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An implementation of a Puzzy Artmap neural network is used to detect and to identify (recognise)
structures {patterns) embedded in the velocity field of a turbulent wake behind a circular cylinder. The
net is trained to recognise both clockwise and anticlockwise eddies present in the u and v velocity fields
at 420 diameters downstream of the cylinder that generates the wake, using a pre-processed part of the
recorded velocity data. The phase relationship that exists between the angles of the velocity vectors of
an eddy pattern is used to reduce the number of classes contained in the data, before the start of the
training procedure. The net was made stricter by increasing the vigilance parameter within the interval
[0.90, 0.95] and a set of net-weights were obtained for each value. Full data files were scanned with
the net classifying patterns according to their phase characteristics. The net classifies about 27% of the
recorded signals as eddy motions, with the strictest vigilance parameter and without the need to impose
external initial templates. Spanwise distances (homogeneous direction of the How) within the centres
of the eddies identified suggest that they form pairs of counter-rotating vortices (double rollers). The
number of patterns selected with Fuzzy Artmap is lower than that reported for template matching because
the net classifies eddies according to the recirculating pattern present at the core or central region, while
tempiate matching extends the region over which correlation between data and template is performed.

In both cases, the topology of educed patterns is in agreement.

1. Introduction

Wakes have been widely studied in the past be-
cause of their fundamental interest and engineer-
ing applications (Giralt, Morkovin,2 Berger and
Willie,? Laufer,* Sarpkaya,” Bearman and Graham,®
Bearman’ and Griffin®). Wake flows offer a wide
range of fluid dynamic phenomena that can be con-
veniently studied in water and wind tunnels, using
anemometry and visualisation technigques, Of these
phenomena, those related to the structural char-
acteristics of near and far wakes are of uttermost
importance for understanding vortex shedding and
the role of coherent structures in flow entrainment.

*Departament d’Enginyeria Quimica.
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Experimental techniques, mainiy visualisations and
spectral analysis, have been used to characterise
structures in the near and far regions of the wake
under different flow conditions.

The aim of the present paper is to develop an au-
tomatic procedure with a neural network configura-
tion to classify the diffsrent structures and large scale
motions embedded in two-component velocity signals
measured in turbulent ffows. Amid these structures
vortex-like patterns are of uttermost importance to
interpret the dynamics of such flows. Since the im-
plementation of the relationship that exists between
the velocity vectors forming the core of an eddy meo-
tion is not straight forward with Boolean logie, and
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the amount of data available for training is limited, a
Fuzzy ARTMAP Neural Network® has been selected
to perform the classification of structures. The iden-
tification procedure is applied to velocity data mea-
sured in the horizontal plane (homogeneous spanwise
direction) at the far region of a turbulent wake gen-
erated by a circular cylinder. A pre-processing pro-
cedure based on the geometric characteristics of the
set of vectors representing a vortex-like pattern is
proposed to pre-classify eddy motions before data is
presented to the net for training.

2. Experimental Details and
Dataset Preconditioning

The two-component velocity data used here were
measured by Prof. Antonia (University of Newcas-
tle, Australia) at /D = 420 in the wake behind a
circular cylinder. These data have been alse analysed
by Kopp et al.'® using POD and template matching,
The experimental conditions of these data are equiv-
alent to those reported by Giralt et al.! Figure 1(a)
shows a portion of the voltage signals sensed by 16
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Fig. 1. (a) Voltage signals of u and v obtained by 16 anemometric channels; {b) velocity field including 54 instants of
digitalisation in the horizontal plane of a far wake at x/I} = 420.



Identification of Coherent Struciures in Turbulent Shear Flows ... 561

15-16 ,H“\N,H‘ : r""’a‘*t;k;i A AN rfrf’aka*“‘“f«kgg
13-14 i.m....,,,f,_w“lHHi,m,u,fhw‘Wﬁm{“ﬂ_,l,
E 11-12 t f‘fﬂ:y,}});.,.;, Cay “‘\N\\‘Aﬁv,,i’“w#* [ “*vrk‘é<kk‘r}. ty
O PR—
g 2 é() . 17‘:7'175;)-)-»4 *)&\V ~\¥NMN:LA&*1>A . ‘ii \ \*ﬁ:;‘lJ J'l(&s‘;f bt
@ — PEE NN N axN % ] aTTA st . 17
A ¥¢¢ * ¢¢J= Ao 2 £ A ' ;*} ) J&&& T;rl'
5_6 * & k k“tgilx‘x‘y‘kkﬁkT.‘T fi’f‘lﬁk“#‘k\\}x;f f
34 ”,““‘v\k“ #‘\zm Y ,,”H,?‘M?f.k\'ﬂ’? Sy J‘kﬂfﬂ“,uk
1-2 “Fk AN ) A 'TNT’TK *fffx,.. <
Wz FEEREER AN FULLY ¥
0 10 20 30 40 50
Time (At = 0.368 ms)
Fig. 1. {Continued)
hot-wire anemometers in the horizontal plane of the ] 9 8 7
wake, and Fig. 1{b) shows the conversion of this sig- sensor i+ 2 el — \
nals to velocity vectors.
The objective is to localise vortex-like structures i1 6 f 5 o 4
in a highly fluctuating velocity field [see Fig. I]. 5ensor 1+ L
The procedure has to be antomatic and has to use
features of the data only, without any other exter- SONsSor i 3 I{ 2 1
nal information. Pre-processing of data, which is a han /
usual practice in Neural Network field analysis, is in-

spired in biological behaviour.!112 The present pre-
processing has two objectives. Ome is to transform
data so that vortical characteristics within frames of
velocity data like the one depicted in Fig. 1(b), are
enhanced. The other is directed to cbtain a goad
and reduced set of patterns to train the net.

The first step in the pre-processing of data is to
transform the velocity field into a field of fluctuating
velocities with zero mean. These fluctnations are the
only ones analysed here. To obtain a training set and
to simplify the final classification procedure, frames
F of 3 x 3 adjacent velocity vectors were considered,
and patterns were constructed with the angular com-
ponents of these vectors. Figure 2 shows the core of
a vortical pattern in such a frame. The patterns are
represented by normalised velocity vectors (o, o,
ez, 4, Ovg, 7, kg, (rg) within each frame written in

1:j-c- 2 tj+1 t
Time {At = 0.368 ms)

Fig. 2. Representation in a 3 x 3 frame F of a typical
clockwise eddy sensed by three adjacent sensors, located
in the spanwise direction of the wake, over three consec-
utive instants of time.

polar form my,, , ..., mg,_ . The central velocity vec-
tor ms,, is not taken into consideration because the
centre of a perfect eddy has zero velocity. A quarter
of the pre-processed data, the 20000 first instants of
digitalisation, have been pre-processed to search for
the Clockwise (CE) and Anticlockwise (ACE) eddy
motions to train the net.
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Fig. 3. Four samples of patterns obtained by pre-processing the original velocity signal.

The procedure used to extract good paiterns to
train the net is as follows. Expressicns

ay € (r/2, 3n/2) and oy € (7/2, 37/2) and
ag € (7/2, 3m/2)

and
sin g < sin oy < sin g (2)

are used as criteria for identifying CE. Expression
(1) establishes that the angular interval of oa, oz
and cez is the same in a CE. The order of these three
vectors in Exp. (2} is invariant under translations.
Equivalent expressions for ACE can be written.

The rule that allows the extraction of all frames F°
representing a CE valid for the training set, consists
in fulfilling conditions (1} and (2) when locations 1, 2
and 3 1n the frame of Fig. 2 are occupied by different
sels of three vectors obtained by rotating the vectors
of the frame in a clockwise manner. This rotation
sequence ends when all vectors return to their orig-
inal position. An equivalent procedure is applied to
ACE. This process yields 806 frames as a cardinal of
the training set, 368 of them corresponding to CE.
Figure 3 llustrates four of these frames.

3. The ARTMAP System

The Fuzsy ARTMAP Neural Network® is based on
the Adaptive Besonance Theory, which avoids the
so called stability-plasticity dilema. We have imple-
mented a superviced Fuzzy ARTMAP net for our
purposes. This neural network is built with a pair
of Fuzzy Art modules,'® art, and arf;, linked by an
assoclatlve memory and a internal controller. The
controller is designed o create the minimal number
of categories (or hidden units) to meet accuracy cri-
teria. This is done by implementing a learning rule
that minimises predictive error and maxirmijses gener-
alisation. Our implementation forces the arf, mod-
ule to have only fwo categories: One representing
Clockwise Eddies, an the other AntiClockwise Ed-
dies. Another fictitious category considered is the
one corresponding to the “I do not know” answer by
the net. All inputs that do not pass the reset for a
given vigilance p, are included in this category and
considered not to be eddy motions. A modificaticn
of the learning rule is introduced in our implemen-
tation {see Sec. 4). The modified system performs
exceptionally well, showing the robustness of Fuzzy
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Fig. 4. Sketch of the Fuzzy ARTMAP system.

ARTMAP. A representation of this net is presented
in Fig. 4.

Bach fuzzy subsystem art, and arf, includes a
field of nodes F, which represents a current input
vector, Fy. This F,. receives both bottom-up input
from Fy and top-down input frem a field, Fy, which
represents the active code or category. The Fi activ-
ity vector is denoted by x = (#1,..., zar), and the
Fybyy = (v1,---, ys). The number of nodes in
each field is arbitrary.

Associated with each Fy category node j(j =
L,..., N) there is a vector w; = (wj1,..., wjnm) of
adaptive weights. Initially, when each category is
said to be uncommitted,

Wiy == iy =1 (3)

After a category is selected for coding it becomes
committed,

Fuzzy ART dynamics is determined by a choice
parameter @ > 0, a learning rate parameter § £
[0, 1], and a vigilance parameter p € [0, 1]. For each
input I and F; node j, the choice function T; is de-
fined by
_ A w|
o+ |wyl

(4)

In this Eq. (4) the fuzzy AND operator {A) is defined
by

T;(7)

(P A q) = min(p;, ¢;) (5)

and the norm [.| by

M
Ip|= lefl (6)

for any M-dimensional vectors p and gq. For simplic-
ity, T;(I) is written as 75 when the input I is fixed.
The system is said to make a category Choice when
at most one Fy node can become active at a given
time. The category choice is indexed by J, where

T;=max{T;:i=1,..., N} {(7)

When the Jth category is chosen, y; = L;and g7 = 0
for j # J. In a choice system, the FY activity vector
X is characterised by the equation:

if #5 is inactive

I
x= ) . {8)
I Awy if the Jth F; node is chosen

Resonance occurs if the match function [IA wyl/{]]
of the chosen category meets the vigilance criterion
iI A WJl
I
When the Jth category is chosen, resonance occurs
if

>p 9)

x| = TAws| = plI] (10)
Learning then ensues, as defined below. Mismatch

reset occurs il

|I/\WJ|
= (11)
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and then a new index .J is chosen. The search process
continues until the chosen J meets the vigilance cri-
terion {9). Once the search ends, the weight vector
w is updated according fo equation

Wit = paws ) + - pwit )

Fast learning corresponds to § = 1.0.

art, and art, are linked via an inter-ART mod-
ule, F%, called a map field. Inputs to arf, and
arty are I = A and I = B, respectively., Vari-
ables in art, or art, are designated by superscripts
a or b. 'In the former case, for example, x* =

(zf, ..., £3pr,) denotes the F output vector, y* =
(¥, ..., ¥on,) denctes the FP output vector, and
wi = {wl,..., W]y} denotes the jthart, weight
vector. For arty, x° = (xf,..., 25,;,) denotes the
F} output vector, ¥* = (48,..., ¥in) denotes the
F¥ output vector, and wj = (wf;'l, - wz‘sz) de-

notes the kth art, weight vector. For the map field
x® = (22,..., 2%,) denotes the F* output vec-
tor, and W_?b = (wﬁ_’, e w}'?ng) denotes the weight
vector from the Jth FZ node to F°°. Initially, each

welght is set equal to 1.

The map field F* is activated when one of the
art, or arfy categories becomes active. When the
Jth F£ node is chosen, the input F¢ — F2 is pro-
portional to the weight vector w;b. When the kth FJ
is chosen, the F2* node K is activated by I- to-1 path-
ways between FY and F°%. If hoth art, and arty are
active, as in supervised learning, then F%° activity
reflects the degree to which a correct prediction has
been made. With fast learning, F°® remains active
only if art, predicts the same category as ariy, via
the weight vector wi, or if the active art, category
has not yet learned. an arf;, prediction. In summary,

the %% output vector x*° obeys:

v Aw$®  if the Jth Ff node is active and FY is active

b wjb if the Jth F§ node is active and sz is inactive (13)
X = . .. . . .
y? if F¢ is inactive and F¥ is active
0 if F{ is inactive and sz 8 nactive

If the prediction w$’ is disconfirmed by y*, this mis-
match triggers an art, search for a new category, as
follows. At the start of each input presentation, the
art, vigilance parameter p, equals a baseline vigi-
lance ;. The mapfield vigilance parameter is pap.
Match tracking is triggered by a mismatch at the
map field F%,

%] < pasly’| = pas (14)

Match tracking increases g, until it becomes slightly
larger than the art, value, |A A wi[|A]7!. After
match tracking,

[x*| = |[A AW < pa| Al = pa Mo, (15)

When this oceurs, the art, search leads either to
ARTMAP resonance, where a newly chosen F§ node
J satisfies both the art; matching criterion

x* = |AAWS| > pa|Al (16)
and the map field matching criterion

a:bl —_

|x [¥* AWS| > pas]y’] (17)

Otherwise, no such Fi¥ node exists, ART search leads
to the shutdown of F§ for the remainder of the input
presentation. Since wf; (0} = ;};(0) =1 and D < pq,
Pas < 1, ARTMAP resonance always occurs if J is
an uncommitted node.

A learning rule determines how the map field
weights w;;f change through time. During resonance
with the art, category J active, w3® approaches the
map field vector x*. With fast learning, once J
learns to predict an arfy, category K, that association
is permanent, i.e. wyg = L and wyy = 00k # K) for
all times. After presentation of all the training sam-
ples, the net is ready to undergo a test phase which
will show the accuracy of the created categories,

The net was trained for 6 vigilance parameter val-
ues 1n the range 0.9--0.95, obtaining a set of weights
for each one. FEvery net was given, during a test
phase, all the possible frames cobtained from the full
data file, so that all frames with recirculation couid
be classified.

A modification of the learning rule was used in
this implementation of the Fuzzy ARTMAP neural
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network. In fast learning, afier an association intra-
modules was established, weights in both ART mod-
ules were updated by the rule

wh*" = (min(/fy, wf{d), ..., min(Iy, wf}if)) (18)

where J is the committed category. If the vigilance
parameter p is taken with the maximum value 1.0
then the previous rule becomes

Wi = | (19)

where [ is the presented pattern, and the number of
categories equals the number of inputs.

Equation (19) with p < 1.0, has been used here
in the implementation of the net. This rule has the
effect of partitioning the training set in a manner
that each partition class contains those input pat-
terns committing to the same category. The net be-
comes stable in the sense that the partition is sta-
ble inter two consecutive presentations of the train-
ing set, even if the order of the patterns is altered.
However, the weights will depend on the last pattern
committed to the category. This is consistent be-
cause the patterns committing to the same category
are very similar. The algorithms used were imple-
mented in FORTRAN 90 codes, which were executed
in a CRAY EL’92 computer.

4, Results and Discussion

The net behaves as a human expert, 1.e. in addition
to sensible choices it commits errors either by excess
or default, By excess when 1t takes as recirculations
(vortices) frames which are not, or by default when
it refuses frames that are recirculations. This lat-
ter situation occars when the eddy is large and the
recirculation appears outside the frame F (3 x 3).
The vigilance parameter is the one that changes the
dynamics of the net, making it stricter when if in-
creases in value. The final result corresponds to the
intersection of the classification sets that obtained
for different values of the vigilance parameter. After
intersection, 85% of the frames are shared by all the
gets while only 3% belong to just one set. In addi-
tion, we have verified that in every frame where Kopp
et al'® confirm, with template matching, a dou-
ble roller or a pair of counter-rotating eddies, the
net classifies two 3 x 3 frames located nearly side
by side in the spanwise direction of the wake, one
with a clockwise and the other with anticlockwise

eddy. Figure b illustrates four of these pairs or dou-
ble rollers within an extended frame of 8 x 11 velocity
data.

The existence of double rollers or pairs of CE and
ACE is confirtned by the fact that, if we take into ac-
count a maximum span between eddy centres of 54
sampled points (19.872 ms), a 91% of eddies cbtained
by the net can be considered as couples and only a
9% as single eddies. Figure 6 shows the proportions
between CE and ACE eddies along the whole wake,
This proportion tends to 1, reinforcing the idea that
eddies mostly cccur in pairs.

The net was trained to recognise both CE and
ACE eddies in a 3 » 3 frame of the velocity field.
Geometrical properties of the vectors in a frame
leads in the fact that the net trained to recognise
only CE is able to extract 8 kinds of coherent struc-
tures in a turbulent wake, without further training.
8 = {I, 51, 83, 83, 84, Gr/2, 4, Jaxy2} is the group
of movements leaving invariant a square.!* In the
group there are four symmetries and four rotations,
with gon = 1.

We have chosen a frame of 3 x 3 so as to identify
the core of eddies present in the wake. Applying this
transformations on the vectors in a frame represent-
ing a CE, we obtain the following results:

(

(SPB)
(SPC)
(

(CE)

{CE)

{CE) = Saddle point of type C
84{CE} = Saddle point of type D (SPD)

(CE) =5

(CE)

(CE)

These events and the CE are depicted in Fig. 7.
The relationship between the four saddles and the
CE in Fig. 7 confirms previcus turbulence studies in
the sense that searching for saddles is appropriate to
identify eddies in three-dimensional flows.

The movements s1, s2, 83, 51, gy have order two
in the group so they are inverses of themselves, while
Oxj2, §3x/2 aTe mutually inverse. The rotations are
also a subgroup of fourth order and each symmetry
with the identity movement being a subgroup of sec-
ond order. Hence several procedures can be followed
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Fig. 5. Visualisation of four double rollers classified, with a Clackwise Eddy (CE) at the top and an Anticlockwise Eddy
(ACE) at the bottom.
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to identify all these structures. One of these proce-
dures consists in the following steps:

(i) The net is trained to recognise CE;
(ii) the net extracts the CE from the data;
(iii) all frames extracted as CE are discarded
from the velocity field;
(iv) the remaining original data is transformed

by gz

Steps {ii), (iii) and {iv) are iterated, changing the
transformer movements sequentially so that the re-
maining structures are obtained according to

gx — ACE
51 — SPA
55 = SPB
sz = SPC
&4 — SPD
Fxf2 =+ Sinks

Jar/2 ~¥ Sources

This procedure can be altered, using information
about the nature of the wake to speed program ex-

ecution. Using the fact that the movements are

elements of a group, it is possible to transform data
without going back to the original at the end of each
transformation. For instance, applying the move-
ments I, gr, $3, §x/2; Gn/21 Grj2, 51, g 10 this or-
der, the results are equivalent to those obtained from
the procedure above. Presently, a derived kind of
ART system called Fusion ARTMAP! ig being im-
plemented because i saves time in the pre-processing
and classification of data.

5. Conchlasions

A Neural System based on Fuzzy ARTMAP has been
successfully applied to recognise coherent structures
in the velocity field of a turbulent wake without the
need bo use initial external template patterns. The
eddy patterns obtained corroborate the results re-
ported in previous pattern recognition analysis. In
the present study 27% of the signal is classified as ed-
dies having a minimum size of 3 x 3 vectors in the ma-
trix of data. Most of these vortices are paired to an-
other eddy with opposed rotation, in agreement with
previous pattern recognition analysis based on tem-
plate matching, Thus the Fuzzy ARTMAP system
is a good classifier for multi-sensor patterns. Present
results also suggest that searching for saddle points
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may be the best choice to classify structures in three-
dimensional turbulent flows.
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