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We propose a novel procedure for analyzing and characterizing complex networks. We apply this to the
social network as constructed from e-mail communications within a medium sized university with about 1700
employees. E-mail networks provide an accurate an non intrusive description of the flow of information within
human organizations. Our results reveal the self-organization of the network into a state where the distribution
of community sizes is self-similar. This suggests that a universal mechanism, responsible for emergence of
scaling in other self-organized complex systems, as for instance river networks, could also be the underlying
driving force in the formation and evolution of social networks.

Signatures of complex systems appear in disciplines as di-
verse as biology, chemistry, economy and computer science,
to name just a few. More specifically, the study of the complex
networks of interactions in such systems has received a lot of
attention from the statistical physics community [1–5]. The
structure of these complex networks is a reflection of the dy-
namics of their formation and evolution, and can be partially
characterized using statistical observables such as the average
distance between nodes [1], the clustering coefficient [1],and
the degree distribution [2, 3]. Even though these measures
are very useful in some situations, often they are not sufficient
to describe key features of networks. In the specific field of
social sciences, a more detailed description of human interac-
tions is crucial to understand the formation and evolution of
complex social networks.

In this Letter we describe a novel procedure to character-
ize the structure of networks, based on a recently proposed
algorithm to identifycommunitiesin graphs [6]. Our proce-
dure allows to study quantitatively the hierarchical structure
of nested communities in networks. Moreover we apply the
procedure to a real social network. We define and analyze the
complex e-mail network of an organization with about 1700
employees and determine its community structure. Our re-
sults reveal that this network self-organizes into a self-similar
structure, suggesting that some universal mechanism couldbe
the underlying driving force in the formation and evolutionof
social networks, as happens in other complex systems [7, 8].

Apart from work related reasons, ties between individuals
in any organization arise, without an external influence, due
to personal, political and cultural reasons, among others.The
rapid development of electronic communications provides a
powerful tool to analyze the informal self-organized social
network arising as a result of the formation of such ties. In-
deed, every time that an e-mail is sent, the addresses of the
sender and the receiver are routinely registered in a server.
Therefore, ane-mail networkcan be built regarding each e-
mail address as a node and linking two nodes if there is an
e-mail communication between them. We take as a case study
the e-mail network of University Rovira i Virgili (URV) in
Tarragona, Spain, containing 1669 users including faculty, re-

searchers, technicians, managers, administrators, and gradu-
ate students.

Bulk e-mails provide little or no information about how in-
dividuals or teams interact, so to minimize their effect: (i) we
eliminate e-mails that are sent to more than 50 different recip-
ients and (ii) we disregard links that are unidirectional, that is,
we consider that two nodes A and B are connected only if A
has sent an e-mail to B and B has also sent an e-mail to A.
With this restrictions, the network is an undirected graph [26].

The cumulative degree distribution
� ���

of the e-mail
network—representing the probability that a node has

�
or

more links to other nodes—is exponential
� ��� � ������	�
� (1)

for
� � �

, with
�
 
 ���

. This result is in contrast with
recent findings indicating that some technology based so-
cial networks—such as rough e-mail networks [9], the In-
stant Messaging Network [10] or the PGP encryption network
[11]—which show heavily skewed degree distributions, but is
consistent with the proposal of Amaral and coworkers that the
truncation of the scale-free behavior in real world networks is
due to the existence of limitations or costs in the establishment
of connections [3, 12]. Indeed, it seems plausible that there
are costs to maintaining active social acquaintances and there-
fore active communications. However, it is relatively easyto
keep manyelectronicacquaintancesopen, although most of
them are probably inactive from a social point of view.

Out of the total 1669 nodes, 1133 belong to the giant com-
ponent. The rest are isolated or, at most, connected by pairs.
In the following, we focus on this giant component, that can
be characterized by statistical properties such as its cluster-
ing coefficient� 
 �����

and its average shortest path length� 
 �����
[1]. For comparison, we construct a random net-

work with exactly the same exponential degree distribution
as the e-mail network following the procedure proposed in
Ref. [13] (from now on we will call it random exponential
network). The clustering of the exponential network is ap-
proximately 10 times smaller� 
 �����

while the average
shortest path length is very similar

� 
 �����
, as happens in

small world networks [1].
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FIG. 1: Community identification according to the GN algorithm. (a)
A simple network with two communities. (b) Binary tree generated
by the GN algorithm. Each branch in the binary tree corresponds to a
community in the original network and central nodes in a community,
such as E, appear as the tips of the branches.

To understand the structure of the social network of the or-
ganization, we are interested in determining how individuals
interact and form groups that, in turn, interact with each other
giving rise to higher order groups, that is, groups of groups.
In other words, we want to unravel thecommunity structureof
the network. To do so we use the algorithm proposed recently
by Girvan and Newman (GN) [6] to identify communities in
complex networks (see Fig. 1).

The GN algorithm proceeds as follows [6]. The between-
ness of an edge is defined as the number of minimum paths
connecting pairs of nodes that go through that edge [14, 15].
The key idea is that the edges that connect highly clustered
communities have a higher edge betweenness—edge


�
in

Fig. 1.a—and therefore cutting these edges should separate
communities. The algorithm identifies and removes the link
with the highest betweenness in the network. After every re-
moval, the betweenness of the edges is recalculated and the
process is repeated until the ‘parent’ network splits, produc-
ing two separate ‘offspring’ networks. The offspring can be
split recursively in the same way until they comprise of only
one individual.

In order to describe the entire splitting process, we gen-
erate a binary tree, in which bifurcations (white nodes) depict
communities and leaves (black nodes) represent individualad-
dresses of the e-mail network (Fig. 1.b). At the beginning of
the process, the network in Fig. 1.a is a single entity, repre-
sented by node 1 in the tree. After the removal of the edge

�

, the network is split into two subnetworks, 2 and 3, con-
taining nodes A to D and E to I respectively. Since the two
offspring networks have no further internal community struc-
ture all the links within each have the same betweenness. In
this case, one of them will be selected at random for removal.
Iterating the link removal procedure, nodes will be separated
randomly one by one by the GN algorithm, in such a way that
each community will appear as a branch in the binary tree. It
is important to note that central nodes, such as node E, will
be separated last. This particular characteristic of the GNal-
gorithm can be used with managerial purposes to detect those
persons that act like hubs in the organization.

Summarizing, the information about the community struc-
ture of the original network can be deduced from the topology

of the binary tree that represents this splitting procedureand
which leaves correspond to addresses of the e-mail network.
The different communities of the original network appear as
branches in this tree, which are easily identified by visual in-
spection.
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FIG. 2: Communities in the e-mail network of URV. (a) Binary tree
showing the result of applying the GN algorithm to the e-mailnet-
work of URV. The position indicated by the arrow represents the root
of the tree (equivalent to node 1 in figure 1b) and branches arede-
picted so that they can be clearly differentiated. In particular, only
the leaves of the tree, corresponding to e-mail addresses, are shown,
as in the zoomed detail. Colors depict different centers.(b) Same as
before but without showing the leaves. Branches are now colored
according to their Horton-Strahler index (see text) (c) Same as (b)
for a random network. The lack of community structure is reflected
in the absence of branches, in contrast with the intricate self-similar
structure of (b).

The community binary tree for URV is shown in Fig. 2.
Each color in Fig. 2a corresponds to one center of the univer-
sity, that is to a department or college, or to management units
such as the office of the Rector of the university. Two prop-
erties of the tree are worth noting. First, a clear branching
structure emerges, with branches essentially containing nodes
of the same color. This shows that the identification of com-
munities is successful, despite the complexity of the interac-
tions in the original e-mail network. Second, the branching
structure is far from simple. Indeed, each branch is formed,in
general, by a system of nested smaller subbranches that give
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rise to a complicated structure that visually resembles some
self-similar systems in nature such as river networks [16] or
diffusion-limited aggregates [17]. For comparison, we also
show the tree generated by the GN algorithm from the ran-
dom exponential network (Fig. 2c). In contrast to the tree
for the URV e-mail network, the branching structure is almost
trivial with most of the branches containing only one or two
nodes. This is the expected result for a network that does not
have any sort of community structure.
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FIG. 3: Self-similarity in the community structure. (a) Calculation
of the community size distribution for a binary tree generated by the
community identification algorithm. Black nodes representthe ac-
tual nodes of the original graph while white nodes are just graphical
representations of communities that arise as a result of thesplitting
procedure. Nodes� and� belong to a community of size 2, and
together with� form a community of size 3. Similarly,�, � and�

form another community of size 3. These two groups together
form a higher level community of size 6. Note that a single node be-
longs to different communities i.e. different hierarchical levels. (b)
Calculation of the drainage area distribution for a river network. (c)
Calculation of the Horton-Strahler index. In this case, there are 10
branches with index 1, 3 branches with index 2, and 1 branch with in-
dex 3. (d) Comparison between the distribution� ��	 of community
sizes in the email network, in the random exponential network and
in the hierarchical network model proposed by Ravasz and Barabasi
(RB), with 
 � � and 5 levels [18]. (e) The standard deviation of
the bifurcation ratios�
 for the e-mail network, an Erdos-Renyi ran-
dom graph with the same number of nodes and links (ER) [19], a
hierarchical RB network [18], a scale-free network as proposed by
Barabasi and Albert (BA) with the same size as the e-mail network
and� � � [2] and the random exponential network. The community
tree of the e-mail network is topologically self-similar with � � ���.
Topological self-similarity does not hold for the other networks.

Once the binary tree has been obtained, we look for a quan-
titative characterization of the community structure. First we
consider the cumulative community size distribution,

� ���,
that is, the probability of a community having a size larger
or equal to�. Each node� of the binary tree represents a

community—or a single e-mail address. Its community size�� is just the summation of the sizes of its two offspring�� and
��: �� 
 ��� � ���. Fig. 3a shows how to compute the sizes
of all the communities in a simple binary tree and the corre-
sponding probability distribution

� ���, that is, the probability
that a community has size larger or equal to�. The commu-
nity size distribution for the e-mail network is presented in
Fig. 3d. The distribution is heavily skewed, following a power
law behavior

� ��� � ���
with � 
 ����

between� 
 �
and� � ���

. Beyond this value, the distribution shows a sharp de-
cay and, at� � ����

, a cutoff that corresponds to the size of
the system. The power law of the community size distribution
suggests that there is no characteristic community size in the
network (up to� � ���

). To rule out the possibility that this
behavior is due to the community identification algorithm, we
also consider the community size distribution for a random ex-
ponential network and for a hierarchical network as proposed
by Ravasz and Barabasi (RB) [18]. While the community size
distribution of the random exponential network is completely
different—with essentially no communities of sizes between
2 and 100—, the behavior of the RB model is similar to the
scaling presented by the e-mail network. Therefore, it seems
that the self replicating structure of RB networks, which is
implicit by construction, is a reasonable first approximation
to the structure of the e-mail network.

The characterization of the community binary tree using the
cumulative size distribution has its analogy in the river net-
work literature [16, 20, 21]. The equivalent measure is the
distribution of drainage areas, that represents the amountof
water that is generated upstream of a given point (see Fig. 3b).
The drainage area of a given point is the number of nodes up-
stream of it plus one. For a point� with offspring�� and��, the
drainage area�� is therefore�� 
 ��� ���� ��

. The similitude
between the community size distribution of the current e-mail
network in Fig. 3d and the area distribution of the Fella river
network in Italy reported in Fig. 2 of Ref. [21] is striking. The
exponent� 
 ����

for the power law region of this river and
the average exponent for several rivers� �!" 
 ���� # ����
respectively reported by [21] and [20], are very close to the
current� 
 ����

. Moreover, the behavior shown in Fig. 3d
with first a sharp decay and then a final cutoff is also shared
by river networks, which are known to evolve to a state where
the total energy expenditure is minimized [20, 22, 23]. The
possibility that communities within organizations might also
spontaneously self-organize into a form in which some quan-
tity is optimized is very appealing and deserves further inves-
tigation.

To further understand this point, it is pertinent to ask
whether there are other emergent properties shared by both.
To answer this question we consider a standard measure for
categorizing binary trees: the Horton-Strahler (HS) index,
originally introduced for the study of river networks by Hor-
ton [24], and later refined by Strahler [25]. Consider the bi-
nary tree depicted in Fig. 3c. The leaves of the tree are as-
signed a HS index� 
 �

. For any other branch that ramifies
into two branches with HS indices�� and��, the index is cal-
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culated as follows:

� 
 � �� � �
if �� 
 �� �������� ��� if �� �
 �� � (2)

Note that the index of a branch changes when it meets a branch
with higher index, or when it meets a branch with the same
value and both of them join forming a branch with higher in-
dex. In terms of communities, the interpretation of the HS
index is the following. The index of a community changes
when it joins a community of the same index. Consider, for
instance, the lowest levels: individuals (� 
 �

) join to form
a group (or team, with� 
 �

), which in turn will join other
groups to form asecond levelgroup (or department,� 
 �

).
Therefore, the index reflects thelevelof aggregation of com-
munities. The number of branches�� with index � can be
determined once the HS index of each branch is known . The
bifurcation ratios


� are then defined by


� 
 ��
���� (3)

(by definition

� � �

).
When


� � 

for all �, the structure is said to be topolog-

ically self-similar, because the overall tree can be viewedas
being comprised of



sub-trees, which in turn are comprised

of



smaller sub-trees with similar structures and so forth for
all scales [17]. River networks are found to be topologically
self-similar with

� � 
 � �
[17].

As a measure of topological self-similarity one can calcu-
late the standard deviation�	
 of the bifurcation ratios


�,
that tends to 0 when topologically self-similarity holds. In
Fig. 3e, we compare the�	
 of the e-mail network with that
of several model networks. We find that the community tree of
the e-mail network is topologically self-similar with


 � ���
and�	 � ����

. All other network models significantly devi-
ate from topological self-similarity. In particular, the hierar-
chical RB model [18], that has a similar scaling behavior as
the e-mail network (Fig. 3d), does not show topological self-
similarity.The lack of topological self-similarity in this case is
related, paradoxically, to scale-free connectivity distribution
of the RM model, that makes thecentral unitsdifferent from
the peripheral ones.

By revealing the structure of the e-mail network, the pro-
posed methodology leads us to realize that community struc-
ture is self-similar. Self-similarity is a fingerprint of the repli-
cation of the structure at different levels of the social network,
and could be the result of a trade-off between the need for co-
operation and the costs of keeping active connections. More-
over, the emergence of scaling, as well as the similarity with
river networks, raises important questions about the mecha-
nisms underlying the interactions between individuals. As
pointed out in a recent article [8], the scaling properties of
river networks are ubiquitous. By using the same argument,
one can expect that the scaling behavior we obtain should be
observable in any human social network. At the same time,
the similarity with river networks suggests that a common

principle of optimization—of flow of information in organi-
zations or of flow of water in rivers—could be the underly-
ing driving forcein the formation and evolution of social net-
works.
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