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Abstract The effect of the topological structure of a coupled dynamical system in
presence of noise on the signal response is investigated. In particular, we consider
the response of a noisy overdamped bistable dynamical system driven by a periodic
force, and linearly coupled through a complex network of interactions. We find that
the interplay among the heterogeneity of the network and the noise plays a crucial
role in the signal response of the dynamical system. This has been validated by
extensive numerical simulations conducted in a variety of networks. Furthermore,
we propose analytically tractable models based on simple topologies, which explain
the observed behavior.

1 Introduction

The stochastic resonance effect, first conceived as a plausible mathematical expla-
nation of the phenomenon of glacial cycles, has deserved an important part of the
applied mathematics and physics literature of the last thirty years. It represents the
interesting effect manifested in subthreshold nonlinear dynamics where a weak in-
put signal can be amplified by the assistance of noise. Such a favorable result can
be quantitatively explained by the matching of two time scales: the period of the
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input signal (the deterministic time scale) and the Kramers rate (i.e. the inverse of
the average switch rate induced by the sole noise: the stochastic time scale) [1].

General statements about the necessary conditions for the emergence of stochas-
tic resonance are usually related to three main aspects: (i) a dynamic non-linear
system endowing a potential with energetic activation barriers, usually bistable sys-
tems (ii) a small amplitude (usually periodic) external signal, and (iii) a source of
noise inherent or coupled to the system. Neverthless, the response of the system can
be enhanced by coupling it through several configurations, all-to-all, next neighbors
[3], etc. This has been done mainly resorting to a linear coupling among oscillators.

In [9] we showed that this phenomenon is not restricted to the presence of
stochastic fluctuations in the system, giving evidence that an equivalent amplifi-
cation of a external signal can be obtained in a deterministic system of coupled
bistable potentials in complex heterogeneous networks, producing what we termed
topological resonance. Here, our goal is to show that the presence of noise can im-
prove further the response of the system, by combining the topological resonance
with the classical stochastic resonance phenomena.

The paper is organized as follows: in Sec. 2, we present the system model to be
analyzed. The noiseless case is reviewed in Sec. 3. In Sec. 4, the role played by
synchronization in the phenomenon is carefully analyzed. This is followed in Sec.
5 by an investigation of the effect of noise on the coupled dynamics. Finally, our
results are summarized and discussed in Sec. 6.

2 Model equations

The prototype system, where the stochastic resonance phenomenon has been care-
fully analyzed, is represented by the overdamped motion of a particle in a bistable
potential subject to a periodic signal in presence of random fluctuations. In its simple
form, it consists in the following dimensionless equation

X =x—x° +Asin(or) +1(r) (1)

where the bistable potential is V (x) = —x?/2 + x* /4, the external signal A sin(®?)
and 7 (¢) a Gaussian white noise with < n(t) >=0, and < n(t)n(¢') >=2D8(r —
t').

The deterministic system we will study corresponds to a network of elements
obeying Eq.(1). The network is expressed by its adjacency matrix A;; with entries 1
if i is connected to j, and O otherwise. For simplicity, from now on we will consider
only undirected unweighted networks. Mathematically the system reads

X =x; —x; +Asin(ot) + ALjx;+ni(¢)  i=1,..,N, 2)

where L;; = k;;; — A;; is the Laplacian matrix of the network, being k; = Zinj the
degree of node i. Here, 1;(¢) are again Gaussian white noises uncorrelated among
them.



Enhancement of signal response in complex networks induced by topology and noise 3

3 Model without noise

In this section, we review the role played by the heterogeneity in the dynamical be-
havior of the system, already presented in [9]. To this purpose, and to avoid mixing
of nonlinear effects, the noise term has been neglected.

3.1 Numerical results

Numerical experiments was performed over two classes of networks, considered
representative of homogeneous and heterogeneous networks. For the former, an all-
to-all connectivity is chosen, while for the latter the Barabasi-Albert (BA) network.
Such a network model is probably the most studied growing model, which provides
a scale-free (power-law) degree distribution for the degree of its nodes [5].

The mean gain G over different initial conditions was computed as function of the
coupling A, being the gain defined as G = max;x;/A. The results obtained in [9]
showed that the scale-free networks present a clear amplification of the external
signal, for a significant range of values of A that depends on the average degree,
however the all-to-all connectivity does not amplify the signal.

3.2 Analytical treatment

To understand the observed behavior, we analyzed a simple topology consisting on
a star network. Such a topology is simple enough to be mathematically tractable,
and simultaneously capable to capture the heterogeneity found in scale free-type
networks. In fact, the resulting dynamical system can be seen as composed of two
parts: the dynamic of the hub (the highly connected node in the network with N —
1 links), xy, and the remaining nodes, y;, linked to the hub. Then, the dynamical
system (2) can be written out as

N—-1
g =[1= AN = 1)]xy —x; +Asin(ot) + 2 Y v, 3)

i=1

yi=(1=A)y;—y; +Asin(wr) +Axy, i=1,---,N—1. 4)

If the coupling A is sufficiently small, the dynamic of the nodes can be decoupled
from that of the hub, obtaining the well known equation of an overdamped bistable
oscillator. In absence of forcing, the system possesses two stable fixed points cen-
tered around +1, as a first approximation, which corresponds to the minimum of the
potential energy function V;(x) = —y?/2 +y? /4. When the amplitude of the forced
signal is subthreshold, each node i oscillates around the minimum of its potential
with the same frequency of the forcing signal. Then, Eq. (3) can be solved for the
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ith node, and asymptotically for long time yields,

yi(t) ~ G —

PR [@cos(wt) —2sin(wt)], t— Q)
with & = +1 depending on the initial conditions. Inserting the solution above into
the equation governing the dynamic of the hub, it can be rewritten as

iy = —V};(xy) + A’ sin(@t) + B’ cos(ot) + An;, (6)

where n; = YN 1 &, and A’ = A[1 +24(N —1)]/(@*+4), B’ = —2A(N— 1) /(0* +
4). Here Vi (x,n) = —[1 — A(N — 1)]x? /2 4+ x* /4 — Axn represents the effective po-
tential felt by the hub. Notice that the problem has been reduced to the motion of
an overdamped oscillator in an effective potential driven by a reamplified forcing
signal coming from the global sum of the remaining nodes.

From the equation above, two important facts can be observed. Firstly, the clear
separation of scales governing both subsystems. In fact, a slight changes of cou-
pling, decreases dramatically the potential barrier height for the hub, h = [1 — (N —
1)A]?/4, while remains almost constant for the remaining nodes. Moreover, when
A =1/(N — 1) the barrier for the hub disappears, leading to a unique single fixed
point Xy = 0. Secondly, the two possible solutions for the nodes, namely oscilla-
tions around +1, affect the dynamic of the hub as it were induced by a quenched
disorder [6]. Indeed, in the limit N — oo, and by the central limit theorem, 7; behaves
as a random variable governed by a gaussian probability distribution with variance
o2 = N. This is because the initial conditions were randomly chosen. Note that both
mechanisms may cooperate to allow the hub to surmount the potential barrier, and
both are due mainly to the heterogeneity present in the network.

When A # 1/(N — 1), Eq. (6) can be solved in the asymptotic long-time limit,
carrying out the same calculation as before for the remaining nodes. This can be
done in absence of forcing considering that now the hub relaxes to the equilibrium

points, xg)) . Such points are the minimum of the effective potential, and can be de-

termined solving the cubic equation VJ; (xg))) = —[1=A(N —1)]x+x* — An, being
Vi (xg))) =—[1-AN-1)]+ 3(x1(r1(,)))2 > 0. Therefore, as a first approximation, the
resulting dynamics for the hub corresponds to oscillations around the equilibrium
point with lowest potential value, being described by

Xy = — V() %y + A sin(or) + B cos(ot), %
where Xy = xy — x5 (0). Hence, the solution is easily found, and yields

0 1
xH(l,TI)Nfo)—m
H

{[B'®— A’ ay]sin(wt) — [A'@+ B ag]cos(wt)}, t— o

®)
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where ay = V] (xg))). Note that xz (¢,17) depends implicitly on the random variable

1 through the equilibrium point xg)). Knowing the long time evolution for the hub,

its gain can be readily evaluated, and the result is

1
_Aa%i—i-a)2

G(n) V(B o—Aap)+ (A0 + B ay) ©)

In practice, to cancel out the dependence on the initial conditions, averaging over
them is required. However, this turns out to be equivalent to averaging over 7);.
Therefore, the mean gain can be estimated, and is given by

° 72
<G>= / dne WG(n). (10)

1
V27N

The influence on the size of the network, N can be analyzed resorting to the
equation above. In particular, we are interested in the case of N large, and for
A =1/(N—1), when the mean gain attains its maximum value. Making use of
the Laplace method, it is possible to find an asymptotic solution to Eq. (10), in the
limit of infinitely many nodes, N — oo, which is

1 d*G

G>=G(0)+ — —
<G> ()+Ndn2 o

n+0(N~?), (11)

Therefore, the maximum mean gain can be extracted from a network, turns out to
be bounded from above by G(0). This simple analysis was shown to match pretty
well the results of the numerical experiments in [9].

3.3 Extension to scale-free networks

Although a scale-free network is a much more intricate structure than the star net-
work, it shares the finger print of heterogeneity namely the existence of hubs. A neat
picture can be given considering that each highly connected node acts locally as it
were the hub of a star network, with a degree k picked up from the degree distri-
bution. Therefore, for a given coupling A, we can find several star-like networks in
different stages, depending on the degree of its local hubs. Recall that when A = 1 /k,
the maximum signal amplification is attained for a hub with degree k. Furthermore,
increasingly larger values of A would activate local hubs with smaller degrees. In
other words, the corresponding hub would provide the maximum gain of the net-
work for such a coupling. Fig. 1 shows such a predicted behavior in case of a BA
network with average degree < k >= 3. Taking into account that the network pos-
sesses several hubs, it should exist a wide range values of A for which the maximum
gain is achieved. This contrasts with the results found for the star network, and an-
ticipates what we already pointed out for scale-free networks in [9], showing that
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Fig. 1 Degree of the node in a BA network which provides the maximum mean gain < G >, as
function of the coupling. Here N = 500,4 = 0.01, and @ = 27 x 107!

such a network consists on a much more robust topology where the phenomena can
be found.

4 The role of synchronization

As opposed to other nonlinear coupled effects reported in literature [3], where syn-
chronization seems to play a beneficial role in signal amplification, in our case it
is responsible for deteriorating it. In [9], we showed that the mechanism described
above remains valid until a full synchronization occurs. In the limit of large cou-
pling, the nodes become tightly connected, synchronize and behave as a single node.
By synchronization, here we mean spatial synchronization, measured it as the num-
ber of nodes occupying the two possible equilibrium points (the positive, ny and
the negative one, n_). Such a degree of synchronization, conveniently normalized
by the number of nodes, was depicted in [9]. In particular, full synchronization was
attained once a critical coupling was surpassed. Moreover, numerical simulations re-
vealed that the path to synchronization is more pronounced for scale-free networks
with lower average degree. Then, for this case a smaller range of values for which
maximum gain is sustained was observed. Notably similar curves have been found
in the prototype Kuramoto model [7], which describes synchronization phenomena
in nonlinear coupled oscillators, on top of complex networks [8].
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5 Model with noise

Having found that the heterogeneity of the network can induce a signal amplifi-
cation, a natural concern arises on the robustness of the phenomena when random
fluctuations are taken into account. To this purpose, we performed some numer-
ical experiments on the model equation (2), computing the average amplification
< G >, as well as the the single-to-noise ratio (SNR) for several values of the noise
and coupling. This has been done mainly for the star-like network configuration.
We integrate numerically the stochastic differential equation (2) using the Euler-
Maruyama scheme, and compute the power spectral density for the hub, which we
know that provides the maximum signal amplification. The power spectrum was ob-
tained averaging 128 noise realizations of 22° time steps each. The SNR is defined
here as the ratio of the signal power divided by the noise power in the signal bin.
The signal power has been computed by substracting the noise background from the
total power in the signal bin. The chosen amplitude for the input signal now is larger
than in Fig. 1, to facilitate the interwell potential motion. In this way, the amount of
noise neccesary to surmount the barrier potential is reasonably small, and thus the
computational cost required to reduce the statistical error is reduced.
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Fig. 2 Average amplification (G) as function of the coupling A for four different values of the
noise strength. Inset: The SNR output for the hub in the star-like network. Parameters are A = 0.1,
©=21x1072

Figure 2 illustrates how the amplification and SNR curves changes as the noise
increases. The amplification grows initially with increasing noise until reaching a
maximum value, decreasing for larger values of the noise. A small amount on noise
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facilitates the hub to surmount the potential barrier, mainly because the reampli-
fied signal coming from the leaves now increases. This can be explained resorting
to the dynamics of the leaves in presence of noise. As a first approximation this
corresponds to the motion of a noisy overdamped oscillator in a bistable potential,
whose dynamics is well understood in the framework of the stochastic resonance [2].
There, the response of the system to a deterministic signal attains a maximum value
for a nonzero value of the noise signal. Far above such a value the amplification
response decreases when the noise increases. This affects the average amplification
for the hub, in that it decreases correspondingly. In addition, Fig. 2 shows that the
amplification curves peak for lower coupling values for the same reason explained
above. As for the SNR, it grows monotonically with increasing coupling, and noise
values.

In Fig. 3, the average amplification as well as the SNR as function of the noise
is plotted for several values of the coupling strength. Note that the amplification
achieves a maximum value for A = 0.001, decreasing for larger values, while for
the SNR it grows monotonically with the coupling when the noise is sufficiently
large. Therefore, for a given value of the noise, increasing the coupling improves
the signal response of the system in terms of SNR. The explanation rests on the
fact that increasing the coupling reduces the potential barrier, and thus facilitates
the appearance of the characteristic SNR found in stochastic resonance phenomena.
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Fig. 3 Average amplification (G) as function of noise D for four different values of the coupling.
Inset: The SNR output for the hub in the star-like network. Parameters are A = 0.1, @ = 27 x 1072,
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6 Conclusions

We have extended the topological resonant-like effect found in [9] now in presence
of external noise. Further, we have shown that an enhanced topological resonant-like
effect can be induced by the optimization of the noise. The interplay between the
cooperative interaction of nodes connected to the hub due to the topology, and the
beneficial effects of the noise in surmounting the potential barrier, play a crucial role
in the amplification of external signals. Moreover, an adjustment of the coupling can
be used to improve further the system response, and may be important in the design
of accurate remote sensing arrays.
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