Evolution of microscopic and mesoscopic synchronized pattes in complex networks
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Previous studies about synchronization of Kuramoto oscillators in conmgisvorks have shown how local
patterns of synchronization emerge differently in homogeneous datblgeneous topologies. The main differ-
ence between the paths to synchronization in both topologies is rooted inctlith@f the largest connected
component of synchronized nodes when increasing the coupling éetive oscillators. Nevertheless, a recent
study focussing on this same phenomenon has claimed the contraryg stetirthe statistical distribution of
synchronized clusters for both types of networks is similar. Here weiggaextensive numerical evidences
that confirm the original claims, namely, that the microscopic and mep@sdynamics of the synchronized

patterns indeed follow different routes.

PACS numbers: 05.45.Xt, 89.75.Fb

Synchronization is at the core of diverse collective phe-
nomena spanning a variety of life scales from social to
neurological contexts [1-3]. On the other hand, most
of the natural and social systems in which synchroniza-
tion shows up have intricate connectivity patterns between
their units that are nowadays described as complex net-
works [4-7]. Consequently, the question about how syn-
chronization is affected by the architecture of such com-
plex networks has spurred on a number of studies during
the last decade [8]. In previous studies [9, 10], we showed
that local patterns of synchronization evolve towards the
fully synchronized state differently in homogeneous and
heterogeneous complex networks for the case of Kuramoto
oscillators. Namely, the transition to synchronization in
homogeneous networks occurs when several synchronized
clusters of similar (small) sizes collapse into one macro-
scopic cluster. In contrast, in scale-free heterogeneougt
works this transition is ruled by the hubs and takes place
smoothly and centralized around the cluster that contain
the hubs. Recently, the previous results have been chal-
lenged by a new study that focused on the same system
[11] but using coarse grained data and statistical metrics
(rather than non-averaged quantities). Here we provide
extensive numerical evidences that confirm our previous
claims, namely, that the microscopic dynamics of the syn-
chronized patterns indeed follow different routes.

. INTRODUCTION

nized clusters in networks before complete synchroninatio
attained, and the study of the conditions needed for the on-
set of synchronization. The latter is particularly impaottto
address the question of which topology is optimal for syn-
chronization purposes, as far as it is intended as theabilit
the system to form the first synchronized clusters. In faet, t
ubiquity of scale-free networks in natural, social and texh
logical systems has given rise to a number of studies abeut th
onset of synchronization on this type of topology [9, 10, 12—
19], which is characterized by large fluctuations in the num-
ber of connections a node may have. In addition, the same
issue has also been studied on other (scale-free or not) net-
work topologies with additional structural propertiescisas
gradient networks [20], random geometric graphs [25],clus
tered [22, 23] and modular networks [14, 24], or weighted
graphs [26]. These theoretical studies have paved the way to
wards a better understanding of complex synchronization pa
terns found in natural systems. This is the case of the offiset o
synchronization during both epileptic seizures [27] andrak
development [28], or the dynamical organization of thetbrai
cortex [29, 30].

In recent works [9, 10] we compared how local patterns
of synchronization emerge differently in homogeneous and
heterogeneous scale-free complex networks. To this end, we
implemented the Kuramoto model of coupled phase oscilla-
tors [31-33] on top of Erdis-Renyi (ER) and Baradsi-Albert
(BA) scale-free (SF) networks generated using a configura-
tional model introduced in [34]. In these works, we showed
that the main difference between these topologies reli¢lseon
growth of the largest connected component of synchronized

Synchronization is an emergent phenomenon found in nataodes when increasing the coupling between them. Neverthe-
ural and social networked systems, ranging from biologicaless, these works showed these differences in terms ofgevera
clocks to stock market crashes. Understanding synchronizaalues of the relevant physical quantities and thus cartetit
tion processes in networks thus helps advancing on the physn indirect evidence of the differences between the twoanicr
ical description of such different complex systems. Sdverascopic scenarios. The above numerical evidences have been
studies have focused on this subject during the last fewsyeardistrusted recently by Kim et al. [11] who claim that the dif-
and as a result, we already understand some aspects abdertence in the microscopic evolution of synchronized patte
synchronization in networks [8]. Features that have been arin ER and SF networks does not exist. In particular, by using
alyzed in depth include the formation and growth of synchro-a debatable scaling ansatz borrowed from percolation yheor



and finite size scaling to estimate the proposed scaling, lawproperties of these subgraphs can thus be performed accu-
they compute numerically the critical exponents, whichéar  rately as the coupling is increased, allowing the characteri-

to be practically the same in ER and SF networks. zation of those sets of nodes that drive the global dynantics o
In this work we present the evolution of the synchronizedthe system.
clusters in terms of the statistical distributions of the@- The numerical experiment designed to prove the difference

scriptors together with the corresponding raw data asiobdai  between ER and SF networks with respect to the microscopic
from extensive numerical simulations. This new descriptio evolution of synchronized patterns is the following: we -ana
allows to confirm our previous claims, namely, that the micro lyze 10* different realizations of the dynamics on both graphs,
scopic dynamics of the synchronized patterns follow differ ~ every realization corresponds to a network made ugdbs-
routes in homogeneous and heterogeneous networks. The@Hators with average degréé) = 6. For each realization we
fore, will not discuss the weaknesses of the asymptotic apset up a different initial condition by assigning to eachilesc
proach adopted in [11], instead we will offer clear numdrica lator an initial phasef; € [—n, ], and an internal frequency,
evidences that show that our previous claim was correct, and; € [—1/2,1/2], using uniform distributions in both cases.
consequently that their theory should be revised. We integrate the system of equations (1) by means 4f'a
order Runge-Kutta method with a time step/f = 0.02, for
values of) in the interval\ € [0.01,0.15] with A\ = 0.01,

up to achieving the stationary state. The stationary state i
reached when the time evolutionof2) ends up in a constant

) _ vale. At this point, we measure the microscopic patterns of
In order to explore computationally the evolution of syn- gynchronization as described below.

chronization patterns in degree-homogeneous and degree-Tpe degree of synchrony between two connected nodes

heterogeneous complex networks, we consider networks ofnqj is measured by quantifying the phase coherence [9, 10]
N non-identical phase oscillators evolving according to thegs follows

Kuramoto model [31]

Il.  THE MODEL

1 T+T .
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do. N Cl :Tlim Aij

=1
! Each of the value$§C;; } are bounded in the intervil, 1], be-

wherew; stands for the natural frequency of oscillaipa is ~ Ing Ci; = 1 wheni and;j are fully synchronized an@;; = 0
the coupling strength and;; is the connectivity matrix of the When these nodes are dynamically uncorrelated or phygicall
network (defined asl;; = 1 if 7 is linked toj and A;; = 0 disconnected. Note that for a correct computation of the ma-
otherwise). It is well-known that the collective dynamids o trix C the averaging timé@” should be taken large enough (in
coupled Kuramoto oscillators [32, 33] undergoes a trarsiti OUr computationd” = 400) to obtain reliable measures of the
from incoherent dynamics to a synchronized regime. &% degree of coherence between each pair of nodes. Once the de-
creases. The synchronization transition can be monitoyed bdree of synchronization between nodes is measured, we filter
means of an order parameiedefined as the matrixC to construct a filtered matrik' whose elements

are eitherf;; = 1if ¢ andj are considered as synchronized

) L or F;; = 0 otherwise. To unveil what links are regarded as
reé® = — Ze”%' . (2)  synchronized we compute the fraction of synchronized links
N j=1 as
1
The value ofr changes from ~ 0 to r ~ 1 as the system ink = 57 Z Cij (4)

goes from the incoherent state (at low values o the fully
synchronized one (for large enough

When the network of interactions, encoded in the adjacencyhere L is the total number of links of the networl. (=
matrix A;;, has a nontrivial underlying structure, as it is the 257:1 A;;/2). Therefore, one would expect thaL - 7jink
case for ER and SF graphs, itis interesting to analyze the syrlements of the matri¥” haveF;; = 1, while for the remain-
chronization transition by looking at the emergence of $maling elementsF;; = 0. The former elements correspond to
clusters of synchronized nodes. In particular, we focuent the 2L - rj links with the largest values of’;;. The ma-
evolution of these synchronized clusters, that can be seen &ix F' defines a new network, composed of those synchro-
small subgraphs embedded into the network, along the wholeized links. This new network is, in general, composed of
synchronization transition. To this end, one starts at mode several connected components being each of them a subgraph
ate coupling values to observe how certain parts of the syf the original network substrate. Thus, by means of the pro-
tem become synchronized rather fast whereas other regiomgdure described above we can describe these synchronized
still behave incoherently. Increasing the coupling stteng subgraphs (or clusters) for each value\ofThis description
one monitors the synchronized patterns by reconstrudtieg t includes the number of synchronized clusters that coeiist s
subgraphs composed of those nodes and links that share thmiltaneously in the system as well as their sizes, as given by
largest degree of synchronization. The study of the strattu their number of nodes and links, respectively.
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FIG. 1: Size of the giant synchronized component. We plot herd™!G. 2: Evolution of the size of thé&/SC' when increasing the
the probability of finding a giant synchronized component of a givencoupling strength in ER (top) and SF (bottom) networks. To cap-
size, N*¥"<, for different values of the coupling strength The  ture the growth of theZSC' size as the coupling strength is in-
upper and bottom figures correspond to ER and SF networks, respeg€ased fromh to A + dA (with A = 0.01) we plot the function
tively. N = 1000 in both cases. The results for every valuedof N\ + 0X) = fIN®())]. A total number ofl0* numerical
are obtained using a sample if* different realizations. While for ~ continuations have been carried for every value\af [0.01,0.14].

ER networks there is a clear gap R(N®"°), SF networks show a  The color of the dots denote the corresponding valug aé shown

gradual shift to the right without significant jumps (N9 asx  in the color bar.
is increased.

In Figure 1 we show the probability distribution of the size
of the GSC, P(N"°), for several values of the coupling
strength\ for both ER and SF networks. The evolution of the
distributions with\ for ER networks reveals the transition oc-

For each topology, ER and SF, we have solved numericallgurring when different synchronized clusters merge togreth
the system of equations (1) for different values of the cimgpl to form a singleG:SC of macroscopic size. The transition
constant\ in order to follow the evolution of the synchronized occurs between = 0.02 and0.04 and it is mediated by the
clusters. This enables to monitor the coalescence of phirs amearly flat distribution shown fox = 0.03. On the other hand,
synchronized oscillators as a function)ofIn this section we  in SF networks the distributions do not present this tréosit
will show that the microscopic path to synchronization is in and for all values of\ P(NY"°) is clearly peaked and has
deed different for both classes of networks. These difiegen a meaningful mean value for the average size of G
in the behavior can be traced back to the growth of the largestherefore, these distinct behaviors are already indigadtiat
cluster (or subgraph) of synchronized nodes, also known aiie path towards full synchronization depends on the hetero
Giant Synchronized Componen® §C), as a function of\.  geneity of the degree distribution.

It turns out that for degree-homogeneous ER networks, many We also performed numerical experiments of adiabatic con-
different clusters of synchronized pairs of oscillatorsrgee tinuation in\. For a given\, we drive the system to its sta-
together to form a macroscop@&SC when the coupling is tionary state and induce a small perturbation of the cogplin
increased. The union of many small clusters leads to a giargtrength by incrementing it td+ 0 A (with A = 0.01). Then,
component of synchronized pairs that is almost of the size oive record the changes in the size of the'C, i.e,, the num-

the system V) once the incoherent state destabilizes. Theber of new nodes that are incorporated into h&C. This
case is remarkably different for SF networks. In this cdse, t continuation allows us to obtain a more detailed picturédnef t
GSC grows gradually and synchronized oscillators are incor-evolution of the size of th&SC by monitoring its growth
porated to it in an almost sequential way asihis increased. at the level of individual nodes incorporated, and only &os

lll. RESULTS
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FIG. 3: Number of synchronized links in the giant synchronized™!G. 4: Number of synchronized linkd,*™, after increasing the

component. We plot the probability of finding a giant synchronizedcgyfc”ng- Same pf;;lr?csophy as figure 2: We construct the map
component with a given number of links:¥"<, for different values L~ (A +0A) = g[L>™(A)] by following the evolution of the syn-

of the coupling strength. The upper and bottom figures correspond hronizedG:SC' as the coupling\ is increased fronf.01 to 0.15.

to ER and SF networks, respectively. The distributions are obtainedne evolution for the ER network (top) shows two big jumps in the
as in Figure 1. number of links incorporated into t@&SC' in contrast with the con-

tinuous shape of(x) for the SF topology (bottom). Both panels
show a number of0* numerical continuations.

synchronized links between them. In this way, we count
how many clusters of new nodes and synchronized links are \We have also explored the evolution of the number of links
present, and finally compute the size of H8C atthe new\  of theGSC. First, in Figure 3 we have plotted the probability
value. distribution of the number of synchronized links in t&'C

In Figure 2 we plot the functionV®"{\ + 6)\) =  forseveralvalues of. In the case of ER networks we observe
FIN"S()\)] obtained by performing the adiabatic continua-a region of the coupling strength, around= 0.12, with a
tion for several values ok from 0.01 to 0.15. Every single nearly flat distribution, thus signaling again dramaticrajes
numerical experiment is represented by a dot in the maps df the structure of th&€xSC when the coupling is increased
figure 2 so that, after an extensive studg( adiabatic con- in this parametric region. At variance with Figure 1, where
tinuations for each value of) we can observe the trends of the same phenomenology was observed, this flat distribution
the functionsf () of the maps corresponding to SF and ERdoes not correspond to a growth of tG&C, but points out
topologies. The map obtained for ER networks confirms tha@ fast addition of links connecting nodes that already tgelon
when making a small change of the coupling aropdind 0.02 ~ to theGSC (those that joined it at lower values &f. There-
the GSC suddenly jumps from sizes aV¥"¢ ~ 102 to  fore, in this region of\, the synchronized links added do not
NS¢ 6 - 102 (recall that our simulations are done on top contribute to the growth of thé&/SC (it is already of order
of networks of sizeNV = 10%). On the other hand, for SF N), but to the decrease of the average path length between its
networks the map does not present such dramatic changes fapdes (see below). On the other hand, the SF topology shows
all the range of\ values explored. The color of the dots in @ smooth evolution of the probability distributions andithe
both maps reveals that the size of tH§C of ER networks is  corresponding mean values, pointing out a gradual addition
NS¢~ N for low values of) (for which the global degree of synchronized links a& increases.
synchronization is still low [9, 10]) while in SF networkscéu By using again the adiabatic continuationm\inve can care-
sizes proportional tév are only reached for large valuesf fully check how the addition of links to th& SC' takes place.
(in which a large global degree of synchrony is also observediVe performed - 10° numerical experiments of adiabatic con-
[9, 10)). tinuation fromA = 0.01 to A = 0.14 with A\ = 0.01. In
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0.02 0.06 0.10 0.14 the different classes of networks, when changing the cogpli
A . : . -
I IIII' between oscillators. In Figure 5 we show this variation by
plotting the map(l)*¥"<(\ + 6A) = h[(l)*¥™°(\)] obtained

after10* realizations for each value of for both ER and SF
networks. In both cases théPL is normalized to theA PL

of the corresponding substrate network. From the figure, it
is clear that theZSC' of ER networks reached PL values
remarkably larger than those obtained in SF networks along
the synchronization path. Moreover, in ER networks and for
large values of\ we observe a fast collapse to the value of
the APL of the substrate network from configurations that
are twice longer than the substrate. This sudden collapse oc
curs in the region ok where the massive addition of links was
observed in Figure 4. On the other hand, in SF networks the
transition from large values of thé PL to the length of the
substrate networks takes place smoothly since link addigio
also a sequential process bringing new nodes t@H€’.

<I>YCA+3N)/<I>
P N W~ OO N

IV. CONCLUSIONS
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S Summarizing, we have numerically explored the synchro-
1 2 3 4 5 6 7 8 nization of Kuramoto oscillators in complex topologiesaes t
<> /<l> coupling strength is increased driving the system’s dynam-
ics to the fully synchronized state. By carefully character
izing the way in which the size and composition of tH&C'

FIG. 5: Evolution of the average path length of B&'C' along the -
synchronization path. We show the change insfeL of the GSC changes, we have explored the paths towards synchromizatio

of ER (top) and SF (bottom) networks when passing fota A+ if} homogen'eous and heterogeneous network;. All the exten-
with 5A = 0.01. In both panels we plot the relatiofi)**"<(\ +  Sive simulations performed on the two topologies, ER and SF,

§A) = h[(1)*¥"¢())] observed inl0* numerical continuation along ~clearly indicate that the evolution of th@SC' is different in

the range\ € [0.01,0.14]. As denoted by the dotted line in the top both classes of networks.

panel, a sudden decrease of th&’L in the G.SC of ER networks We have presented raw data from the numerical experi-
occurs at\ ~ 0.12 due to the fast addition of links into th@SC. ments without any type of processing, averaging or any other
Such dramatic change is not observed for SFlnetworks and ihe coarse-graining of the information. Therefore, our resplit
gradually decreases as shown by the dotted line. in evidence the statistical analysis performed by the astho
of [11] and the claimed coincidence of the scaling exponents
there derived. The conclusion is then that the suitabilfty o
'such approaches have to be confirmed first and therefore can-
not be used as the base of the claim raised to invalidate our
previous findings, which are doubtlessly corroborated .here
As any theory intended to explain the results of a numerical
experiment, when numerics and theory do not agree, the the-
Bry must be revised.

Figure 4 we show the scatter plots for the number of links
LY\ 4 6X) = g[L»"YN)], for both SF and ER networks.
From this figure it becomes evident that the addition of links
into theGSC' in SF networks proceeds in a smooth way simi-
larly to its growth in size. On the other hand, for ER networks
we find evidences of two sudden jumps during the adiabati
continuation. In particular, for values of the coupling ret
region\ € [0.1,0.12], for which the size of th&SC is of the
order of the size of the substrate ER network, we observed a
sudden addition of links that connect nodes already behongi

to theGSC.

Finally, we analyzed the evolution of the average path This work has been partially supported by the Spanish DG-
length, APL), of the GSC, (1)*¥"¢, when passing from lo- ICYT undet projects FIS2008-01240, FIS2009-13364-C02-
cal to global synchronization. The idea here is to provide an01, FIS2009-13730-C02-02 and MTM2009-13848, and by
other indication of the structural differences in th&'C' for  the Generalitat de Catalunya under project 2009SGR0838.
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