Self-similar community structurein a network of human interactions
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We propose a novel procedure for analyzing and charaatgrizomplex networks. We apply this to the
social network as constructed from e-mail communicatioitbiva medium sized university with about 1700
employees. E-mail networks provide an accurate an nonsingwescription of the flow of information within
human organizations. Our results reveal the self-orgéinizaf the network into a state where the distribution
of community sizes is self-similar. This suggests that a/ensial mechanism, responsible for emergence of
scaling in other self-organized complex systems, as fdaimt® river networks, could also be the underlying
driving force in the formation and evolution of social netk&

Signatures of complex systems appear in disciplines as dsearchers, technicians, managers, administrators, auoldi-gr
verse as biology, chemistry, economy and computer sciencate students.
to name just a few. More specifically, the study of the complex Bulk e-mails provide little or no information about how in-
networks of interactions in such systems has received d lot alividuals or teams interact, so to minimize their effectw@e
attention from the statistical physics community [1-5].eTh eliminate e-mails that are sent to more than 50 differenprec
structure of these complex networks is a reflection of the dyients and (ii) we disregard links that are unidirectionadttis,
namics of their formation and evolution, and can be paytiall we consider that two nodes A and B are connected only if A
characterized using statistical observables such as étage has sent an e-mail to B and B has also sent an e-mail to A.
distance between nodes [1], the clustering coefficiendddl  With this restrictions, the network is an undirected gre28i [
the degree distribution [2, 3]. Even though these measures The cumulative degree distributioR(k) of the e-mail
are very useful in some situations, often they are not seffici network—representing the probability that a node hasr
to describe key features of networks. In the specific field ofmore links to other nodes—is exponential
social sciences, a more detailed description of humandoter .
tions is crucial to understand the formation and evolutibn o P(k) oc exp(=k/k") @)

complex social networks. for k > 2, with k* = 9.2. This result is in contrast with

In this Letter we describe a novel procedure to characterrecent findings indicating that some technology based so-
ize the structure of networks, based on a recently proposeglal networks—such as rough e-mail networks [9], the In-
algorithm to identifycommunitiesn graphs [6]. Our proce- stant Messaging Network [10] or the PGP encryption network
dure allows to study quantitatively the hierarchical stiwe  [11]—which show heavily skewed degree distributions, but i
of nested communities in networks. Moreover we apply theconsistent with the proposal of Amaral and coworkers that th
procedure to a real social network. We define and analyze theuncation of the scale-free behavior in real world netvedek
complex e-mail network of an organization with about 1700due to the existence of limitations or costs in the estaiistit
employees and determine its community structure. Our reof connections [3, 12]. Indeed, it seems plausible thatether
sults reveal that this network self-organizes into a sefifar  are costs to maintaining active social acquaintances ame-th
structure, suggesting that some universal mechanism teuld fore active communications. However, it is relatively essy
the underlying driving force in the formation and evolut@in  keep manyelectronicacquaintanceepen although most of
social networks, as happens in other complex systems [7, 8]them are probably inactive from a social point of view.

Apart from work related reasons, ties between individuals Out of the total 1669 nodes, 1133 belong to the giant com-
in any organization arise, without an external influences du ponent. The rest are isolated or, at most, connected by. pairs
to personal, political and cultural reasons, among othins.  In the following, we focus on this giant component, that can
rapid development of electronic communications provides &e characterized by statistical properties such as itgertus
powerful tool to analyze the informal self-organized sbcia ing coefficient”' = 0.254 and its average shortest path length
network arising as a result of the formation of such ties. Ind = 3.606 [1]. For comparison, we construct a random net-
deed, every time that an e-mail is sent, the addresses of thveork with exactly the same exponential degree distribution
sender and the receiver are routinely registered in a serveas the e-mail network following the procedure proposed in
Therefore, are-mail networkcan be built regarding each e- Ref. [13] (from now on we will call it random exponential
mail address as a node and linking two nodes if there is anetwork). The clustering of the exponential network is ap-
e-mail communication between them. We take as a case stugyoximately 10 times smallef’ = 0.028 while the average
the e-mail network of University Rovira i Virgili (URV) in  shortest path length is very simildr= 3.317, as happens in
Tarragona, Spain, containing 1669 users including factéty  small world networks [1].



of the binary tree that represents this splitting procedune
which leaves correspond to addresses of the e-mail network.
The different communities of the original network appear as
branches in this tree, which are easily identified by visnal i
spection.

(a) (b)

FIG. 1: Community identification according to the GN alglnit. (a)
A simple network with two communities. (b) Binary tree geated
by the GN algorithm. Each branch in the binary tree corredpado a
community in the original network and central nodes in a comity,

such as E, appear as the tips of the branches.

To understand the structure of the social network of the or-
ganization, we are interested in determining how individua
interact and form groups that, in turn, interact with eadieot
giving rise to higher order groups, that is, groups of groups
In other words, we want to unravel taemmunity structuref
the network. To do so we use the algorithm proposed recently
by Girvan and Newman (GN) [6] to identify communities in
complex networks (see Fig. 1).

The GN algorithm proceeds as follows [6]. The between-
ness of an edge is defined as the number of minimum paths
connecting pairs of nodes that go through that edge [14, 15].
The key idea is that the edges that connect highly clustered
communities have a higher edge betweenness—é&dgen N
Fig. 1.a—and therefore cutting these edges should separate **
communities. The algorithm identifies and removes the link
with the highest betweenness in the network. After every re-
moval, the betweenness of the edges is recalculated and the
process is repeated until the ‘parent’ network splits, pmed
ing two separate ‘offspring’ networks. The offspring can beg g 2: communities in the e-mail network of URV. (a) Binarge
split recursively in the same way until they comprise of only showing the result of applying the GN algorithm to the e-nmet-
one individual. work of URV. The position indicated by the arrow represehesroot

In order to describe the entire splitting process, we genof the tree (equivalent to node 1 in figure 1b) and brancheslere
erate a binary tree, in which bifurcations (white nodes)ictep Picted so that they can be clearly differentiated. In paféc only
communities and leaves (black nodes) representindivitiral ¢ 1€aves of the tree, corresponding to e-mail addresseshawn,

e . .. fas in the zoomed detail. _Colors depict different centeyS@me as
dresses of the e-mail network (Fig. 1.b). At the beginning of,efore put without showing the leaves. Branches are nowredlo
the process, the network in Fig. 1.a is a single entity, repreaccording to their Horton-Strahler index (see text) (c) Sas (b)
sented by node 1 in the tree. After the removal of the edgeor a random network. The lack of community structure is éd
BE, the network is split into two subnetworks, 2 and 3, con-in the absence of branches, in contrast with the intricafessuilar
taining nodes A to D and E to | respectively. Since the twostructure of (b).
offspring networks have no further internal community stru
ture all the links within each have the same betweenness. In The community binary tree for URV is shown in Fig. 2.
this case, one of them will be selected at random for removaEach color in Fig. 2a corresponds to one center of the univer-
Iterating the link removal procedure, nodes will be sepatat sity, that is to a department or college, or to managemet uni
randomly one by one by the GN algorithm, in such a way thasuch as the office of the Rector of the university. Two prop-
each community will appear as a branch in the binary tree. lerties of the tree are worth noting. First, a clear branching
is important to note that central nodes, such as node E, wiktructure emerges, with branches essentially contairodgs
be separated last. This particular characteristic of theaGN of the same color. This shows that the identification of com-
gorithm can be used with managerial purposes to detect thosaunities is successful, despite the complexity of the axter
persons that act like hubs in the organization. tions in the original e-mail network. Second, the branching

Summarizing, the information about the community struc-structure is far from simple. Indeed, each branch is forrired,
ture of the original network can be deduced from the topologygeneral, by a system of nested smaller subbranches that give
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rise to a complicated structure that visually resemblesesomcommunity—or a single e-mail address. Its community size
self-similar systems in nature such as river networks [16] 0 s; is just the summation of the sizes of its two offspringnd
diffusion-limited aggregates [17]. For comparison, weoals js: s; = s; + s;,. Fig. 3a shows how to compute the sizes
show the tree generated by the GN algorithm from the ranef all the communities in a simple binary tree and the corre-
dom exponential network (Fig. 2c). In contrast to the treesponding probability distributiof®(s), that is, the probability
for the URV e-mail network, the branching structure is almos that a community has size larger or equaktoThe commu-
trivial with most of the branches containing only one or two nity size distribution for the e-mail network is presented i
nodes. This is the expected result for a network that does ndtig. 3d. The distribution is heavily skewed, following a paw
have any sort of community structure. law behaviorP(s) o« s~ with a = 0.48 betweens = 2 and

s &~ 100. Beyond this value, the distribution shows a sharp de-
cay and, as ~ 1000, a cutoff that corresponds to the size of
the system. The power law of the community size distribution
suggests that there is no characteristic community sizleen t
network (up tos &~ 100). To rule out the possibility that this
behavior is due to the community identification algorithne, w
also consider the community size distribution for a randgm e
ponential network and for a hierarchical network as progose
by Ravasz and Barabasi (RB) [18]. While the community size
distribution of the random exponential network is comgiete

o) : : : different—with essentially no communities of sizes betwee
£ Lo e | 2 and 100—, the behavior of the RB model is similar to the
Z « scaling presented by the e-mail network. Therefore, it seem
B N 05| s amany ] that the self replicating structure of RB networks, which is
s * * s implicit by construction, is a reasonable first approximati

g | e E"%% 0.0f+-2 to the structure of the e-mail network.

Euo7  Exponental E T £ £ £ B The characterization of the community binary tree using the
O S 5 g cumulative size distribution has its analogy in the rivet-ne

Community size, s work literature [16, 20, 21]. The equivalent measure is the
distribution of drainage areas, that represents the amufunt
of the community size distribution for a binary tree genedaby the The drainage area of a given point is the number of nodes up-

community identification algorithm. Black nodes represitet ac- . s L .
tual nodes of the original graph while white nodes are juaphical stream of it plus one. For a poinwith offspring;j, andjs, the

representations of communities that arise as a result afliging ~ drainage area, is therefores; = s, +s;, +1. The similitude
procedure. Nodes! and B belong to a community of size 2, and between the community size distribution of the current é-ma

together withE form a community of size 3. Similarlyy, D and  network in Fig. 3d and the area distribution of the Fellarive
F' form another community of size 3. These two groups togethemetwork in Italy reported in Fig. 2 of Ref. [21] is strikingh€
form a higher level community of size 6. Note that a singleebd-  exponenty = 0.45 for the power law region of this river and
longs to different communities i.e. different hierarchitvels. (b) the average exponent for several rivers,e, = 0.43 = 0.03

er — . .

Calculation of the drainage area distribution for a rivetaek. (c) .
Calculation of the Horton-Strahler index. In this caseré¢hare 10 respectively reported by [21] and [20], are very close to the

branches with index 1, 3 branches with index 2, and 1 brantthimé ~ Currenta = 0.48. Moreover, the behavior shown in Fig. 3d
dex 3. (d) Comparison between the distribut®ts) of community ~ With first a sharp decay and then a final cutoff is also shared
sizes in the email network, in the random exponential netvemd by river networks, which are known to evolve to a state where
in the hierarchical network model proposed by Ravasz andliai  the total energy expenditure is minimized [20, 22, 23]. The
(RB), withn = 4 and 5 levels [18]. (e) The standard deviation of hossibility that communities within organizations migltga

the bifurcation ratiod3; for the e-mail network, an Erdos-Renyi ran- spontaneously self-organize into a form in which some quan-

dom graph with the same number of nodes and links (ER) [19], a., . L . . .
hierarchical RB network [18], a scale-free network as psggbby ehty is optimized is very appealing and deserves furtheesav

Barabasi and Albert (BA) with the same size as the e-mail ogtw igation.

andm = 5 [2] and the random exponential network. The community  To further understand this point, it is pertinent to ask

tree of the e-mail network is topologically self-similarttvB = 5.8. whether there are other emergent properties shared by both.

Topological self-similarity does not hold for the otherwetks. To answer this question we consider a standard measure for

categorizing binary trees: the Horton-Strahler (HS) index

Once the binary tree has been obtained, we look for a quareriginally introduced for the study of river networks by Hor

titative characterization of the community structure.sfFiwe  ton [24], and later refined by Strahler [25]. Consider the bi-

consider the cumulative community size distributid(s), nary tree depicted in Fig. 3c. The leaves of the tree are as-

that is, the probability of a community having a size largersigned a HS index = 1. For any other branch that ramifies

or equal tos. Each node of the binary tree represents a into two branches with HS indices andi,, the index is cal-
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culated as follows: principle of optimization—of flow of information in organi-
) L ) zations or of flow of water in rivers—could be the underly-
_ i+l it i1 =12, (2)  ingdriving forcein the formation and evolution of social net-
max(i1,142) if i1 #is. works.
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