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Previous studies about synchronization of Kuramoto oscillators in complex networks have shown how local
patterns of synchronization emerge differently in homogeneous and heterogeneous topologies. The main differ-
ence between the paths to synchronization in both topologies is rooted in the growth of the largest connected
component of synchronized nodes when increasing the coupling between the oscillators. Nevertheless, a recent
study focussing on this same phenomenon has claimed the contrary, stating that the statistical distribution of
synchronized clusters for both types of networks is similar. Here we provide extensive numerical evidences
that confirm the original claims, namely, that the microscopic and mesoscopic dynamics of the synchronized
patterns indeed follow different routes.

PACS numbers: 05.45.Xt, 89.75.Fb

Synchronization is at the core of diverse collective phe-
nomena spanning a variety of life scales from social to
neurological contexts [1–3]. On the other hand, most
of the natural and social systems in which synchroniza-
tion shows up have intricate connectivity patterns between
their units that are nowadays described as complex net-
works [4–7]. Consequently, the question about how syn-
chronization is affected by the architecture of such com-
plex networks has spurred on a number of studies during
the last decade [8]. In previous studies [9, 10], we showed
that local patterns of synchronization evolve towards the
fully synchronized state differently in homogeneous and
heterogeneous complex networks for the case of Kuramoto
oscillators. Namely, the transition to synchronization in
homogeneous networks occurs when several synchronized
clusters of similar (small) sizes collapse into one macro-
scopic cluster. In contrast, in scale-free heterogeneous net-
works this transition is ruled by the hubs and takes place
smoothly and centralized around the cluster that contain
the hubs. Recently, the previous results have been chal-
lenged by a new study that focused on the same system
[11] but using coarse grained data and statistical metrics
(rather than non-averaged quantities). Here we provide
extensive numerical evidences that confirm our previous
claims, namely, that the microscopic dynamics of the syn-
chronized patterns indeed follow different routes.

I. INTRODUCTION

Synchronization is an emergent phenomenon found in nat-
ural and social networked systems, ranging from biological
clocks to stock market crashes. Understanding synchroniza-
tion processes in networks thus helps advancing on the phys-
ical description of such different complex systems. Several
studies have focused on this subject during the last few years,
and as a result, we already understand some aspects about
synchronization in networks [8]. Features that have been an-
alyzed in depth include the formation and growth of synchro-

nized clusters in networks before complete synchronization is
attained, and the study of the conditions needed for the on-
set of synchronization. The latter is particularly important to
address the question of which topology is optimal for syn-
chronization purposes, as far as it is intended as the ability of
the system to form the first synchronized clusters. In fact, the
ubiquity of scale-free networks in natural, social and techno-
logical systems has given rise to a number of studies about the
onset of synchronization on this type of topology [9, 10, 12–
19], which is characterized by large fluctuations in the num-
ber of connections a node may have. In addition, the same
issue has also been studied on other (scale-free or not) net-
work topologies with additional structural properties, such as
gradient networks [20], random geometric graphs [25], clus-
tered [22, 23] and modular networks [14, 24], or weighted
graphs [26]. These theoretical studies have paved the way to-
wards a better understanding of complex synchronization pat-
terns found in natural systems. This is the case of the onset of
synchronization during both epileptic seizures [27] and neural
development [28], or the dynamical organization of the brain
cortex [29, 30].

In recent works [9, 10] we compared how local patterns
of synchronization emerge differently in homogeneous and
heterogeneous scale-free complex networks. To this end, we
implemented the Kuramoto model of coupled phase oscilla-
tors [31–33] on top of Erd̈os-Ŕenyi (ER) and Barab̀asi-Albert
(BA) scale-free (SF) networks generated using a configura-
tional model introduced in [34]. In these works, we showed
that the main difference between these topologies relies onthe
growth of the largest connected component of synchronized
nodes when increasing the coupling between them. Neverthe-
less, these works showed these differences in terms of average
values of the relevant physical quantities and thus constituted
an indirect evidence of the differences between the two micro-
scopic scenarios. The above numerical evidences have been
distrusted recently by Kim et al. [11] who claim that the dif-
ference in the microscopic evolution of synchronized patterns
in ER and SF networks does not exist. In particular, by using
a debatable scaling ansatz borrowed from percolation theory
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and finite size scaling to estimate the proposed scaling laws,
they compute numerically the critical exponents, which turned
to be practically the same in ER and SF networks.

In this work we present the evolution of the synchronized
clusters in terms of the statistical distributions of theirde-
scriptors together with the corresponding raw data as obtained
from extensive numerical simulations. This new description
allows to confirm our previous claims, namely, that the micro-
scopic dynamics of the synchronized patterns follow different
routes in homogeneous and heterogeneous networks. There-
fore, will not discuss the weaknesses of the asymptotic ap-
proach adopted in [11], instead we will offer clear numerical
evidences that show that our previous claim was correct, and
consequently that their theory should be revised.

II. THE MODEL

In order to explore computationally the evolution of syn-
chronization patterns in degree-homogeneous and degree-
heterogeneous complex networks, we consider networks of
N non-identical phase oscillators evolving according to the
Kuramoto model [31]

dθi

dt
= ωi + λ

N
∑

j=1

Aij sin(θj − θi) i = 1, ..., N (1)

whereωi stands for the natural frequency of oscillatori, λ is
the coupling strength andAij is the connectivity matrix of the
network (defined asAij = 1 if i is linked toj andAij = 0
otherwise). It is well-known that the collective dynamics of
coupled Kuramoto oscillators [32, 33] undergoes a transition
from incoherent dynamics to a synchronized regime asλ in-
creases. The synchronization transition can be monitored by
means of an order parameterr defined as

reiΦ =
1

N

N
∑

j=1

eiθj . (2)

The value ofr changes fromr ≈ 0 to r ≈ 1 as the system
goes from the incoherent state (at low values ofλ) to the fully
synchronized one (for large enoughλ).

When the network of interactions, encoded in the adjacency
matrix Aij , has a nontrivial underlying structure, as it is the
case for ER and SF graphs, it is interesting to analyze the syn-
chronization transition by looking at the emergence of small
clusters of synchronized nodes. In particular, we focus on the
evolution of these synchronized clusters, that can be seen as
small subgraphs embedded into the network, along the whole
synchronization transition. To this end, one starts at moder-
ate coupling values to observe how certain parts of the sys-
tem become synchronized rather fast whereas other regions
still behave incoherently. Increasing the coupling strength,
one monitors the synchronized patterns by reconstructing the
subgraphs composed of those nodes and links that share the
largest degree of synchronization. The study of the structural

properties of these subgraphs can thus be performed accu-
rately as the couplingλ is increased, allowing the characteri-
zation of those sets of nodes that drive the global dynamics of
the system.

The numerical experiment designed to prove the difference
between ER and SF networks with respect to the microscopic
evolution of synchronized patterns is the following: we ana-
lyze104 different realizations of the dynamics on both graphs,
every realization corresponds to a network made up of103 os-
cillators with average degree〈k〉 = 6. For each realization we
set up a different initial condition by assigning to each oscil-
lator an initial phase,θi ∈ [−π, π], and an internal frequency,
ωi ∈ [−1/2, 1/2], using uniform distributions in both cases.
We integrate the system of equations (1) by means of a4th

order Runge-Kutta method with a time step of∆t = 0.02, for
values ofλ in the intervalλ ∈ [0.01, 0.15] with ∆λ = 0.01,
up to achieving the stationary state. The stationary state is
reached when the time evolution ofr (2) ends up in a constant
vale. At this point, we measure the microscopic patterns of
synchronization as described below.

The degree of synchrony between two connected nodesi
andj is measured by quantifying the phase coherence [9, 10]
as follows

Cij = lim
T→∞

Aij

∣

∣

∣

∣

∣

1

T

∫ τ+T

τ

ei[θi(t)−θj(t)] dt

∣

∣

∣

∣

∣

. (3)

Each of the values{Cij} are bounded in the interval[0, 1], be-
ing Cij = 1 wheni andj are fully synchronized andCij = 0
when these nodes are dynamically uncorrelated or physically
disconnected. Note that for a correct computation of the ma-
trix C the averaging timeT should be taken large enough (in
our computationsT = 400) to obtain reliable measures of the
degree of coherence between each pair of nodes. Once the de-
gree of synchronization between nodes is measured, we filter
the matrixC to construct a filtered matrixF whose elements
are eitherFij = 1 if i andj are considered as synchronized
or Fij = 0 otherwise. To unveil what links are regarded as
synchronized we compute the fraction of synchronized links
as

rlink =
1

2L

∑

i,j

Cij , (4)

whereL is the total number of links of the network (L =
∑N

i,j=1 Aij/2). Therefore, one would expect that2L · rlink

elements of the matrixF haveFij = 1, while for the remain-
ing elementsFij = 0. The former elements correspond to
the 2L · rlink links with the largest values ofCij . The ma-
trix F defines a new network, composed of those synchro-
nized links. This new network is, in general, composed of
several connected components being each of them a subgraph
of the original network substrate. Thus, by means of the pro-
cedure described above we can describe these synchronized
subgraphs (or clusters) for each value ofλ. This description
includes the number of synchronized clusters that coexist si-
multaneously in the system as well as their sizes, as given by
their number of nodes and links, respectively.
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FIG. 1: Size of the giant synchronized component. We plot here
the probability of finding a giant synchronized component of a given
size, Nsync, for different values of the coupling strengthλ. The
upper and bottom figures correspond to ER and SF networks, respec-
tively. N = 1000 in both cases. The results for every value ofλ

are obtained using a sample of104 different realizations. While for
ER networks there is a clear gap inP (Nsync), SF networks show a
gradual shift to the right without significant jumps inP (Nsync) asλ

is increased.

III. RESULTS

For each topology, ER and SF, we have solved numerically
the system of equations (1) for different values of the coupling
constantλ in order to follow the evolution of the synchronized
clusters. This enables to monitor the coalescence of pairs of
synchronized oscillators as a function ofλ. In this section we
will show that the microscopic path to synchronization is in-
deed different for both classes of networks. These differences
in the behavior can be traced back to the growth of the largest
cluster (or subgraph) of synchronized nodes, also known as
Giant Synchronized Component (GSC), as a function ofλ.
It turns out that for degree-homogeneous ER networks, many
different clusters of synchronized pairs of oscillators merge
together to form a macroscopicGSC when the coupling is
increased. The union of many small clusters leads to a giant
component of synchronized pairs that is almost of the size of
the system (N ) once the incoherent state destabilizes. The
case is remarkably different for SF networks. In this case, the
GSC grows gradually and synchronized oscillators are incor-
porated to it in an almost sequential way as theλ is increased.
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FIG. 2: Evolution of the size of theGSC when increasing the
coupling strength in ER (top) and SF (bottom) networks. To cap-
ture the growth of theGSC size as the coupling strength is in-
creased fromλ to λ + δλ (with δλ = 0.01) we plot the function
Nsync(λ + δλ) = f [Nsync(λ)]. A total number of104 numerical
continuations have been carried for every value ofλ ∈ [0.01, 0.14].
The color of the dots denote the corresponding value ofλ as shown
in the color bar.

In Figure 1 we show the probability distribution of the size
of the GSC, P (N sync), for several values of the coupling
strengthλ for both ER and SF networks. The evolution of the
distributions withλ for ER networks reveals the transition oc-
curring when different synchronized clusters merge together
to form a singleGSC of macroscopic size. The transition
occurs betweenλ = 0.02 and0.04 and it is mediated by the
nearly flat distribution shown forλ = 0.03. On the other hand,
in SF networks the distributions do not present this transition
and for all values ofλ P (N sync) is clearly peaked and has
a meaningful mean value for the average size of theGSC.
Therefore, these distinct behaviors are already indicating that
the path towards full synchronization depends on the hetero-
geneity of the degree distribution.

We also performed numerical experiments of adiabatic con-
tinuation inλ. For a givenλ, we drive the system to its sta-
tionary state and induce a small perturbation of the coupling
strength by incrementing it toλ+ δλ (with δλ = 0.01). Then,
we record the changes in the size of theGSC, i.e., the num-
ber of new nodes that are incorporated into theGSC. This
continuation allows us to obtain a more detailed picture of the
evolution of the size of theGSC by monitoring its growth
at the level of individual nodes incorporated, and only those
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FIG. 3: Number of synchronized links in the giant synchronized
component. We plot the probability of finding a giant synchronized
component with a given number of links,Lsync, for different values
of the coupling strengthλ. The upper and bottom figures correspond
to ER and SF networks, respectively. The distributions are obtained
as in Figure 1.

synchronized links between them. In this way, we count
how many clusters of new nodes and synchronized links are
present, and finally compute the size of theGSC at the newλ
value.

In Figure 2 we plot the functionN sync(λ + δλ) =
f [N sync(λ)] obtained by performing the adiabatic continua-
tion for several values ofλ from 0.01 to 0.15. Every single
numerical experiment is represented by a dot in the maps of
figure 2 so that, after an extensive study (104 adiabatic con-
tinuations for each value ofλ) we can observe the trends of
the functionsf(x) of the maps corresponding to SF and ER
topologies. The map obtained for ER networks confirms that
when making a small change of the coupling aroundλ = 0.02
the GSC suddenly jumps from sizes ofN sync ∼ 102 to
N sync ∼ 6 · 102 (recall that our simulations are done on top
of networks of sizeN = 103). On the other hand, for SF
networks the map does not present such dramatic changes for
all the range ofλ values explored. The color of the dots in
both maps reveals that the size of theGSC of ER networks is
N sync∼ N for low values ofλ (for which the global degree of
synchronization is still low [9, 10]) while in SF networks such
sizes proportional toN are only reached for large values ofλ
(in which a large global degree of synchrony is also observed
[9, 10]).
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FIG. 4: Number of synchronized links,Lsync, after increasing the
coupling. Same philosophy as figure 2: We construct the map
Lsync(λ + δλ) = g[Lsync(λ)] by following the evolution of the syn-
chronizedGSC as the couplingλ is increased from0.01 to 0.15.
The evolution for the ER network (top) shows two big jumps in the
number of links incorporated into theGSC in contrast with the con-
tinuous shape ofg(x) for the SF topology (bottom). Both panels
show a number of104 numerical continuations.

We have also explored the evolution of the number of links
of theGSC. First, in Figure 3 we have plotted the probability
distribution of the number of synchronized links in theGSC
for several values ofλ. In the case of ER networks we observe
a region of the coupling strength, aroundλ = 0.12, with a
nearly flat distribution, thus signaling again dramatic changes
in the structure of theGSC when the coupling is increased
in this parametric region. At variance with Figure 1, where
the same phenomenology was observed, this flat distribution
does not correspond to a growth of theGSC, but points out
a fast addition of links connecting nodes that already belong
to theGSC (those that joined it at lower values ofλ). There-
fore, in this region ofλ, the synchronized links added do not
contribute to the growth of theGSC (it is already of order
N ), but to the decrease of the average path length between its
nodes (see below). On the other hand, the SF topology shows
a smooth evolution of the probability distributions and their
corresponding mean values, pointing out a gradual additionof
synchronized links asλ increases.

By using again the adiabatic continuation inλ we can care-
fully check how the addition of links to theGSC takes place.
We performed5 ·103 numerical experiments of adiabatic con-
tinuation fromλ = 0.01 to λ = 0.14 with ∆λ = 0.01. In
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FIG. 5: Evolution of the average path length of theGSC along the
synchronization path. We show the change in theAPL of theGSC

of ER (top) and SF (bottom) networks when passing fromλ toλ+δλ

with δλ = 0.01. In both panels we plot the relation〈l〉sync(λ +
δλ) = h[〈l〉sync(λ)] observed in104 numerical continuation along
the rangeλ ∈ [0.01, 0.14]. As denoted by the dotted line in the top
panel, a sudden decrease of theAPL in theGSC of ER networks
occurs atλ ≃ 0.12 due to the fast addition of links into theGSC.
Such dramatic change is not observed for SF networks and theAPL

gradually decreases as shown by the dotted line.

Figure 4 we show the scatter plots for the number of links,
Lsync(λ + δλ) = g[Lsync(λ)], for both SF and ER networks.
From this figure it becomes evident that the addition of links
into theGSC in SF networks proceeds in a smooth way simi-
larly to its growth in size. On the other hand, for ER networks,
we find evidences of two sudden jumps during the adiabatic
continuation. In particular, for values of the coupling in the
regionλ ∈ [0.1, 0.12], for which the size of theGSC is of the
order of the size of the substrate ER network, we observed a
sudden addition of links that connect nodes already belonging
to theGSC.

Finally, we analyzed the evolution of the average path
length, (APL), of theGSC, 〈l〉sync, when passing from lo-
cal to global synchronization. The idea here is to provide an-
other indication of the structural differences in theGSC for

the different classes of networks, when changing the coupling
between oscillators. In Figure 5 we show this variation by
plotting the map〈l〉sync(λ + δλ) = h[〈l〉sync(λ)] obtained
after104 realizations for each value ofλ for both ER and SF
networks. In both cases theAPL is normalized to theAPL
of the corresponding substrate network. From the figure, it
is clear that theGSC of ER networks reachesAPL values
remarkably larger than those obtained in SF networks along
the synchronization path. Moreover, in ER networks and for
large values ofλ we observe a fast collapse to the value of
the APL of the substrate network from configurations that
are twice longer than the substrate. This sudden collapse oc-
curs in the region ofλ where the massive addition of links was
observed in Figure 4. On the other hand, in SF networks the
transition from large values of theAPL to the length of the
substrate networks takes place smoothly since link addition is
also a sequential process bringing new nodes to theGSC.

IV. CONCLUSIONS

Summarizing, we have numerically explored the synchro-
nization of Kuramoto oscillators in complex topologies as the
coupling strength is increased driving the system’s dynam-
ics to the fully synchronized state. By carefully character-
izing the way in which the size and composition of theGSC
changes, we have explored the paths towards synchronization
in homogeneous and heterogeneous networks. All the exten-
sive simulations performed on the two topologies, ER and SF,
clearly indicate that the evolution of theGSC is different in
both classes of networks.

We have presented raw data from the numerical experi-
ments without any type of processing, averaging or any other
coarse-graining of the information. Therefore, our results put
in evidence the statistical analysis performed by the authors
of [11] and the claimed coincidence of the scaling exponents
there derived. The conclusion is then that the suitability of
such approaches have to be confirmed first and therefore can-
not be used as the base of the claim raised to invalidate our
previous findings, which are doubtlessly corroborated here.
As any theory intended to explain the results of a numerical
experiment, when numerics and theory do not agree, the the-
ory must be revised.
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