 

does not increase the complexity of the LPFPS and can be implemented in 

most of the kernels. 

6. REFERENCES 

[1] A.P. Chandrakasan, S. Sheng and R. W. Brodersen, “Low-power CMOS digital design”, 

IEEE Journal of Solid-State circuits, vol. 27, pp. 473-484, April 1992. 

[2] D. Mosse, H. Aydin, B. Childers and R. Melhem, “Compiler-assisted power-aware 

scheduling for real-time applications” Workshop on Compilers and Operating systems for 

Low Power COLP 2000, Philadelphia, Pennsylvania, October 2000. 

[3] H. Aydin, R. Melhem, D. Mosse and P. Mejia-Alvarez, “Determining optimal processor 

speeds for periodic real-time tasks with different power characteristics” 13th Euromicro 

Conference on Real-Time Systems, Delft, Netherlands, June 2001. 

[4] Y. Shin and K. Choi, “Power conscious Fixed Priority scheduling in hard real-time 

systems” DAC 99, New Orleans, Louisiana, ACM 1-58113-7/99/06, 1999. 

[5] C. L. Liu and J.W. Layland, “Scheduling algorithms for multiprogramming in a hard real-

time environment”, JAMC 20, pp. 46-61, 1973.  

[6] R. Davis and A. Wellings, "Dual Priority scheduling", Proceeding IEEE Real Time 

Sistems Symposium, pp. 100-109, 1995. 

[7] A. Burns and A.J. Wellings, “Dual Priority Assignment: A practical method for increasing 

processor utilization”, Proceedings of 5th Euromicro Workshop on Real-Time Systems, 

IEEE Computer soc. Press, pp. 48-55, 1993. 

[8] M. Joseph and P. Pandya, "Finding response times in a real-time system", British 

Computer Society Computer Journal, 29(5): 390-395, Cambridge University Press, 1986. 

[9] C. Locke, D. Vogel and T. Mesler, “Building a predictable avionics platform in Ada: a 

case study", Proceedings IEEE Real-Time Systems symposium, December 1991. 

[10] A. Burns, K. Tindell and A. Wellings, "Effective analysis for engineering real-time fixed 

priority schedulers", IEEE Transactions on Software Engineering, 21, pp. 475-480, May 

1995. 

[11] N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi and H. Shin, "Visual assessment of a 

real-time system design: a case study on a CNC controller", Proceedings IEEE Real-Time 

Systems symposium, December 1996. 


