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The control of network-coupled nonlinear dynamical systems is an active area of research in the nonlinear
science community. Coupled oscillator networks represent a particularly important family of nonlinear sys-
tems, with applications ranging from the power grid to cardiac excitation. Here we study the control of
network-coupled limit cycle oscillators, extending previous work that focused on phase oscillators. Based on
stabilizing a target fixed point, our method aims to attain complete frequency synchronization, i.e., consensus,
by applying control to as few oscillators as possible. We develop two types of control. The first type directs
oscillators towards to larger amplitudes, while the second does not. We present numerical examples of both
control types and comment on the potential failures of the method.
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Collective rhythms in ensembles of interacting
units generate novel phenomena in mathematics,
physics, engineering, and biology1,2. Moreover,
robust collective rhythms characterized by syn-
chronization is vital to the functionality of sys-
tems ranging from power grids3 and Josephson
junction arrays4 to cardiac tissue5 and circadian
rhythms6. This has motivated a need for control
and optimization methods for coupled oscillator
networks – specifically towards attaining consen-
sus among the individual oscillators7,8. In a re-
cent publication we developed a simple control
mechanism for attaining consensus in networks of
coupled phase-oscillators based on identifying and
stabilizing a target synchronized state9. Here we
extend this this method to the case of networks of
nonlinear limit-cycle oscillators, where the state
of each oscillator is characterized not only by a
phase angle, but also an amplitude10. While the
presence of an amplitude for each oscillator yields
a richer set of dynamical states overall, we find
that consensus can still be attained in this more
complicated scenario.

I. INTRODUCTION

Network-coupled dynamical systems are ubiquitous in
nature and science11, and as a result the control of such
systems has been the focus of a great deal of research
from the nonlinear dynamics and complex networks com-
munities12,13. For instance, the concept of controllabil-
ity of complex networks has been established using con-
trol theory for linear dynamical systems14–18. Significant
advances have also been made in the control of several
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nonlinear networks-connected dynamical systems19–23. A
particularly important family of network-coupled non-
linear dynamical systems that plays an important role
in modeling phenomena ranging from synchronization of
power grids24 to cardiac excitation25 are networks of cou-
pled oscillators26. Control of coupled oscillator networks
has also garnered significant attention recently27,28. In
a recent publication we presented a nonlinear dynamics-
based method for controlling networks of coupled phase
oscillators9 – specifically for attaining full frequency syn-
chronization, i.e., consensus. In this paper we extend
this control method to a more general and more com-
plex family of coupled oscillator systems and explore its
effectiveness in this more complicated scenario.

Limit-cycle oscillators hold an important place in the
history of nonlinear science10. Here we consider a net-
work of N coupled Landau-Stuart oscillators zn, i =
1 . . . , N , whose dynamics are governed by the following
system of N nonlinear, complex differential equations:

żn = zn(1− |zn|2 + iωn) +K

N∑
m=1

Anm(zm − zn). (1)

In Eq. (1), zn ∈ C describes the complex state of oscil-
lator n, ωn is the natural frequency of oscillator n, K
is the global coupling strength, and [Anm] is the adja-
cency matrix that encodes the network structure such
that Anm = 1 if a link exists between nodes n and m.
(We consider here for simplicity the case of undirected
networks such that AT = A.) Interpreting the state of
each oscillator zn as a phase θn and amplitude ρn, such
that zn = ρne

iθn , the dynamics of Eq. (1) can be written
in terms of the evolutions of θn and ρn:

θ̇n = ωn +
K

ρn

N∑
m=1

Anmρm sin(θm − θn), (2)

ρ̇n = ρn
(
1− ρ2n

)
+K

N∑
m=1

Anm [ρm cos(θm − θn)− ρn] ,

(3)
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representing a natural generalization of the classical Ku-
ramoto phase oscillator model29.

Although some novel dynamical phenomena besides
second-order phase transitions between incoherence and
synchronization have recently been observed in simple
Kuramoto phase oscillator networks30–32, the addition of
an amplitude for each oscillator in Eq. (1) gives rise to
a plethora of more robust dynamical phenomena, includ-
ing amplitude death, period-doubling cascades enroute to
chaos, extensive chaos, cluster states, and hysteresis33–36.
Given the increase in complexity of the dynamics of limit-
cycle oscillators in comparison to phase oscillators, a nat-
ural question arises in the control of limit-cycle oscillator
networks. Can consensus still be reached in the case of
limit cycle oscillator networks? Do the methods used
to attain consensus in phase oscillator networks extend
to the limit-cycle oscillator networks? In this paper, we
address these questions.

Previously, control methods ranging from time-delay
feedback37,38 and adaptive network structures39 have
been applied to networks of limit-cycle oscillators. In this
work we extend the control method presented in Ref.9 to
the limit-cycle oscillator dynamics given in Eq. (1). In
fact, we present two distinct types of control. For type I
control we prefer larger amplitudes, driving oscillators to
the edge of the complex unit circle. For type II control
we make no such preference, allowing for smaller ampli-
tudes in the target state. We demonstrate the utility of
both control types, and discuss the effect that each con-
trol type has on the macroscopic order parameters of the
system.

The remainder of this paper is organized as follows.
In Sec. II we present the control method. In Sec. III
we present numerical examples of both control methods
applied to random networks. In Sec. IV we comment
of some failures of the method. Finally, in Sec. V we
conclude with a discussion of our results.

II. CONTROL METHOD

We begin by extending the control method present
in Ref.9 to the network-coupled Landau-Stuart model
given in Eq. (1). We emphasize that our goal is to
achieve a fully frequency-synchronized state character-
ized by θ̇1 = · · · = θ̇N . We propose a simple linear
feedback-type controller, adding to the right-hand-side
of Eq. (1) a control term fn = Fn(z∗n − zn), obtaining

żn = zn(1− |zn|2 + iωn) +K

N∑
m=1

Anm(zm − zn)

+ Fn(z∗n − zn), (4)

where Fn represents the control gain or strength applied
to oscillator n and z∗n = ρ∗ne

iθ∗n is the target state for oscil-
lator n. (We emphasize that ·∗ does not indicate complex
conjugate, but rather the target value of a given quan-
tity.) In particular, Fn > 0 corresponds to some amount

of control applied to oscillator n. The set of target states
z∗n will be determined below. In polar representation,
the addition of the control term results in the new set of
equations:

θ̇n = ωn +
K

ρn

N∑
m=1

Anmρm sin(θm − θn)

+ Fn
ρ∗n
ρn

sin(θ∗n − θn), (5)

ρ̇n = ρn
(
1− ρ2n

)
+K

N∑
m=1

Anm [ρm cos(θm − θn)− ρn]

+ Fn[ρ∗n cos(θ∗n − θn)− ρn]. (6)

We note that, for any finite combinations of frequencies
ωn, coupling strength K, and network structure [Anm], a
sufficiently large collection of control gains Fn results in
the formation of a stable fixed point at zn = z∗n. Our goal
is to identify which oscillators require control (for which
we will set Fn > 0), and which oscillators do not require
control (for which we will set Fn = 0). To determine the
control required we will first identify the target state z∗n,
then identify which oscillators require control.

A. Target states

We begin by finding the target states z∗n = ρ∗ne
iθ∗n for

each oscillator. To do so, we consider the equations of
motion without control and search for a suitable steady-
state. We assume that in the absence of control the sys-
tem is not fully synchronized, an thus a stable fixed point
of Eq. (1) does not exist. The target state will therefore
represent the closest state to a fixed point which can be
stabilized with control.

Motivated by numerical exploration we present later,
we will derive two different target states corresponding
to two different control methods. For the first type, we
assume that in addition to frequency synchronization, we
wish to maintain a large amplitude for each oscillator,
ρn ≈ 1. In this case we simply the amplitude ρ∗n of
each target state equal to one, and focus on finding an
equilibrium of Eq. (2). For simplicity we linearize the sine
term in Eq. (2), yielding an equilibrium characterized by

0 = ωn −K
N∑
m=1

Lnmθ
∗
m, (7)

or in vector form

0 = ω −KLθ∗, (8)

where L is the network Laplacian matrix whose entries
are defined Lnm = δnmkn − Anm, where kn =

∑
mAnm

is the degree of node n. Although L is singular (due
to the fact that each row sums to zero), this equa-
tion can be solved using the Moore-Penrose pseudoin-
verse40. Specifically, given the eigenvalue decomposition
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L = V TΛV , whose eigenvalues can be ordered 0 = λ1 <
λ2 ≤ · · · ≤ λN such that Λ = diag(λ1, λ2, . . . , λN ) and
the columns of V are given by the eigenvectors of L,
the pseudoinverse of L is given by L† = V TΛ†V , where
Λ† = diag(0, λ−12 , . . . , λ−1N ). Applying the pseudoinverse
to Eq. (8), we obtain

θ∗ = K−1L†ω. (9)

Combined with unit target amplitudes, we obtain the
target states z∗n = eiθ

∗
n for type I control.

For the second type of target state, we relax the goal of
driving oscillators to a large amplitude and therefore aim
to find an approximate equilibrium of both Eqs. (2) and
(3). We begin by assuming that a given set of steady-
state amplitudes ρ∗n are given, in which case an equilib-
rium of Eq. (2) after linearizing the sine term is charac-
terized by

0 = ωn −K
N∑
m=1

L̂nm(ρ∗)θ∗m, (10)

where L̂(ρ∗) is the Laplacian matrix corresponding to

the adjacency matrix Â(ρ∗) = P−1AP , where P =
diag(ρ∗1, . . . , ρ

∗
N ). In vector notation Eq. (10) can be

rewritten

0 = ω −KL̂(ρ∗)θ∗, (11)

Equation (11) can be solved similarly as Eq. (8) by apply-

ing the pseudoinverse, however, since L̂(ρ∗) is not nec-
essarily symmetric, its pseudoinverse is defined by the

singular value decomposition. Specifically, if L̂(ρ∗) =
UTΣV , where Σ = diag(σ1, . . . , σN ) is populated by
the real, nonnegative singular values 0 = σ1 < σ2 ≤
· · · ≤ σN and the columns of U and V are popu-
lated by the left- and right-singular vectors, the pseu-

doinverse of L̂(ρ∗) is defined L̂†(ρ∗) = V TΣ†U , where
Σ† = diag(0, σ−12 , . . . , σ−1N ). Applying the psuedoinverse
to Eq. (11), we obtain

θ∗ = K−1L̂†(ρ∗)ω. (12)

Shifting our attention now to the amplitudes, after ex-
panding the cosine term to quadratic order, an equilib-
rium of Eq. (3) satisfies

0 = ρ∗n
(
1− ρ∗2n

)
+K

N∑
m=1

Anm

{
ρ∗m

[
1− (θ∗m − θ∗n)2

2

]
− ρ∗n

}
, (13)

which is nonlinear and therefore cannot in general be
solved analytically. However a solution can be obtained
numerically given a collection of steady-stat phases θ∗n
using Newton’s method. We note that Eq. (13) must
be solve consistently with Eq. (12), which can be done
iteratively. Specifically, we initialize θ∗ = 0 and ρ∗ =
1 proceed iteratively. First, we obtain the next set of

phases using Eq. (12), then solve Eq. (13) using Newton’s
method. Repeating this process, we converge onto our
target state defined by z∗n = ρ∗ne

iθn . We note that, in
practice, when applied to Eq. (13) Newton’s method can
result in some unrealistic ρ values, specifically ρ∗n > 1 or
ρ∗n < 0. In such cases, we simply impose maximum and
minimum values of ρ∗n = 1 or ρ∗n = ερ > 0, respectively.
Together, the collection of θ∗n and ρ∗n defined the target
state z∗n = ρ∗ne

iθ∗n for type II control.

B. Control identification

We now proceed to the question of identifying the os-
cillators that require control, assuming that target states
z∗n have been computed as described above, either in the
type I or II case. Assuming that the target state rep-
resents a fixed point of Eqs. (2) and (3), its stability is
indicated by the spectrum of the Jacobian matrix for
the system. Specifically, the fixed point is stable if the
real-part of the eigenvalues are contained in the left-half
complex plane. Since our goal of consensus coincides with
the stability of this given point, we aim to bound each
eigenvalue to the left-half complex plane. Focusing on
frequency-synchronization, we inspect Eq. (2), whose Ja-
cobian matrix DF is given by

DFnm =

 −K
∑
j 6=n

Ânj(ρ
∗) cos(θ∗j − θ∗n) if m = n

KÂnm(ρ∗) cos(θ∗m − θ∗n) if m 6= n

(14)

Importantly, the rows of DF sum to zero – a property
that can be leveraged to identify any eigenvalues that
may have positive real part and therefore destabilize the
target state. In particular, after evaluating the Jacobian
at the target state z∗n = ρ∗ne

iθ∗n , we define for each n a
radius Rn =

∑
m6=n |DFnm| and a disc Dn as the closed

disc of radius Ri centered at Cn = DFnn. The Gersh-
gorin circles theorem40 ensures that all the eigenvalues
of DF lie within the union of all the Gershgorin discs.
Specifically, since the rows of DF sum to zero, if each off-
diagonal entry of a row n is positive, then Rn = −DFnn
and it follows that the nth Gershgorin disc is contained in
the left-half complex plane. However, if any off-diagonal
entry of a row n is negative, then Rn > −DFnn, allowing
the nth Gershgorin disc to partially enter the right-half
complex plane, yielding the possibility of an eigenvalue
with positive real part and a potential destabilization of
the target state.

By inspecting the Jacobian DF evaluated at the tar-
get state, and specifically which rows contain negative
off-diagonal entries, we can identify precisely which os-
cillators require control. In particular, with the addition
of control the Jacobian becomes

DFnm =

 −K
∑
j 6=n

Ânj(ρ
∗) cos(θ∗j − θ∗n)− Fn if m = n

KÂnm(ρ∗) cos(θ∗m − θ∗n) if m 6= n

(15)
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FIG. 1. (Color online) Type I control applied to an ER net-
work of sizeN = 1000 with mean degree 〈k〉 = 6, and coupling
strength K = 0.3. Time series of 10% of the phases θn(t) and
their angular velocities tθn/dt are plotted in panels (a) and
(b), and the order parameters |Z(t)| (solid curve) and |R(t)|
(dashed curve) are plotted in panel (c). Control is turned
on at t = 10. Natural frequencies are drawn from a uniform
distribution of unit variance.

Specifically, for each row n with negative off-diagonal en-
tries, the control gain can be set to Fn > Rn + DFnn,
shifting the nth Gershgorin disc into the left-half complex
plane, stabilizing the network.

Before proceeding to numerical examples, we make an
important remark on the identification of oscillators that
require control. In particular, the target phases and am-
plitudes θ∗n and ρ∗n represent an approximation to the
fixed point given the expansion of the sine and cosine
terms in Eqs. (2) and (3). In practice we build in a margin
of error when identifying oscillators for control in order
to overcome any inaccuracies induced by these aproxi-
mations. Specifically, rather than searching for rows with
negative entries of the Jacobian, we set a threshold εθ > 0
and identify any oscillator n as requiring control if for any
neighboring oscillator m the entry DFnm/K ≤ εθ.

III. NUMERICAL EXAMPLES

We now demonstrate the control method with several
examples on random networks. Specifically, we use net-
works built using the Erdős-Renýı (ER) model41, where
connections are created in a network of N nodes in such
a way that, for any given pair of nodes (i, j), a link is
made between nodes i and j with tunable probability p,
resulting in a mean degree of 〈k〉 = p(N − 1). Further-
more, in our simulations we consider oscillators whose
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FIG. 2. (Color online) Type II control applied to the same
network as in Fig. 1 (N = 1000, 〈k〉 = 6, K = 0.3). Time
series of 10% of the phases θn(t) and their angular velocities
tθn/dt are plotted in panels (a) and (b), and the order param-
eters |Z(t)| (solid curve) and |R(t)| (dashed curve) are plotted
in panel (c). Control is turned on at t = 10.

natural frequencies are uniformly distributed with unit
variance, i.e., drawn from the interval [−

√
3,
√

3]. In the
application of control we use threshold values (described
above) of ερ = 0.2 and εθ = 0.2.

We begin by comparing type I and type II control im-
plemented on an ER network of size N with mean degree
〈6〉 and set the coupling strength to K = 0.3. We plot
the results of type I and type II control, respectively,
in Figs. 1 and 2, plotting the time series of 10% of the
phases θn(t) in panels (a) and the corresponding angular
velocities dθn/dt in panels (b). The plotted results are
obtained by discarding a large transient and show the dy-
namics without control (0 ≤ t < 10) and after the control
is turned on (10 ≤ t ≤ 20). The vertical dotted lines at
t = 10 indicate control being turned on. For both type
I and type II control the phases which are initially inco-
herent relax to equilibrium after the control is turned on,
which can also be seen as the angular velocities relax to
zero.

In addition to the time series of the phases and their
angular velocities, we also consider three macroscopic or-
der parameters. The first represents the mean field of the
limit cycle oscillators:

Z =
1

N

N∑
n=1

zn =
1

N

N∑
n=1

ρne
iθn . (16)

We also consider the classical Kuramoto order parameter



5

0 5 10 15 20
time, t

0

0.2

0.4

0.6

0.8

1

o
rd

e
r 

p
a
ra

m
e
te

r

|Z(t)| |R(t)| W(t)

-4

-2

0

2

4

d
θ
/d

t

-π

-π/2

0

π/2

π

θ
(t

)
(a)

(b)

(c)

FIG. 3. (Color online) Type I control applied to the same
network as in Figs. 1 and 2 (N = 1000, 〈k〉 = 6) but larger
coupling strength, K = 0.4. Time series of 10% of the phases
θn(t) and their angular velocities tθn/dt are plotted in panels
(a) and (b), and the order parameters |Z(t)| (solid curve)
and |R(t)| (dashed curve) are plotted in panel (c). Control is
turned on at t = 10.

which ignores the oscillators’ amplitudes:

R =
1

N

N∑
n=1

eiθn . (17)

The magnitudes of these complex order parameters, |Z|
and |R|, thus give meaningful measures of the network
synchronization. Finally, as a complement to Z and R,
we consider an order parameter designed to quantify the
instantaneous frequency dispersion in the network42:

W =

√√√√ 1

N

N∑
n=1

(
θ̇n −

〈
θ̇
〉)2

, (18)

where 〈·〉 represents the mean over the population. We
note that, while strong synchronization is typically indi-
cated by larger values of |Z| and |R|, small values of W
indicate small frequency dispersion, and therefore strong
synchronization. We also plot in panels (c) of Figs. 1
and 2 the time series of order parameters |Z(t)| (solid
blue curve), |R(t)| (dashed blue curve), and W (t) (dot-
dashed red curve). As is typically the case (but does not
need to be so), the Kuramoto order parameter |R(t)| is
larger than the order parameter |Z(t)| due to the fact
that ρn ≤ 1 for all n. Interestingly, type I control en-
hances the degree of synchronization, as measured by
both |Z(t)| and |R(t)|, however type II control actually
results in a smaller value of both. This can be explained
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FIG. 4. (Color online) Type II control applied to the same
network as in Fig. 3 (N = 1000, 〈k〉 = 6, K = 0.4). Time
series of 10% of the phases θn(t) and their angular velocities
tθn/dt are plotted in panels (a) and (b), and the order param-
eters |Z(t)| (solid curve) and |R(t)| (dashed curve) are plotted
in panel (c). Control is turned on at t = 10.

by inspecting the distributions of target phases to which
the oscillators relax in panels (a). In particular, type I
control results in a distribution of phases that are clus-
tered relatively close to the mean angle (here shifted to
zero), while type II results in a much more uniform distri-
bution of phases around the whole unit circle, resulting
in a surprisingly low degree of phase synchronization. We
also observe a large (and noisy) degree of frequency dis-
persion without control, however both type I and type
II control drives the frequency dispersion W (t) to a very
small value.

In the examples presented in Figs. 1 and 2 the de-
gree of synchronization of the initial state before control
was relatively low, i.e., a significant number of oscillators
were incoherent. We now contrast these experiments by
considering the result of applying control to a state with
initiall larger degree of synchronization. For the same
network as used above, we increase the coupling strength
to K = 4, and present the results of applying both type
I and type II control in Figs. 3 and 4. Note that before
application of control the network is significantly more
synchronized than for the case of K = 0.3. In both cases
of type I and type II control the network is able to relax
to an equilibrium, however we note an interesting phe-
nomenon with the macroscopic order parameters. In the
case of type I control (Fig. 3), while the order parameter
|Z(t)| increases, the Kuramoto order parameter |R(t)| in
fact decreases. More surprisingly, in the case of type II
control (Fig. 4), both order parameters |Z(t)| decrease
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after control in applied. We find that this phenomenon
can be attributed the the distribution of phases attained
after control is applied. In particular, in both type I and
type II control the distribution of steady-state phases
can be relatively wide. This is more apparent in the case
of type II control, but is also somewhat true for type I
control. [Note that several oscillators in Fig. 3(a) relax
near θ ≈ ±π.] Thus, while the control method can be
used to attain consensus in the sense of frequency syn-
chronization, the resulting state may be poorly phase-
synchronized. This effect is curbed primarily in type I
control for the order parameter Z(t) since oscillators are
explicitly driven to a larger amplitude, tending to result
in an increased |Z(t)|. Finally, as in the example with
smaller K, both type I and type II control drives the
frequency dispersion W (t) to a very small value.

IV. FAILURE OF THE METHOD

Before closing, we briefly discuss the possible failures
of the control method presented in this paper. While
the method has been by-and-large effective in our ex-
plorations, we have also observed some cases where full
frequency-synchronization is not attained. These failures
deserve a few remarks. First, we note that in our explo-
rations type I is very effective, failing very infrequently.
Second, failures typically correspond to one or two oscil-
lators remaining incoherent, and thus a very large frac-
tion of the network end up in a state of frequency syn-
chronization. Finally, we note that the likelihood of fail-
ure can be mitigated by modifying the threshold param-
eters ερ and εθ. We emphasize that the target states

z∗n = ρ∗ne
iθ∗n which are central to the control method are

approximations of theoretical equilibria of Eq. 1, and thus
it is to be expected that as this approximation fails, the
likelihood of the control method failing increases. We find
that the effect of these inaccuracies can be curbed by in-
creasing these threshold parameters. We note that our
explorations have focused on the case of ER random net-
works, and the presence of more complicated structural
patterns in networks could affect the control method.

On the other hand, up to the approximations discussed
above, the method presented here guarantees a spectrum
of stable eigenvalues by ensuring that the Gershgorin cir-
cles, which contain the eigenvalues, are contained in the
negative real-half of the complex plane. We note, how-
ever, that one or more Gershgorin circles partially cross-
ing the imaginary axis into the real-half of the complex
plane does not guarantee an unstable eigenvalue, but sim-
ply admits the possibility. Thus, it is likely possible that
in some cases the synchronized state can be stabilized
with less control (e.g., smaller control gains Fn) than
suggested here.

V. DISCUSSION

In this paper we have investigated the control of net-
works of limit-cycle oscillators towards full frequency syn-
chronization, i.e., consensus. The proposed method rep-
resents an extension of a method for controlling networks
of phase oscillators9 – now applied to the limit-cycle
counterpart given in Eq. (1). In particular, the method is
based on identifying a target fixed point for the network
and stabilizing this target state via an appropriately-
defined feedback-type control. We proposed two types
of control: type I control uses only the phase dynamics
of the system and drives oscillators to large amplitudes
(i.e., ρn = 1), while type II control uses both the phase
and amplitude dynamics of each oscillator to find a target
state.

We have demonstrated the application of both type I
and type II control with numerical examples and studied
the effect that each type has on the macroscopic order pa-
rameters of the network. Surprisingly, the application of
control can, and often does, decrease the degree of phase
synchronization, as measure by the typical Kuramoto
order parameter or it limit-cycle oscillator counterpart,
while attaining strong frequency synchronization. We
find that this phenomenon is due to the fact that, in
many cases, the target state to which control drives the
oscillators is relatively widely spread around the unit cir-
cle. Finally, we have included a discussion on the possible
failures of the method. As the determination of the target
state is based on an approximation, it is expected that
as the approximation fails, the likelihood of the control
method failing increases. We note, however, that this
effect can be curbed by modifying threshold parameters
built into the control identification process, and in cases
of failure we find that only one or two oscillators remain
desynchronized from the synchronized population.

We believe that the control method discussed in this
paper complements other commonly used control meth-
ods such as pinning20,43 and time-delay feedback37,38

which have in some cases been applied to limit-cycle os-
cillator dynamics such as those considered here, as well
as other types of dynamics. While the work presented
here can can be thought of as a type of feedback control
method, we emphasize its novelty and simplicity – stem-
ming from a nonlinear dynamics stability analysis of the
target synchronized state. More broadly, we believe that
this work will be more generally useful for the control
of nonlinear dynamics on complex networks and serve as
inspiration for the development of control methods that
combine essential elements from both the nonlinear dy-
namics of each unit and the structural properties of the
network itself.
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Phys. Rev. E 90, 042914 (2014).
40G. H. Golub and C. F. Van Loan, Matrix Computations (The

John Hopkins University Press, 1996).
41P. Erdős and A. Rényi, Pub. Math. Inst. Hung. Acad. Sci. 5, 17

(1960).
42L. Buzna, S. Lozano, and A. Dı́az-Guilera, Phys. Rev. E 80,

066120 (2009).
43F. Sorrentino, M. di Bernardo, F. Garofalo, and G. Chen, Phys.

Rev. E 75, 046103 (2007).


