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Real-world complex systems exhibit multiple levels of relationships. In many cases, they require
to be modeled by interconnected multilayer networks, characterizing interactions on several levels
simultaneously. It is of crucial importance in many fields, from economics to biology, from urban
planning to social sciences, to identify the most (or the less) influent nodes in a network. However,
defining the centrality of actors in an interconnected structure is not trivial.

In this paper, we capitalize on the tensorial formalism, recently proposed to characterize and
investigate this kind of complex topologies, to show how several centrality measures – well-known in
the case of standard (“monoplex”) networks – can be extended naturally to the realm of intercon-
nected multiplexes. We consider diagnostics widely used in different fields, e.g., computer science,
biology, communication and social sciences, to cite only some of them. We show, both theoretically
and numerically, that using the weighted monoplex obtained by aggregating the multilayer network
leads, in general, to relevant differences in ranking the nodes by their importance.

I. INTRODUCTION

It is common practice in many studies involving net-
works to assume that nodes are connected to each other
by a single type of static edge that encapsulates all con-
nections between them. In a myriad of applications this
assumption oversimplifies the complexity of the network,
leading in some cases to misleading results. A represen-
tative example is provided by temporal networks, where
neglecting time-dependence washes out the memory of
sequences of human contacts in transmission of diseases
[1]. Similarly, neglecting the existence of multiple rela-
tionships between actors might alter the topology of and
the dynamics on the top of networks, leading to over-
estimation (or underestimation) of crucial properties of
nodes, as their centrality [2–7] with respect to specific
criteria (e.g., communicability, influence, etc). In the
specific case of multilayer networks, understanding the
centrality of nodes is not trivial.

Before going into the details of the present study, it
is important to discuss the difference between the topo-
logical structure which represents the core of this study,
namely interconnected multilayer networks [8–14], and
other multilayer structures which have been named mul-
tiplexes in the past and have been the subject of recent
studies [15–19]. Note that interconnected multilayer net-
works are not simply a special case of or equivalent to in-
terdependent networks [20]: in multilayer systems, many
or even all of the nodes have a counterpart in each layer,
so one can associate a vector of states to each node.
This feature has no counterpart in interdependent net-
works, which were conceived as interconnected commu-
nities within a single, larger network [21, 22].

Historically, the term multiplex has been adopted to
indicate the presence of more than one relationship be-
tween the same actors of a social network [23]. This type
of network is well understood in terms of “coloring” (or
labeling) the edges corresponding to interactions of dif-
ferent nature. For instance, the same individual might

have connections with other individuals based on finan-
cial interests (e.g., color red) and connections with the
same or different individuals based on friendship (e.g.,
color blue). This type of network is represented by a
non-interconnected multiplex.

Conversely, in other real-world systems, like the trans-
portation network of a city, the same geographical posi-
tion can be part, for instance, of the network of subway
or the network of bus routes, simultaneously. In this spe-
cific case, an edge-colored graph would not capture the
full structure of the network, because it is missing infor-
mation about the cost to move from the subway network
to the bus route. This cost can be economic or might
account for the time required to physically commute be-
tween the two layers. Therefore, the interconnected mul-
tilayer topology presented in this section provides a bet-
ter representation of the system. In Fig. 1 is shown an
illustration of an edge-colored graph (Fig. 1a) and an in-
terconnected multiplex (Fig. 1b). It is evident that a sim-
ple projection of the latter – mathematically equivalent
to sum up the corresponding adjacency matrices – would
provide a network where the information about the colors
is lost. On the other hand, an edge-colored graph can not
account for interconnections, keeping unreconcilable the
two structures in Fig. 1 which should be used to represent
very different networked systems.

For further details about the classification of such mul-
tilayer networks we refer to [24] and references therein.

In this paper, we extend widely adopted measures of
centrality to interconnected multilayer networks. We
consider diagnostics based either only on topology or on
both topology and dynamics on the top of the network.
In the specific case of descriptors based on dynamics,
we validate our theory against detailed simulations. In
fact, we show analytically and numerically that calcu-
lation of centrality of nodes in multilayer networks can
not prescind from considering the existence of the in-
terconnections between different layers. The use of the
weighted monoplex obtained by aggregating the inter-
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Figure 1: a) Edge-colored graph (i.e., multiplex) representing
two different types of interactions (solid and dashed edges)
between 5 actors. b) An interconnected multiplex represent-
ing the same actors exhibiting the same relationships but on
different levels which are separated by a cost (dotted vertical
lines) to move from one layer to the other.

connected multilayer network might lead, in general, to
relevant differences in the ranking of the nodes.

The remainder of this paper is organized as follows. In
Sec. II we briefly describe the tensorial notation, defined
in [11], adopted in the rest of the paper. In Sec. III we
capitalize on this notation to extend many well-known
centrality descriptors, defined in the case of monoplex
networks, to the realm of interconnected multilayer net-
works. Finally, we discuss our findings in Sec. IV.

II. TENSORIAL NOTATION

Edge-colored graphs can be represented by a set of
adjacency matrices [16–18]. However, standard matrices,
used to represent networks, are inherently limited in the
complexity of the relationships that they can capture,
i.e., they do not represent a suitable framework in the
case of interconnected multiplexes. This is the case of
increasingly complicated types of relationships – that can
also change in time – between nodes. Such a level of
complexity can be characterized by considering tensors
and algebras of higher order [11].

A great advantage of tensor formalism also relies on
its compactness. An adjacency tensor can be written
using a more compact notation that is very useful for the
generalization to multilayer networks. In this notation,
a row vector a ∈ RN is given by a covariant vector aα
(α = 1, 2, . . . , N), and the corresponding contravariant
vector aα (i.e., its dual vector) is a column vector in
Euclidean space. A canonical vector is assigned to each
node and the corresponding interconnected multi-layer
network is represented by a rank-4 adjacency tensor.

However, in the majority of applications, it is not nec-
essary to perform calculations using canonical vectors

and tensors explicitly. Consequently, a classical single-
layer network represented by a rank-2 mixed adjacency
tensor Wα

β [11] can be simply indicated by W i
j , where

the “abuse of notation” consists in interpreting the in-
dices i and j as nodes and W i

j would indicate intensity of

the relationship between them. Hence, W i
j represents the

well-known adjacency matrix of a graph and the classical
notation for the weight wij of the link between i and j
corresponds to W i

j . The “abuse of notation” also consists

in treating W i
j as a rank-2 tensor, although it explicitly

indicates the entry of a matrix, while keeping the alge-
braic rules governing covariant and contravariant tensors.
This “abuse of notation” dramatically reduces the com-
plexity of some tensorial equations, although it is worth
remarking that it should be used only when calculations
do not involve canonical tensors explicitly.

To distinguish simple networks from the more com-
plicated situations (e.g., interconnected multiplex net-
works) that we use in this paper, we will use the term
monoplex networks to describe such standard networks,
which are time-independent and possess only a single
type of edge that connects its nodes.

In general, there might be several types of relation-
ships between pairs of nodes and a more general sys-
tem represented as a multilayer object – in which each
type of relationship is encompassed in a single layer α
(α = 1, 2, . . . , L) of a system – is required. Note that α
has no more the same meaning of the index in the adja-
cency tensor discussed above. To avoid confusion, in the
following we refer to nodes with Latin letters and to lay-
ers with Greek letters, allowing us to distinguish indices
that correspond to nodes from those that correspond to
layers in tensorial equations.

We use an intra-layer adjacency tensor for the 2nd-
order tensor W i

j (α) that indicates the relationships be-
tween nodes within the same layer α. We take into ac-
count the possibility that a node i from layer α can be
connected to any other node j in any other layer β. To
encode information about relationships that incorporate
multiple layers, we introduce the 2nd-order inter-layer
adjacency tensor Cij(αβ). Note that Cij(αα) = W i

j (α).
It has been shown that the mathematical object ac-

counting for the whole interconnected multilayer struc-
ture is given by a 4th-order (i.e., rank-4) multilayer adja-
cency tensor M iα

jβ . This tensor might be simply thought
as a higher-order matrix with four indices. It is the di-
rect generalization of the adjacency matrix in the case
of monoplexes, encoding the intensity of the relationship
(which may not be symmetric) between a node i in layer
α and a node j in layer β [11]. This object is very general
and can be used to represent structures where an actor
is present in some layers but not in all of them. This is
the case, for instance when considering a network of on-
line social relationships, of an individual with an account
on Facebook but not on Twitter. The algebra still holds
for these situations without any formal modification. In
fact, one simply introduces “empty nodes” and assigns
the value 0 to the associated edges, although the calcu-
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lations of network diagnostics should carefully account
for the presence of such nodes (for instance, for a proper
normalization) [11].

Often, to reduce the notational complexity in the ten-
sorial equations, the Einstein summation convention is
adopted. It is applied to repeated indices in operations
that involve tensors. For example, we use this convention
in the left-hand sides of the following equations:

Aii =

N∑
i=1

Aii , AijB
j
i =

N∑
i=1

N∑
j=1

AijB
i
j ,

AiαjβB
kβ
iγ =

N∑
i=1

L∑
β=1

AiαjβB
kβ
iγ ,

whose right-hand sides include the summation signs ex-
plicitly. It is straightforward to use this convention for
the product of any number of tensors of any order. In the
following, we will use the t-th power of rank-4 tensors,
defined by multiple tensor multiplications:

(At)iαjβ = (A)iαj1β1
(A)j1β1

j2β2
. . . (A)

jt−1βt−1

jβ (1)

Repeated indices, such that one index is a subscript
and the other is a superscript, is equivalent to perform
a tensorial operation known as a contraction. Moreover,
one should be very careful in performing tensorial cal-
culations. For instance, using traditional notation the
product aibj would be a number, i.e., the product of the
components of two vectors. However, in our formula-
tion, the same calculation denotes a Kronecker product
between two vectors, resulting in a rank-2 tensor, i.e., a
matrix.

An interesting network that can be derived from the in-
terconnected structure is the aggregated network, where
the edges between two actors are summed up across all
layers. The superposition of the different layers is equiv-
alent to summing up the adjacency tensor of each layer.
The corresponding aggregated network Gij is a mono-
plex and is obtained by contracting the layer indices of
the multilayer adjacency tensor, i.e., Gij = M iα

jα. This
aggregation loses the information about inter-layer con-
nections. If such an information is important for the
application of interest, then the tensor should be con-
tracted with the 1-tensor uβα (the rank-2 tensor with all
components equal to 1), i.e., Ḡij = M iα

jβu
β
α.

This formalism is extremely useful to put in evidence
how topological descriptors of interconnected networks
differ from the ones corresponding to their aggregated
graphs [11, 25]. Moreover, it is particularly suitable to
perform compact calculations.

As a representative example, let us consider the num-
ber of paths of length 2 from a node in a certain layer
to any other node in any other layer of the system. Tak-
ing advantage of the extended algebra, it is straightfor-
ward to show that the resulting rank-4 tensor accounting

for such paths is given by Hiα
jβ = M iα

kγM
kγ
jβ . If only the

number of paths between any pair of nodes is required,

regardless of the layer, then the corresponding rank-2
tensor of paths is simply obtained by contracting with
the 1-tensor uβα, i.e., Xi

j = Hiα
jβu

β
α. Conversely, in the

case of the aggregate, we first contract the multilayer ad-
jacency tensor to obtain the aggregation J ij = M iα

jβu
β
α,

where inter-layer connections are included as self-loops,
and then square the resulting tensor to obtain Y ij = J ikJ

k
j .

Of course, a similar argument can be used to calculate
the number of longer paths. From these tensorial equa-
tions it is evident that the aggregated graph can not be
considered, in general, a good proxy of the interconnected
topology.

Summarizing, the tensorial formulation provides a
suitable framework for several real-world networked sys-
tems, from transportation networks to social ones. It is
also worth noting that special cases of multilayer adja-
cency tensors are time-dependent (i.e., “temporal”) net-
works [11, 24]. More specifically, in the case of social
sciences the multilayer adjacency tensor can be used, for
instance, to model the structural changes of a social net-
work over time, or to define the topology of actors in-
volved in several different levels of relationships and for
whom it is indispensable to define an inter-connection
between such levels. For these networked systems, it is
desirable to adopt descriptors (e.g., clustering coefficient,
modularity, etc) that are the natural extension of their
well-known counterparts in monoplex networks.

III. CENTRALITY IN INTERCONNECTED
NETWORKS

In this section, we focus on the definition of node cen-
trality in a multilayer network. We obtain these prop-
erties using algebraic operations involving the multilayer
adjacency tensor, canonical vectors, and canonical ten-
sors, achieving the natural extension of the concept of
centrality in single-layer networks. We refer to [11] for
other multilayer network diagnostics.

In practical applications one is often interested in as-
signing a global measure of importance to each node,
aggregating the information obtained from the different
layers. A naive choice could be to combine the centrality
of the nodes – obtained from the different layers sepa-
rately – according to some heuristic choice. This is a
viable solution when there is no interconnection between
layers, i.e., in the case of edge-colored graphs [19, 26].
However, the main drawback of applying this approach
to interconnected multilayer networks is that the measure
will depend on the choice of the heuristics and might not
evaluate the real importance of nodes. Conversely, our
approach capitalizes on the tensorial formulation of in-
terconnected multilayer networks and accounts for the
higher level of complexity of such systems without re-
lying on external assumptions and naturally extending
the well-known centrality measures adopted for several
decades in the case of monoplexes.
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Figure 2: Schematic of a random walk (dotted trajectories)
in a multiplex network. A walker can jump between nodes
within the same layer, or it might switch to another layer.
This illustration evinces how multiplexity allows a random
walker to move between nodes that belong to different (dis-
connected) components on a given layer.

A. Centrality based on dynamical properties

Random walk occupation centrality. A random walk
is the simplest dynamical process that can occur on a
monoplex network, and random walks can be used to
approximate other types of diffusion [27, 28]. Random
walks on monoplex networks [27–29] have attracted con-
siderable interest because they are both important and
easy to interpret. They have yielded important insights
on a huge variety of applications and can be studied an-
alytically. For example, random walks have been used
to rank Web pages [30] and sports teams [31], optimize
searches [32], investigate the efficiency of network navi-
gation [33, 34], characterize cyclic structures in networks
[35], and coarse-grain networks to illuminate meso-scale
features such as community structure [36–38]. Another
interesting application of random walks is to calculate
the centrality of actors in complex networks when they
have not knowledge of the full topology but only local
information is available. In such cases, centrality de-
scriptors based on shortest-paths, e.g., betweenness and
closeness centrality, should be substituted by centrality
notions based on random walks [29, 39]. We extend these
measures to interconnected multilayer networks further
in the text.

In this paper, we consider a discrete-time random walk.
As we illustrate in Fig. 2, a random walk on a multilayer
network induces nontrivial effects because the presence
of inter-layer connections affects its navigation of a net-
worked system [40]. Let T iαjβ denote the tensor of tran-
sition probabilities for jumping between pairs of nodes
and switching between pairs of layers, and let piα(t) be
the time-dependent tensor that gives the probability to
find a walker at a particular node in a particular layer.
Hence, the covariant master equation that governs the
discrete-time evolution of the probability from time t to
time t+ 1 is pjβ(t+ 1) = T iαjβ piα(t).

The steady-state solution of this equation, i.e., for
t −→ ∞, is given by Πiα, quantifying the probability

to find a walker in the node i of layer α. In the case
of monoplexes, the steady-state solution can be obtained
by solving the eigenvalue problem for the rank-2 transi-
tion tensor and calculating the leading eigenvector cor-
responding to the unitary eigenvalue. Similarly, in the
case of multilayer networks, the solution can be obtained
by calculating the leading eigentensor, solution of the
higher-order eigenvalue problem

T iαjβΠiα = λΠjβ . (2)

We refer to Appendix A for the mathematical details to
solve this problem.

The probability Πjβ , that we define random walk oc-
cupation centrality, accounts for the full interconnected
structure of the multilayer network. Although different
exploration strategies can be adopted to walk in a multi-
layer network [40], here we focus on the natural extension
of well-known random walks in monoplex networks [29].
In this process, the walker in node i and layer α might
jump to one of its neighbors j 6= i – within the same
layer – with uniform probability, or might switch to its
counterpart i in a different interconnected layer β 6= α.
It is worth remarking that the inter-layer connection is
treated as an edge that can be chosen randomly among
all edges traversing the node.

In the more general case of weighted networks, the
jumping probability is proportional to the weight of the
edges. Let us indicate with siα the strength of node i in
layer α, including the inter-layer connections. The multi-
strength vector, whose components indicate the strength
of each node accounting for the full multilayer structure,
is given by summing up its strengths across all layers,
i.e., by Si = siαu

α, where uα is the 1-vector, namely a
vector with all components equal to 1. We indicate with
Diα
jβ the strength tensor whose entries are all zeros, ex-

cept for i = j and α = β where the entries are given by
siα. This tensor represents the multilayer extension of
the well-known diagonal strength matrix in the case of
monoplexes. Therefore, the transition tensor is given by

T iαjβ = Mkγ
jβ D̃

iα
kγ , where D̃iα

jβ is the tensor whose entries

are the inverse1 of the non-zero entries of the strength
tensor. For this classical random walk, it can be easily
shown that Πiα ∝ siα [40].

This centrality, as others in the rest of the paper, as-
signs a measure of importance to each node in each layer,
accounting for the full interconnected structure of the
multilayer network. However, in practical applications
one is often interested in assigning a global measure of
importance to each node, aggregating the information
obtained from the different layers. The choice of the ag-
gregation method is not trivial, it strongly influences the
final estimation and might lead to wrong results.

1 It is worth remarking that, in general, this is different from the
inverse of a tensor Aiαjβ , that is defined as the tensor Biαjβ such

that AiαkγB
kγ
jβ = δiαjβ , where δiαjβ = δijδ

α
β .
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Figure 3: Representative example of the equivalence between the random walk centralities obtained from Monte Carlo simula-
tions and the theoretical prediction. The case of a multiplex with two layers and 50 nodes is considered.

However, this is not case for the framework discussed in
the present study. In fact, the centrality Πiα is calculated
by inherently accounting for the interconnected structure
of the whole system. We do not require to combine arbi-
trarily the information from different separate measures.
In our framework, the most intuitive type of aggrega-
tion, i.e., summing up over layers, represents the unique
and correct choice. Let πi = Πiαu

α be the random walk
centrality measure obtained by aggregating over layers.
Here, πi indicates the probability of finding the walker
in node i, regardless of the layer. It is worth noting that
this probability is proportional to siαu

α, i.e., the multi-
strength of node i. Therefore, in this specific case, the
computation of the centrality by means of the aggregated
network would provide the same result of the calculation
accounting for the interconnected multiplex, if inter-layer
edges are accounted for as self-loops. In the more specific
case that the inter-layer edges have the same strength for
all nodes, the random walk centrality will be just propor-
tional to the degree of the aggregated network, without
necessity of accounting for the self-loops. Unfortunately,
this is no more the case for the centrality measures dis-
cussed in the rest of this study, where calculating the
diagnostics from the aggregate might lead to wrong con-
clusions.

A ground-truth for this diagnostics can be obtained
from numerical simulations of the random walk process
in the multilayer network, where the larger the number
of times the walker hits a node larger the random walk
centrality of that node. In Fig. 3 we show the comparison
between πi obtained from simulation and its theoretical
prediction. As expected, the agreement is excellent and
this equivalence holds regardless of the number of nodes
in the network, the number of layers or their topology.

PageRank centrality. We capitalize on this result to ex-
tend to interconnected networks a widely adopted mea-
sure of centrality, i.e., the PageRank [41]. A recent study
in this direction has been reported in [26], in the case
of edge-colored graphs where the authors, exploiting the

random walk interpretation of PageRank centrality, de-
fine the PageRank of a multiplex network by means of a
random walk subjected to teleportation. In that study,
the PageRank for nodes in the first layer is computed us-
ing the standard definition for a monoplex [41], whereas
the PageRank for nodes in the second layer is computed
using the centrality information obtained from the first
one. It is worth noting that this definition is limited to
edge-colored graphs with only two layers, being any ex-
tension to a larger number of layers possible but very
complicated from the mathematical point of view.

Here, we exploit the fact that PageRank centrality
can be seen as the steady-state solution of the equation
pj(t+1) = Rijpi(t) in the case of monoplexes, where Rij is
the rank-2 transition tensor (i.e., the transition matrix)
of a random walk where the walker jumps to a neighbor
with rate r and teleport to any other node in the net-
work with another rate r′. For simplicity, we assume that
r′ = 1− r in the following. In the case of interconnected
multilayer networks, the teleportation might occur to any
other node in any layer. Depending on the application of
interest, the walker can be teleported to other nodes with
a rate that is specific to each layer. However, to keep the
study as simple as possible, we consider the case with the
same teleportation rate for all layers. Let Riαjβ be the cor-
responding transition tensor, where the walker jumps to
a neighbor with rate r and teleport to any other node in
the network with rate 1− r. This rank-4 tensor is given
by

Riαjβ = rT iαjβ +
(1− r)
NL

uiαjβ , (3)

where uiαjβ is the rank-4 tensor with all components equal
to 1. The steady-state solution of the master equa-
tion corresponding to this transition tensor provides the
PageRank centrality for interconnected multiplex net-
works. It is worth noting that the above definition is
valid for all multiplexes where all nodes have out-going
edges. If this is not the case, as in several real-world net-
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works, Eq. (3) reduces to Riαjβ = 1
NLu

iα
jβ for all nodes i

with no out-going connections, ensuring the correct nor-
malization of the transition tensor Riαjβ .

To compute the aggregate centrality of a node, ac-
counting for the whole interconnected topology, we pro-
ceed as for the random walk occupation centrality previ-
ously discussed. Let Ωiα be the eigentensor of the transi-
tion tensorRiαjβ (see Appendix A for details), denoting the
steady-state probability to find the walker in node i and
layer α. The multilayer PageRank is obtained by simply
contracting the layer index of the eigentensor with the
1-vector: ωi = Ωiαu

α, i.e., by summing up over layers.

Random walk betweenness centrality. The betweenness
is a measure of network centrality which instead of ac-
counting for topological centrality accounts for the im-
portance of nodes in terms of dynamical processes that
run over the network. In particular, the betweenness
measures to which extent a node lies in the path between
any two other nodes [39]. One can think of packets trav-
eling in internet, in this case the betweenness measures
the influence of nodes in the spreading of information.

The most common betweenness is the shortest path be-
tweenness [42] where the centrality of a node j is relative
to the number of shortest paths, for any pair (o, d) of ori-
gin and destination nodes, that pass through j. However,
in real networks, entities (rumors, messages or packets
over the Internet) that travel the network do not always
take the shortest path [43, 44]. Consider, for instance, ru-
mors that can be wandering around the network or pack-
ets trying to avoid overloaded routers. In such cases, the
shortest path betweenness is not always a good proxy for
the centrality of nodes. For these scenarios the random
walk betweenness of a node j is defined as the amount
of random walks between any pair (o, d) of nodes that
pass through j [39]. However, we discuss shortest-path
betweenness centrality in interconnected multilayer net-
works at the end of the next section.

To analytically compute the number of random walks
visiting a particular node, it is often convenient to use the
concept of absorbing random walk, where the absorbing
state is selected to be the destination node d [28, 39]. To
extend this concept to the case of interconnected mul-
tilayer networks, we consider random walks that begin,
end and pass by nodes in different layers while accounting
for the existence of several replicas of the same node.

To extend the concept of random walks to intercon-
nected networks, we define the absorbing transition ten-
sor on a particular node d by

(
T[d]
)iα
jβ

=

{
0 j = d
T iαjβ j 6= d

, (4)

Random walkers governed by this transition tensor will
vanish once they arrive to any absorbing state [28]. Note
that T[d] has one absorbing state for each replica of node
d in different layers.

It can be shown (see Appendix B) that the average
number of times a random walk (with origin in node o in

layer σ and destination [d]) will pass by a node j in layer
β, regardless of the time step, is given by(

τ[d]
)iα
jβ

=
[(
δ − T[d]

)−1]iα
jβ
, (5)

where δiαjβ = δijδ
α
β . Note that the average number of times

that the walk will visit node j still depends on the layer
where j is located and on the originating layer σ. Since
we are interested on node properties, regardless of the
layer, we average over all possible starting layers σ and
aggregate the walks that pass through j in the different
layers, (

τ[d]
)o
j

=
1

L

(
τ[d]
)oσ
jβ
uβuσ. (6)

The overall centrality vector is obtained by averaging
over all possible origins and destinations:

τj =
1

N(N − 1)

N∑
d=1

(
τ[d]
)o
j
uo. (7)

The comparison between the values of τi obtained from
simulation and theoretical prediction is shown in Fig. 3.
As expected, the results are in excellent agreement and it
is worth remarking that the equivalence holds regardless
of the number of nodes in the network, the number of
layers or their topology.

It is worth investigating the influence of layer-to-layer
correlation on random walk betweenness centrality. In
fact, in general, a node on one layer can have different de-
gree on other layers. However, there are situations where
a node tends to be a hub in all layers, or it can be a hub
in one layer with very low degree in another layer. To
quantify the similarity between the degree of nodes across
layers we make use of the Pearson coefficient, widely used
to estimate the amount of linear degree-degree correla-
tions and to assess the assortative/disassortative mixing
patterns in single-layer networks [45, 46].

Analogously, we quantify the amount of linear posi-
tive/negative degree-degree correlation, or, equivalently,
assortative/disassortative mixing, on different layers of
an interconnected multiplex. Let kiα indicate the degree
of node i in layer α, and let κα indicate the average degree
in the same layer. The inter-layer assortativity coefficient
between α and another layer β is given by

Aαβ =
1

σ[α]σ[β]
(kiβ − uiκβ)

(
kiα − uiκα

)
, (8)

where

σ[α] =
√

(kiα − uiκα) (kiα − uiκα)

is a scalar depending on layer α and σ[β] is a scalar de-
pending on layer β. This coefficient is defined in the
range between -1 (fully disassortative mixing) and +1
(fully assortative mixing). We define the two layers to
show assortative (disassortative) inter-layer correlations
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if they are positively (negatively) correlated. Finally, if
the degree of all vertices in layer α is not correlated to
the degree of the same vertices in layer β, it is straight-
forward to verify that Aαβ = 0.

We build interconnected multiplexes of two Barabasi-
Albert networks by varying the inter-layer correlations
(see Appendix C for further details) and the intensity
of the inter-layer link, the latter parameterized by DX .
For each configuration we calculate the random walk be-
tweenness centrality of each node in the multiplex and
in the corresponding aggregate. In Fig. 4 is shown the
relative difference between the ranks as a function of the
inter-layer assortativity and DX for four representative
nodes. It is evident that accounting for the whole inter-
connected structure alters the centrality of nodes chang-
ing their ranking.

Random walk closeness centrality. The distance be-
tween two nodes in a network is given by shortest-path
which separates them. The farness of an actor is given
by the sum of all geodesics from that node to any other
node. In general, the inverse of this farness provides a
measure of the closeness of the node. Such a diagnostic
is related to how fast information is expected to spread
from a given actor to the others in the network.

However, in many communication systems information
does not spread along shortest-paths but it is more likely
to follow random-walk-like paths. Note that we discuss
shortest-path closeness centrality for interconnected mul-
tilayer networks at the end of the next section.

Therefore, a variant of the closeness for this type of
systems is given by the random walk closeness central-
ity. In the case of monoplexes, it has been introduced
to quantify how central a node is located regarding its
potential to receive information randomly diffusing over
the network [29].

In the case of interconnected multiplexes, we define
the random walk closeness centrality of a node i as the
inverse of the average number of steps that a random
walker, starting from any other node in the multilayer
network, requires to hit i for the first time.

The average number of steps to reach a node d, start-
ing from a node s, is known as mean first-passage time
(MFPT) and it has been calculated exactly in the case
of monoplexes by means of Kemeny-Snell fundamental
matrix Z [47, 48] of finite irreducible Markov chains [49]
or by means of absorbing random walks [28, 49]. In this
study, we adopt the second approach as for the calcula-
tion of random walk betweenness centrality, where we use
the transition tensor T governing random walks over in-
terconnected networks and the corresponding absorbing
transition tensor T[d]. The tensor

poσjβ(t) =
(
T t[d]

)oσ
jβ

(9)

indicates the probability of visiting node j in layer β,
after t time steps, considering that the walk originated
in node o in layer σ. This transition tensor is absorb-
ing on node d regardless of the layer and, consequently,

any walker reaching an absorbing state will vanish, i.e.,
poσdβ(t) = 0 for any β and t. The probability that the
walker is absorbed in some node d at a time h equal or
smaller than t, regardless of the layer, is given by(

q[d]
)oσ

(t) = uoσ −
(
T t[d]

)oσ
jβ
ujβ . (10)

Note that we have a rank-2 tensor q for each choice of d
and we put in evidence this dependence by means of [d].
From each tensor q we can calculate the probability that
the first passage time for node d is exactly t by(

q[d]
)oσ

(h = t) =
(
q[d]
)oσ

(t)−
(
q[d]
)oσ

(t− 1)

=
[(
T t[d]

)
−
(
T t−1[d]

)]oσ
jβ
ujβ . (11)

Considering the walk starting from node o in layer σ,
each tensor encoding the mean first passage time to node
d, assumed to be the absorbing state, is obtained from
Eq. (11) as

(
H[d]

)oσ
=

∞∑
t=0

t
(
q[d]
)oσ

(h = t) =

[(
δ − T t[d]

)−1]oσ
jβ

ujβ .(12)

The geometric series in Eq. (12) converges since the
maximum eigenvalue of T[d] is strictly smaller than
one, and the sum can be calculated exploiting the self-
similarity of the series. Note that the mean first passage
time to d still depends on the origin of the walk, i.e., node
o in layer σ.

The average mean first passage time h[d] to node d is

obtained by averaging
(
H[d]

)oσ
over all possible starting

nodes and layers as

h[d] =
1

NL
uoσ

(
H[d]

)oσ
+

1

N
π−1[d] , (13)

where π[d] is the occupation probability of node d and

the term 1
N π
−1
[d] is included explicitly to account for the

average return time, that is not accounted for when using
absorbing random walks.

Finally, the random walk closeness centrality of node
d is defined by the inverse of h[d]. We introduce the
vector ξi whose components are given by the inverse of
the corresponding values of h.

The comparison between the values of ξi obtained from
simulation and theoretical prediction is shown in Fig. 3.
As expected, the results are in excellent agreement and it
is worth remarking that the equivalence holds regardless
of the number of nodes in the network, the number of
layers or their topology.

As for the random walk betweenness centrality, we
investigate the influence of layer-to-layer correlation on
random walk closeness centrality. Following the same
procedure, we build synthetic interconnected multiplexes
by varying the inter-layer correlations and the intensity
of the inter-layer link. In Fig. 5 is shown the difference
between the ranks as a function of the inter-layer assorta-
tivity and DX for four representative nodes. It is evident
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Figure 4: Random walk closeness centrality in interconnected multiplexes of two Barabasi-Albert networks. The relative
difference between the rank in the multiplex and the rank in the corresponding aggregate is shown as a function of inter-layer
connectivity and inter-layer assortativity. Results for four nodes whose centrality in the aggregated network (from left to right)
is indicated on the top of each panel, are shown.

Figure 5: As in Fig. 4 but for random walk closeness centrality.

that accounting for the whole interconnected structure
alters the centrality of nodes altering their ranking. We
refer to the Supplemental Material for additional rep-
resentative examples, both with synthetic and empiri-
cal networks, showing significant changes even in the top
ranked nodes.

B. Centrality based on topological properties

Eigenvector centrality. Among the numerous notions
of centrality introduced to quantify the importance of
nodes (and other components) in a network [50], eigen-
vector centrality is among the oldest ones. A node i has
a high eigenvector centrality if its neighbors also have
high eigenvector centrality, and the recursive nature of
this notion yields a vector of centralities that satisfies an
eigenvalue problem.

In the case of monoplexes, the eigenvector centrality

vector, whose components are the centralities of nodes
according to [51, 52], is a solution of the tensorial equa-
tion W i

jvi = λ1vj , where λ1 is the largest eigenvalue of

W i
j and vi indicates the eigenvector centrality of node i.

A naive approach for the calculation of the impor-
tance of each node might be to project the interconnected
topology to an aggregated monoplex, and to associate to
each node the centrality he or she has in such an aggre-
gated network. The main drawback of this approach is
that it mixes the information from all layers with uncon-
trollable effects, as shown in the Supplemental Material
for both synthetic and empirical networks.

Another attempt to extend this calculation to the case
of multilayer networks might be to calculate the eigenvec-
tor centralities for each layer separately, to build the ten-
sor V̄iα encoding the centrality of each node in each layer.
The successive step would be to choose an heuristic ag-
gregation of such centralities to assign a unique centrality
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measure to each node, regardless of the layer. However,
the tensor V̄iα is not the solution of a unique eigenvalue
problem but the combination of the solutions of L dif-
ferent eigenvalue problems treated separately, therefore
it is not the natural extension of the notion of eigenvec-
tor centrality to the realm of interconnected multilayer
networks.

Instead, according to [11], this descriptor can be ob-
tained as the solution of the tensorial equation

M iα
jβΘiα = λ1Θjβ , (14)

where λ1 is the largest eigenvalue and Θiα is the cor-
responding eigentensor encoding the centrality of each
node in each layer when accounting for the whole inter-
connected structure. The eigentensor can be obtained by
means of an iterative procedure, as the power method in
the case of monoplexes. A proof of the existence of such
eigentensor is provided in Appendix A. Thus, the multi-
layer generalization of Bonacich’s eigenvector centrality
[51, 52] is given by Θjβ = λ−11 M iα

jβΘiα [11].
As already pointed out in the previous sections, the

overall centrality of each node can be simply obtained by
contracting over layers the centrality of each node in each
layer, i.e., by θi = Θiαu

α.
At variance with the eigenvector centrality calculated

from the monoplex aggregated before the calculation and
the one calculated by heuristically aggregating the cen-
tralities obtained separately, our measure is obtained
from the mathematical extension of the original defini-
tion. The aggregation performed at the end of the cal-
culation does not require any heuristic choice, because it
is already accounting for the whole interconnected topol-
ogy and, as we have previously shown, it is enough to
contract the resulting eigentensor.

Katz centrality. It is a well-known fact that eigenvector
centrality can lead to wrong results in the case of directed
networks. In fact, nodes with only outgoing edges have
an eigenvector centrality of 0 if Bonacich’s definition is
adopted. Moreover, in this case there are two leading
eigenvectors, for in-going centrality and out-going cen-
trality, requiring to distinguish between covariant and
contravariant calculations. The Katz centrality [53] at-
tempts to solve the above problem by assigning a small
amount b of centrality to each node before calculating
centrality. For monoplexes, the Katz centrality is given

by vj =
(
(δ − aW )−1

)i
j
ui, where a must be smaller than

the largest eigenvalue and often one chooses b = 1.
Following a similar idea, we define the centrality tensor

for each node in each layer as the solution of the tensorial
equation

Φjβ = aM iα
jβΦiα + bujβ , (15)

corresponding to the natural extension of the equa-
tion proposed by Katz to the case of interconnected
multilayer networks. The solution is given by Φjβ =(
(δ − aM)−1

)iα
jβ
Uiα, where δiαjβ = δijδ

α
β . As for the eigen-

tensor centrality, this Katz centrality tensor accounts for

the whole interconnected topology and it is enough to
contract it with the 1-vector to obtain the Katz central-
ity for each node, i.e., φi = Φiαu

α.

HITS centrality. Similarly to the PageRank, another
approach was introduced to rank Web sites with respect
to their importance for users. This approach considers
two different descriptors for each node, namely hub and
authority [54]. In fact, Web pages that point to an impor-
tant page generally also point to other important pages,
building a structure similar to a bipartite topology where
relevant pages – i.e., authorities – are pointed by special
Web pages – i.e, hubs. It follows that nodes with high
authority centrality are linked by nodes with high hub
centrality while very influent hubs point to nodes which
are very authoritative. Such a mechanism is described by
two coupled equations which reduce to the two eigenvalue

problems
(
WW †

)i
j
vi = λ1vj and

(
W †W

)i
j
zi = λ1zj ,

where W † denotes the transpose of the adjacency tensor,
λ1 indicates the leading eigenvalue while vi and zi indi-
cate hub and authority scores, respectively. The natural
extension of the equations proposed by Kleinberg to the
case of interconnected multilayer networks is given by(

MM†
)iα
jβ

Γiα = λ1Γjβ , (16)(
M†M

)iα
jβ

Υiα = λ1Υjβ , (17)

(18)

where Γiα and Υiα indicate hub and authority centrality,
respectively. It is worth remarking that for undirected
interconnected multiplexes, hub and authority scores are
the same and equal to the corresponding eigenvector cen-
trality. The hub and authority tensors should be con-
tracted with the 1-vector to obtain the scores correspond-
ing to each node regardless of the layer, i.e., γi = Γiαu

α

and υi = Υiαu
α, respectively.

Centrality measures based on shortest path. For sake of
completeness, in this paragraph we briefly extend central-
ity measures based on shortest paths, namely between-
ness and closeness.

Equivalently to the case of a monoplex, we define a
path `[oσ→dγ] ∈ P[oσ→dγ], in the interconnected multi-
layer network, as an ordered sequence of nodes which
starts from node o in layer σ and finishes in node d in
layer γ. We require that there exist an edge between any
pair of consecutive nodes in `. Here, P[oσ→dγ] indicates
the set of all possible paths between node o in layer σ and
node d in layer γ. For every path `[oσ→dγ] it is possible

to define a cost function c
(
`[oσ→dγ]

)
, usually depending

on the weight of the edges the path traverses and on the
application of interest, to account for the “goodness” of
the path. Hence, the shortest path from node o in layer
σ to node d in layer γ is the path

`∗[oσ→dγ] = arg min
`′
[oσ→dγ]∈P[oσ→dγ]

c(`′[oσ→dγ]) (19)
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which minimizes the cost function. Using (19) we define
the shortest path from node o to node d, regardless of
the layer, as

`∗[o→d] = arg min
σ,γ∈{1,2,...,L}

`∗[oσ→dγ]. (20)

The centrality τ̂j of node j is defined to be proportional
to the number of times that node j, regardless of the
layer, belongs to the set `∗[o→d] for every possible origin-

destination pair (o, d).
The extension of the shortest-path betweenness cen-

trality, defined in the case of monoplex networks in [42],
is obtained by counting the number of shortest paths be-
tween any pair of origin and destination nodes (o, d),
that go though node j in the interconnected structure.

On the other hand, in the same spirit of monoplex
networks, we define the shortest-path closeness centrality
of a node j in an interconnected multilayer topology as
the average of the inverse of the cost of the shortest paths
which start from any other node o in the network. Thus,
given the cost of a shortest path c(`∗[o→i]) between node

i and node o, the shortest-path closeness centrality ξ̂i
can be easily computed by considering all possible origin
nodes o.

IV. CONCLUSIONS AND DISCUSSION

We have presented the mathematical formulation of
different measures of centrality in interconnected multi-
layer networks. We have grouped the definitions in two
sets, those that are defined attending to a random navi-
gation of the structure, and those defined from the topol-
ogy itself. In the process, we have proven that, in general,
these definitions differ from the naive addition of values
between layers and adopt a complex nonlinear form. The
results are ready to be used for complex networks anal-
ysis, and should be of interests in many interdisciplinary
applications ranging from social sciences, to transporta-
tion networks.

Acknowledgements

AA, MDD, SG, and AS were supported by the Euro-
pean Commission FET-Proactive project PLEXMATH
(Grant No. 317614), the MULTIPLEX (grant 317532)
and the Generalitat de Catalunya 2009-SGR-838. AA
also acknowledges financial support from the ICREA
Academia and the James S. McDonnell Foundation, and
SG and AA were supported by FIS2012-38266. EO is
supported by a PhD grant from the Region Ile-de-France.

Appendix A: Eigenvalue problem with tensors

The eigenvalue problem for a rank-2 tensor, i.e., a stan-
dard matrix, is defined by W i

jvi = λvj . The extension of

this problem to rank-4 tensors leads to the equation

M iα
jβViα = λVjβ . (A1)

To solve this problem, it is worth noting that any tensor
can be unfolded to lower rank tensors [55]. For instance,
a rank-2 tensor like W i

j , with N2 components, can be flat-

tened to a vector wk with N2 components. In the case
of the rank-4 multilayer adjacency tensor M iα

jβ , although
any unfolding is allowed, it is particularly useful for some
applications to choose the ones flattening to a squared
rank-2 tensor M̃k

l with NL ×NL components, where L
indicates the number of layers [9]. In fact, this unfold-
ing produces as many block adjacency matrices, named
supra-adjacency matrices in some applications [9, 25, 40],
as the number of permutations of diagonal blocks of size
N2, i.e., L!. However, such unfoldings do not alter the
spectral properties of the resulting supra-matrix and can
be used to solve the eigenvalue problem for rank-4 ten-
sors. In fact, the solution of the eigenvalue problem

M̃k
l ṽk = λ̃1ṽl, (A2)

is a supra-vector with NL components which corresponds
to the unfolding of the eigentensor Viα.

Appendix B: Mean number of crossing times

Given M random walks starting in node o on layer σ
and ending when reaching node d, regardless of the layer,
the expected number of times a random walk will pass
by node j on layer β is given by

(
T[d]
)oσ
jβ

= lim
M→∞

1

M

M∑
m=1

∞∑
t=0

zoσjβ (t,m), (B1)

where zoσjβ (t,m) = 1 if walk m was visiting node j in layer

β at time step t and zoσjβ (t,m) = 0 otherwise.

Following the frequentist interpretation, the probabil-
ity of being in node j in layer β at time step t, provided
that the walk originated in node o in layer σ, is given by

poσjβ(t) = lim
M→∞

1

M

m∑
m=1

zoσjβ (t,m). (B2)

Substituting (B2) in (B1) we obtain that

(
τ[d]
)oσ
jβ

=

∞∑
t=0

poσjβ(t) =

∞∑
t=0

(
T t[d]

)oσ
jβ

=
[(
δ − T[d]

)−1]oσ
jβ

(B3)

where T[d] corresponds to the absorbing transition tensor
defined in Eq. (4).
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Appendix C: Synthetic multiplex with given
inter-layer assortativity

In this appendix we explain the simple algorithm used
to generate interconnected multiplex networks with a de-
sired value A? of inter-layer assortativity. To keep the
description as simple as possible, we adopt standard no-
tation.

Let us start from a 2-layer multiplex with initial inter-
layer assortativity A0. Inspired by the approach pro-
posed by Xulvi-Brunet and Sokolov to modify assortative
mixing in single-layer networks [56], we randomly choose
two different vertices i and j. The corresponding degrees
on the two layers are k1i and k2i for vertex i, and k1j and

k2j for vertex j. If A0 < (>)A? we relabel node i by j

in layer 2 if i) |k1i − k2i | > (<)|k1i − k2j | and ii) the new
value A1 of the inter-layer assortativity of the resulting
multiplex is such that |A1 − A?| < |A0 − A?|, other-
wise we keep the network unmodified and we repeat the
procedure. Although the convergence of this algorithm
is not guaranteed, it has the advantage of not changing
the single-layer global features of the second layer, as de-
gree distribution, intra-layer assortativity, clustering and
modularity. Moreover, our numerical experiments show
that in the majority of considered cases the convergence
to the desired value is obtained within a few iterations.
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nas, arXiv:1306.0519 (2013).
[41] S. Brin and L. Page, in Seventh International World-

Wide Web Conference (WWW 1998) (1998), URL http:

//ilpubs.stanford.edu:8090/361/.
[42] L. C. Freeman, Sociometry pp. 35–41 (1977).
[43] L. C. Freeman, S. P. Borgatti, and D. R. White (1991).
[44] K. Stephenson and M. Zelen, Social Networks 11, 1

(1989).
[45] M. Newman, Phys. Rev. Lett. 89, 208701 (2002).
[46] M. Newman, Phys. Rev. E 67, 026126 (2003).

http://ilpubs.stanford.edu:8090/361/
http://ilpubs.stanford.edu:8090/361/


12

[47] L. Lovász, Combinatorics, Paul Erdos is Eighty 2, 1
(1993).

[48] Z. Zhang, A. Julaiti, B. Hou, H. Zhang, and G. Chen,
Euro. Phys. J. B 84, 691 (2011).

[49] J. G. Kemeny and J. L. Snell, Finite Markov chains (Van
Nostrand Reinhold, 1960).

[50] S. Wasserman and K. Faust, Social Network Analysis:
Methods and Applications, Structural Analysis in the So-
cial Sciences (Cambridge University Press, Cambridge,
UK, 1994).

[51] P. Bonacich, Sociological Methodology 4, 176 (1972).

[52] P. Bonacich, Journal of Mathematical Sociology 2, 113
(1972).

[53] L. Katz, Psychometrika 18, 39 (1953).
[54] J. M. Kleinberg, Journal of the ACM (JACM) 46, 604

(1999).
[55] T. G. Kolda and B. W. Bader, SIAM Review 51, 455

(2009).
[56] R. Xulvi-Brunet and I. Sokolov, Phys. Rev. E 70, 066102

(2004).


	I Introduction
	II Tensorial notation
	III Centrality in Interconnected Networks
	A Centrality based on dynamical properties
	B Centrality based on topological properties

	IV Conclusions and Discussion
	 Acknowledgements
	A Eigenvalue problem with tensors
	B Mean number of crossing times
	C Synthetic multiplex with given inter-layer assortativity
	 References

