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Extraction of structures from turbulent signals
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An automatic procedure based on of the Fuzzy ARTMAP neural network is
applied to classify the structure embedded in two-component velocity signals
measured in a turbulent wake behind a circular cylinder. A small part of the
velocity field in the horizontal plane of the wake recorded at two downstream
positions x/D = 30 and 150 was pre-processed to extract a set of relevant patterns
from the data in order to train the network. The complete data files were tested
with the trained net, obtaining nine different structures: clockwise and anti-
clockwise eddies, sinks, sources, four types of saddle points and jet-like motions.
Comparison of the number of classes and patterns belonging to the same category
at at x/D = 30 and 150 shows that the number of structures present in the wake
increase with downstream position, i.e. with the development of turbulence. The
jets present in the near wake appear in this preliminary analysis to be linked to the
formation of double rollers in the far wake. © 1997 Elsevier Science Limited.
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1 INTRODUCTION

The study of the coherent structures embedded in
turbulent flows is important to understand the dynamics
and the transfer processes of momentum, heat and mass
in most flows of engineering interest. Also, the auto-
matic and continuous monitoring and identification of
the structures present in such flows could be used to
control turbulence,

Turbulent wakes and shear layers have been the
object of experimental and numerical analysis since the
studies of Townsendl, Grant® and Brown and Roshko®
showed the dominant effects of large scale coherent
motions in these turbulent flows. To understand the
development of turbulence in the wake behind a circular
cylinder and the role played by coherent structures it is
useful to relate the near wake, where the flow is quasi-
two-dimensional and dominated by Karman vortices
shed parallel to the cylinder axis, with the far wake
where the flow is fully turbulent,

The most commonlty used methods to identify
coherent motions are flow visualisation, spectral and
correlation analysis, principal component analysis or
proper orthogonal decomposition, conditional sampling
and pattern recognition with template matching and
linear stochastic estimates. Most of the analytical
techniques mentioned above are capable to detect and
identify statistically significant structures in a global or
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averaged framework. They may present, however,
difficulties when local recognition and classification are
required. The application of artificial intelligence and
neural networks to structure identification can provide
the basis for unbiased pattern recognition and classifica-
tion of locally occurring strictures in turbulent flows.
In this paper, an implementation of the Fuzzy
ARTMAP Neural Network? capable of identifying
eddy motions in two-dimensional velocity fields of a
turbulent flow’ is applied to characterise the structural
evolution of a turbulent wake flow with downstream
position. The automatic procedure is applied to locally
classify the different structures and motions embedded
in two component velocity signals sensed in the near
{x/D = 30) and far (x/D = 150) regions of the wake. A
pre-processing procedure, based on the geometric
characteristics of the set of vectors representing an
eddy motion, is used to pre-classify vortex-like patterns
before data are presented to the net to obtain the
training set. Data measured by Professor Antonia at the
University of Newcastle (Australia) in the far wake
region have been used to train the network. The trained
network is applied to analyse the data measured in
Tarragona®’ at two downstream positions x/D =130
and 150. Comparison between the classes at these two
locations shows the effect of the evolution from a nearly
two-dimensional flow in the ncar wake to a three-
dimensional turbulent wake flow further downstream.
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Fig. 1. Sketch of the low turbulence wind tunnel.

2 THE EXPERIMENT

The two-component velocity data analysed here by
Pons® and Vernet ef al.” were measured in a wake behind
a circular cylinder (D =325mm) at Re=DU,/
r = 1600 (U, = 7-8 m/s). Briefly, the flow was generated
in the low turbulence wind tunnel of Tarragona (see Fig.
1) with a test section 60 x 60 cm square and 3m long. An
array of five X-wire probes (8 DISA 55M10 and 2 DISA
56C17 anemometers) was placed at the horizontal central
plane of the wake at x/D =30 and 150 (see Fig. 2).
Voltage signals from the anemometers were low-pass
filtered and digitised at 4kHz per channel during 30s.
Data were stored and processed in a HP Apolle 730 to
obtain files of the w-componeni {x-direction or flow
direction) and w-component (z-direction or spanwise
coordinate) of the velocity field. The analysis presented
in this work of these two-component # and w data
measured simultancously at five spanwise z locations
separated 30 mm in the horizontal plane was carried out
on a CRAY YMP-EL computer.

3 THE ARTMAP SYSTEM AND DATA
PRECONDITIONING

A supervised Fuzzy ARTMAP neural network™ is used
to identify eddy motions present in the horizontal
(homogeneous) spanwise direction of a turbulent wake
flow. The Fuzzy ARTMAP neural network is powerful
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Fig. 2. Arrangement of probes.

in difficult classification problems. It is based on the
adaptive resonance theory, which avoids the so called
stability—plasticity dilemma. A Fuzzy ARTMAP neural
network consists of a pair of Fuzzy® modules, art, and
arty,, linked by an associative memory and an internal
controller. The controller is designed to create the
minimal number of categories (or hidden units) to meet
accuracy criteria. This is done by implementing a
learning rule that minimises predictive error and
maximises generalisation.

The present implementation forces the arfy, module to
have only one category representing clockwise eddies
(see CE in Fig. 3). Another fictitious category consid-
ered is the one corresponding to the ‘I do not know’
answer by the net. All inputs that do not pass the reset
process of classification, for a given vigilance parameter
p, Le. that do not match with any structure, are included
in this category and considered not to be eddy motions.
A representation of this net is presented in Fig. 4. Each
fuzzy subsystem art, and art, includes a field of nodes
F, which represents a current input vector F;. This
vector F| receives both bottom-up input from F, and
top-down input from a field F,, which represents the
active code or category. The activity vectors F; and F,
are denoted by x = (xy,...,xy), and ¥y = (p4,-..,¥u)s
respectively. The number of nodes in each field is
arbitrary. Associated with each F, category node j
(j=1,...,N) there is a vector w; = (wy,...,wys} of
adaptive weights. Initially, when cach category is said to
be uncommitted, wy = --- = wy, = 1. After a category
is selected for coding it becomes committed.

The dynamics of fuzzy ART are determined by a
choice parameter o >0, a learning rate parameter
3 €10,1], and a vigilance parameter p € [0, 1].

For each input I and F, node j, the choice function T;
is defined by

_ ITAwj]

T(I) = . 1
In eqn (1) the fuzzy AND operator (A) is defined by
(pAp) = min(p;, 4;} {2}
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Fig. 3. Transformations of a clockwise eddy (CE) into a saddle point A.ID (SPA.SPD), source, anticlockwise eddy (ACE) and sink.

and the norm |.{ by

M
lpl = ZO || (3)

for any M-dimensional vectors p and q. For simplicity,
T(I) is written as 7; when the input I is fixed.

The system is said to make a category choice when at
most one F, node can become active at a given time. The
category choice is indexed by J, where

Ty =max{T;:j=1,...,N} {4)

When the Jth category is chosen, y; = 1, and y; = 0 for
i#J.

In a choice system, the F, activity vector x is
characterised by the equation:;

| if F, is inactive
X = (5)

IAw; if the Jth F; node is chosen.

Resonance occurs if the match function |I A wy|/|y| of
the chosen category meets the vigilance criterion

LA W,

T (6)
Weighted Links
W oe, b
F2 Categories
' Reset
F1 Hypothesis +— Match Tracking

I

Input

Fig. 4. Sketch of the Fuzzy ARTMAP system.

When Jth category is chosen, resonance occurs if
x| = [LAw;| > pll]. (7a)

Learning then ensues, as defined below, Mismatch reset
occurs if

LA wy|
<
="

and then a new index J is chosen. The search process
continues until the chosen .J category meets the vigilance
criterion (6). Once the search ends, the weight vector w;
is updated according to

w‘{fnew) _ ﬁ(IA WSOld)) +( 6)w(old (8)

where fast learning corresponds to 3 = 1-0.

The modules arz, and art, are linked via an inter-
ART module, F*°, called a map field. Inputs to art, and
arty, are I = A and I = B, respectively. Variables in ar,
or art, are designated by superscripts a or b. In the
former case, x* = (x§,...,x%, ) denotes the F} output
vector, y* = ()4,---,¥ix,) the F§ output vector, and

= Wi, .0 2M) the jth art, weight vector. For
art,, xXP=(xb,..., x5, ) denotes the F? output vector

=(3,..., ylz’Nb) the F output vcctor and wp =

(7b)

(wk’l, . w}g QM) the kth artb weight vector. For the
map ﬁeld x2P (xl - be) denotes the F*° output
vector, and w =(Wi,..., ijb) the weight vector

from the jth F2 node to Fab Initially, each weight is
set equal to 1.

The map field #*° is activated when one of the art, or
arty, categories becomes active. When the jth F§ node is
chosen, the input ¥ — F2bj 1s proportional to the weight
vector w; ® When the kth F2 is chosen, the F > node K is
actwated by l-to-1 pathways between FY and F*°. If
both art, and art, are active, as in supervised learning,
then F®° activity reflects the degree to which a correct
prediction has been made. With fast learning, F™
remains active only if ars, predicts the same category
as art,, via the weight vector w2°, or if the active art,
category has not yet learned an art, prediction. In
summary, the ¥2° output vector x* ® obeys the following
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equation:
(y° Aw?® if the Jth F} node is active
and Ff is active
ab wiP if the Jth F3 node is active
X =9 and F? is inactive
y if F2 is active and F? is active
L0 if F2 is active and F¥ is inactive.

(%)

If the prediction w%® is disconfirmed by y°, this
mismatch triggers an arf, search for a new category,
as follows. At the start of each input presentation, the
art, vigilance parameter p, equals a baseline vigilance
p.. The map field vigilance parameter is p,,. Match
tracking is triggered by a mismatch at the map field F®,

ab
J

|xab| < pablybi = Pab (19)

Match tracking increases p, until it becomes slightly
Jarger than the art, value, |A Aw3||A|"!. After match
tracking,

|Xa| = IAA‘;":‘}' < ,OJA| = p,M, (11)

and the art, search leads to ARTMAP resonance, when
a newly chosen FY node J satisfies both the art,
matching criterion

[%°] = [A A W3] = palA (12)
and the map field matching criterion
XL = |y° A W3] = panlyl- (13)

Otherwise, no such F node exists and the ART search
leads to the shutdown of F} for the remainder of the
input presentation. Since wj;{0) = wj (0} = 1 and 0 < p,,
Pap < 1, ARTMARP resonance always occurs if J is an
uncommitted node,

A learning rule determines how the map field weights
wjf‘,? change through time. During resonance with the
art, category J active, w'jb approaches the map field
vector x*°. With fast learning, once J learns to predict
an art, category K, that association becomes perma-
nent, i.e. wy =1 and wyr = 0(k # K) for all times.

After presentation of all training samples, the net is
ready to undergo a test phase to show the accuracy of
the created categorics,

In the present study the net was trained for six values
of the vigilance parameter in the range 0-9-0-95,
obtaining a set of weights for each one. Each of the
six trained nets was given, during a test phase, all the
possible frames obtained from the fuil data file, so that
the frames containing a recirculation could be classified.

A modification of the learning rule was used in this
implementation of the Fuzzy ARTMAP neural net-
work. In fast learning, after an association intra-
modules was established, weights in both ART modules
were updated by the rule

wi¥ = (min(7, w}id), oo, min(ly, wﬁ’r}f ) (14)

where J is the committed category. If the vigilance
parameter is p = 1-0 the previous rule (14) becomes

Wi — | (15)

where I is the presented pattern, and the number of
categories equals the number of inputs.

Equation (15) with p < 1-0, has been used here in the
present implementation of the net. This rule has the
effect of partitioning the training set in a manner that
each partition class contains those input patterns
committing to the same category. The net becomes
stable in the sense that the partition is stable between
two consecutive presentations of the training set, even if
the order of the patterns is altered. However, the weights
will depend on the last pattern commiited to the
category. This" is consistent with the formation of
categories because the patterns committing to the same
category are very similar.

The pre-processing of data followed in the present
study is explained in detail elsewhere.® Briefly, the
velocity field is first transformed into a field of
fluctuating velocities with zero mean. These fluctuations
are the ones analysed here. Frames F of 3 x3
consecutive velocity vectors were considered, and
clockwise eddy patterns {CE) were identified by
visnal observation of the initial 1000 consecutive u
and w velocity data measured at five locations in the
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Fig. 5. Samples of structures extracted in the wake behind a circular cylinder at x/D = 30 and 150.
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Table I. Total number of structures classified

Type x/D =30 x/d =150
Classified structures
CE 443 617
ACE 506 583
SPA 287 239
SPB 248 395
SPC 311 276
SPD 267 509
Sink 126 121
Source 138 115

z-direction. A filter was designed to automate this
identification procedure using the angular components
of the vectors forming the eddy patterns. These CE were
used to train the net. Finally, the remaining data were
passed through the net and CE motions were extracted.

The net also performed well for other kinds of
structures, e.g. anticlockwise eddies (ACE), but the
method is time consuming. Ferre-Gine ez al.® suggested
a method to simplify the time required for extracting
additional structures such as the ACE, four types of
saddle points (SPs), and the sources and sinks depicted
in Fig. 3. This method uses the fact that each of these
structures can be obtained by applying to the vectors of
a CE-skeleton one of the components of the group
of movements leaving invariant a squzalre.9 The result of
these transformations when applied locally to each one
of the vectors conforming one CE is given in Fig. 3.
Therefore, the net is trained only once to extract the eight
type of structures given in Fig. 3.

4 RESULTS AND DISCUSSION

Figure 5 shows samples of patterns pertaining to eight
classes of structures extracted from both the near and
far wake data measured in Tarragona with five X-wire
probes located in the z-direction. Table 1 includes the
total number of structures contained in each of these
classes over 30s of recorded data, i.e. the number of
3 x 3 structures centred at the three central measuring z-
locations. The results in this table indicate that the wake
flow at x/D = 30, while dominated by Karman vortices,
already contains the basic structures found in the
turbulent far region at x/D = 150.

Table 1 also shows that the number of CE, ACE and

total saddle points increase from x/D = 30 to 150, as the
flow becomes fully turbulent and three-dimensional. The
number of saddle points identified at x/D =30 is
approximately 70% of the number of Kirmin vortices
contained in the signal. This percentage is in agreement
with the 80% reported by Zhou and Antonia'® at
x/D =20 using critical-point theory. In addition, we
have verified that in every frame where Giralt and
Ferré'! confirm, with template matching, a double rotler
or a pair of counter-rotating eddies, the net classifies two
3 x 3 frames located nearly side by side in the spanwise
direction of the wake, one with a clockwise and the
other with anticlockwise eddy. Also present results are
in agreement with those reported by Kopp et a/.'? using
pattern recognition and orthogonal decomposition.

The increase in CE and ACE observed in Table 1 as
the flow becomes fully turbulent (x/D = 150) is related
to the fact that these vortical motions or eddies in the
x—z plane are capable of extraciing energy from the
mean flow by stretching along the x—y plane of the wake,
i.e. the plane perpendicular to the z-direction where the
probes are located. The CE and ACE can be sustained
and grow as vortical motions in the x—z plane due to
their simultaneous projection towards the edges of the
wake (stretching) in a spiralling motion that contributes
to the lateral spread of the wake (y-direction in Fig. 2).
This is consistent with the results reported by Giralt and
Ferré.!

The total number of sinks and sources, ie. of
structures that could be linked to vertical motions
across or towards the horizontal plane in the p-
direction, remains approximately constant with down-
stream position due to the fact that Karman vortices are
already three-dimensional at x/D = 30. These vertical
motions associated with sinks and sources at x/D = 30
are linked to Karman vortices and, thus, should have a
significant streamwise velocity component in the direc-
tion of the flow, giving rise to ‘jet-like’ motions in the
horizontal x—z plane of the fluctuating velocity field. In
fact, the occurrence of side-by-side jets in this plane with
opposing fluctuating motions would generate vorticity
in the perpendicular y-direction which by stretching
would grow into CEs and ACEs further downstream,
explaining the increase in these structures with increas-
ing x/D, observed in Table 1.

Table 2 includes the number of jet-like structures
identified in the x—z plane at x/D = 30 and 150. Three
different types of jets motions have been considered:;
{i) jets spanning three sensors and with u velocities

Table 2. Number of jets classified

9° 18° 270

x/D =130 x/D =150 x/D =730 x/D =150 x/D =30 x/D =150
Jets (i} 12 10 110 605 421
Jets (ii) 14 18 220 524 723
2412 7064 6001

Jets (iii) 489 361 2876
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Fig. 6. Number of jets versus orientation.

coincident with the direction of the mean flow, (ii) jets
spanning three sensors and with # velocities opposite to
the direction of the mean flow, and (iii) two adjacent jets
with opposite # velocities spanning two sensors. Devia-
tions of 9°, 18° and 27° in the direction of all vectors in
the 3 x 3 frame for cases (i) and (ii), and in the 2 x 3
frame for case (iii) have been allowed for in the analysis.
Table 2 shows that jets are an additional significant class
of structures present in the fully turbulent wake flow,
with class (iii) being the dominant jet flow configuration
both in the near and far wake regions. For any of the
three deviations considered between the vectors in a
frame the number of jets (iii) diminishes with x/D,
suggesting that some of them have become CEs or ACEs
due to the stretching mechanism explained above. These
preliminary results suggest that jet motions could explain
the genesis and evolution of the double-roller structures
or adjacent CE and a ACE in the far wake region, 51113
Figure 6 shows the distribution of the number of jet-
like motions of types (i) and (ii) with misalignments of
18° as a function of the positive and negative orientation
of the ¢ fluctuation. In the near wake most of the jets are
either forward (£45°) or backward (180 4 45°) fluctuat-
ing motions with respect to the x-direction, with a
similar number of structures in each group. In the far
wake turbulence randomises the direction of the forward
fluctuating jets (positive u velocitics). However, the
presence of double-rollers with a strong backward jet-
like motion in their centre significantly increases the
number of backward motions in the wake (negative u
velocities), in agreement with the results reported by

Ferré et al.®

iit

5 CONCLUSIONS

A neural network system based on Fuzzy ARTMAP can

be successfully applied to recognise coherent structures
in the velocity field of a turbulent flow. The analysis of a
turbulent wake flow show that there are clockwise
eddies, anticlockwise eddies, four types of saddle points,
sources, sinks and jet-like motions. The action of
stretching causes the number of eddy motions to
increase as the wake develops. The formation of these
vertical motions seems to be linked to the shearing
action caused by jets of opposing direction occurring
near the central horizontal plane in the near and far
wake regions. Results are consistent with the occurrence
of double-rollers in the far wake reported previously.
The present neural network based system is capable of
extracting valuable structural information and provid-
ing a local understanding of turbulence. These are
necessary to model the turbulent transport processes of
momentum, heat and mass in turbulent flows.
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