
Extended Global Dual Priority Algorithm for Multiprocessor Scheduling

 in Hard Real-Time Systems

Josep M. Banús, Alex Arenas

Departament d'Enginyeria Informàtica i Matemàtiques

Universitat Rovira i Virgili

{josepm.banus, alexandre.arenas}@urv.net

Jesús Labarta

Departament d'Arquitectura de Computadors

Universitat Politècnica de Catalunya

jesus@ac.upc.edu

Abstract

In this paper we present a global scheduling method

for shared memory multiprocessor systems that provides a

fixed-priority preemptive scheduling of periodic tasks,

hard aperiodic tasks and soft aperiodic tasks on a set of

identical processors. The method is based on the

functioning of the Dual Priority Scheduling Algorithm

extended to work in a multiprocessor environment. This

algorithm guarantees periodic tasks deadlines and

achieves good mean soft aperiodic response times. We

include hard aperiodic tasks, by using an acceptance

control test for service. Extensive simulations show that

the proposed algorithm gives both high guarantee ratios

for hard aperiodic tasks still achieving low mean

aperiodic response times.

1. Introduction

Traditionally multiprocessor scheduling has been

treated as a particular case of multiple individual

uniprocessor because of the NP-Hard nature of the

problem. This is called local scheduling or partitioning

method. With this methodology, one first allocates

statically tasks to processors and, after that, an optimal

uniprocessor scheduling algorithm is used individually on

each processor. The alternative is the global scheduling

methodology, also called non-partitioning method. In this

case, there is a global scheduler that dynamically binds

tasks to processors, obtaining dynamic load balancing,

fault tolerance, etc.

In the recent years the non-partitioning method is

receiving much more attention from the research

community. The majority of recent works deal with

utilization upper bounds for the Global Rate Monotonic

Scheduling, using these bounds as a necessary

schedulability condition and to perform new tasks

admission control. Usually these upper bounds are too

pessimistic and produce low processor utilizations. Hence,

the solution to find schedulability in heavy loaded systems

usually relies on their simulation. The non-existence of

efficient schedulability tests, the existence of

multiprocessor anomalies and its inherent computational

complexity are some drawbacks of the non-partitioning

method. Some of these drawbacks can be avoided using

some heuristics.

Bearing in mind these problems the consideration of

heterogeneous task types becomes a difficult but important

issue. Usually only a single type of tasks have been

considered (mainly periodic tasks). Recently some works

deal with more than two types of tasks [1,2] using a static

allocation scheme.

 In this paper, we present an extension of the Global

Dual Priority Algorithm [3] to schedule hard aperiodic

tasks on shared memory multiprocessor systems (in

addition to periodic and soft aperiodic tasks). We have

also modified the low priority policy to reduce the number

of preemptions and migrations. Our main goals are: 1) to

provide a low cost acceptance test for hard aperiodic

requests, 2) to guarantee deadlines for accepted hard

aperiodic tasks, 3) to maintain the properties of GDP (i.e.

to guarantee all periodic task deadlines and to control the

delay of periodic task executions to serve aperiodic

requests) and 4) provide a best-effort service to soft

aperiodic tasks, trying to achieve low average response

times. The capability of dynamically balancing work

among processors, especially periodic tasks, will make the

difference in performance with respect local scheduling

algorithms.

We assume a priori knowledge of periodic tasks worst-

case execution times (Ci), periods (Ti), deadlines (Di) and

arrival times (αk= kTi). Aperiodic tasks arrival time are a

priori unknown. All tasks are independent and can be

preempted at any time. Finally, for the sake of simplicity,

we assume all overheads for context switching, task

scheduling, task pre-emption and migration to be zero.

2. Global Dual Priority Scheduling Overview

In this section, we provide an overview of GDP

algorithm. More detailed information can be found in [3]

and [4].

At design time, all periodic tasks are statically

distributed among processors using any bin-packing

algorithm. After that, promotion times of periodic tasks are

computed subtracting to its deadline the WCRT achieved

with a local scheduling (Di – Ci).

Two priority levels are established: the Low Priority

Level (LPL) and the High Priority Level (HPL).

Accordingly, every periodic task has two priorities, one in

each level. The HPL order must be static to guarantee

deadlines (the same used to compute WCRT). On the other

hand, the priority assignment in the LPL can be arbitrary,

even dynamic, because it does not compromise task

deadlines.

At run time, periodic task activations start with its LPL

and are queued in the system Global Ready Queue (GRQ).

The global scheduler (GS) selects tasks from this queue to

be dispatched on any idle processor. Therefore, it is

possible to execute periodic tasks on any processor during

a certain time window that extends from the task activation

to its promotion. This is the dynamic phase (see Figure 1).
It provides some load balancing and reduces the number of

tasks waiting for a specific processor. These tasks can

advance work on other processors, making the system

ready for future demands.

 Ti
k

Low Priority

 High Priority

Dynamic Phase:

execution on any processor

Static Phase:

execution on a pre-designated processor

Di
k
 -WCRTi Di

k

 τik promotion

time

Figure 1: Periodic task τik allocation phases in EGDP

At promotion time of a periodic task, it must execute on

its pre-designated processor. There it will only receive the

interference of other higher priority promoted tasks, being

its deadline guaranteed. This is the static phase (see Figure
1). So, when a task is promoted its priority is changed to

its HPL and, when it is not running, it is moved from the

GRQ to a queue local to the pre-runtime designated

processor. Therefore, in addition to the GRQ, there are m

High Priority Local Ready Queues (HPLRQi with i in

[1..m]) used to queue promoted tasks. Processors with

promoted tasks are not allowed to execute tasks from the

GRQ.

In the presence of aperiodic requests, periodic tasks can

be delayed until their promotions to improve response time

for aperiodic requests. Soft aperiodic tasks do not have

deadlines (nor promotions). Because we want soft

aperiodic tasks to execute before other not urgent tasks, we

assign them a priority equal to zero. This implies the

highest priority in the LPL. When a soft aperiodic task

arrives, it is queued FIFO in a Global Ready Queue, close

to the head, expecting imminent service. See Figure 3 at
the end of this section 3 for more details on the run-time

with heterogeneous tasks. In [3] it is shown that this

scheme achieves good mean soft aperiodic response times.

3. Extended Global Dual Priority

We have improved the priority assignment in the LPL,

which can be arbitrary. We propose to use an Earliest

Promotion First (EPF), where the low priority refers to the

periodic task promotion time instead of a fixed priority.

This will accommodate to the execution of hard aperiodic

tasks in EDF before their deadlines (see following

paragraphs). Furthermore, the number of preemptions and

migrations in the dynamic phase is reduced. In our

simulation experiments we have measured savings in the

number of preemptions and migrations that range from

10% to 18% if EPF is used, compared to the original

proposal in [3]. Note that periodic task deadlines are still

guaranteed because this depends only in HPL priority

order and soft aperiodic tasks still have the highest priority

in the LPL, because absolute promotions used in EPF are

always greater than zero.

To incorporate hard aperiodic tasks in the model, we

use the information provided by periodic task promotion

times in an acceptance test. We keep track of next periodic

task promotion time for every processor (NextPromp). It

can be implemented with a queue for every processor to

queue local promotions. The number of elements in a

queue is fixed and equal to the number of periodic tasks

pre-allocated to the corresponding processor. Every time a

periodic task finishes, the corresponding promotion is re-

queued. Therefore, NextPromp simply is the arrival time of

the head in the promotions queue for processor Pp.

When a hard aperiodic task is assigned to a processor, it

reduces the capability to attend new requests on this

processor. Therefore, we also need to keep track of

assigned computing resources to already accepted hard

aperiodic tasks. So, for every processor Pp there is a

variable that records the last deadline assigned to a hard

aperiodic task in this processor (LastDLp). These variables

store accumulated reservation for already assigned tasks to

processors. Then, the condition to guarantee a hard

aperiodic task H
k
 =(αh

k
, Ch

k
 , Dh

k
) on a processor Pp at

arrival time αh
k
 is:

max(LastDLp ,αh
k
) + Ch

k
 ≤ NextPromp (1)

This condition guarantees the aperiodic task would not

be interrupted by any promoted periodic task, Figure 2.

Last_DL p

Next_Promotionp

Ch
k
 Dh

k

αh
k

time

Figure 2: Hard aperiodic task time constrains for the

acceptance test

Once a hard aperiodic task is assigned to a processor,

its deadline is modified to execute the task with EDF. This

new deadline is what we call effective deadline (D’h
k
). It

has to satisfy the following inequality:

 max(LastDLp , αh
k
) +Ch

k
 ≤ D’hk ≤ min(Dh

k
,NextPromp) (2)

The left hand side of inequality (2) represents the

minimum possible deadline. When a task is assigned this

deadline, it is executed without preemptions. The right

hand side represents the maximum possible deadline,

either by the restriction of the task deadline or by the

promotion of a periodic task. When NextPromp < Dh
k the

effective task deadline is reduced, but the initial deadline

still will be met.

The acceptance test is as follows: (i) find a processor Pp

with no promoted task and satisfying equation (1); (ii)

assign an effective deadline to this task satisfying equation

(2). This algorithm has a cost of O(m) where m is the

number of processors in the system.

Once the effective deadline for a hard aperiodic task is

assigned, the run-time procedure is the same as it is for

periodic tasks (see Figure 3): the hard aperiodic task is
queued in the GRQ with EPF priority assignment and its

promotion is scheduled. Before its promotion, a hard

aperiodic task can execute on any processor. After its

promotion, it has to be executed on the processor where it

has been assigned. It is worth mentioning that at any time

there may be several hard aperiodic tasks accepted in the

system.

Figure 3: EGDP run-time. Squares represent
processors, circles schedulers and rectangles queues. For
any processor Pi , if HPLRQi is not empty the first
promoted task in Pi is executed. Otherwise Pi executes the
first task from GRQ.

Balancing soft and hard aperiodic services is an

important issue. It can be done allocating hard aperiodic

tasks to processors and assigning them different effective

deadlines. When a task is assigned a deadline greater than

its minimum not promoted hard aperiodic tasks can be

preempted by soft aperiodic tasks. These deadline

assignments are intended to increase responsiveness to soft

aperiodic requests. However, it can reduce the number of

hard aperiodic tasks accepted because it increases the

reservation performed for every hard aperiodic task. On

the other hand, if hard aperiodic tasks are executed without

the possibility of a pre-emption, soft aperiodic tasks can be

delayed excessively. This balance between service for soft

and hard aperiodic requests is ubiquitous in all real time

systems.

A hard aperiodic request may be allocated to one of

many processors satisfying inequality (1), and therefore

many allocation schemes can arise. We have tested two of

them: the minimum fit allocation (EGDPmin) and the

maximum fit allocation (EGDPmax). The former consist

on selecting the processor with the earliest promotion and

assigning the minimum deadline provided by the left hand

side of inequality (2), which is expected to increase the

acceptance ratio and is suitable for applications with this

requirement. For the maximum fit allocation, we select the

processor with the latest promotion and we assign the

maximum deadline derived from the right hand side of

inequality (2) to the hard aperiodic request, which is

expected to decrease the acceptance ratio but is suitable for

applications that require soft aperiodic task

responsiveness.

Another important issue is the pre-runtime periodic

tasks allocation. The proposed hard aperiodic task

acceptance test has low costs but can be very unsuccessful

if periodic tasks are wrongly distributed among processors.

The algorithm depends on next promotion times and these

depend on the minimum period in a periodic task set

assigned to a processor. The acceptance test would fail if

all next promotion times were always shorter than hard

aperiodic task computation requests. For example, suppose

every processor has a highest priority task τ1 =(C1= 10, Ti

= Di= 100). Their laxity is 90 and their promotions are 90

time units after their respective arrivals. These promotions

are periodic with period 100. Hence, for every processor

NextPromp ≤ 100 and therefore no hard aperiodic task with
Ch

k
 > 100 can be served.

In general, to be able to apply our algorithm the task set

must satisfy the following condition:

()






 −≤
∈ ii
PSp

k

h CDC
ipτ

minmax (3)

This condition reflects the following constraint: no hard

aperiodic request can be served if the processor that has

the maximum spare time between periodic activations can

not fit the execution time of this request.

When equation (3) is not satisfied, we propose to use a

Least Laxity First-Fit (LLFF) pre-runtime periodic task

allocation. We first sort all periodic tasks according to

increasing laxity (Di-Ci), and then we distribute tasks to

processors using a first fit scheme. This concentrates as

many low-laxity tasks as possible in one processor. This

processor will have very short NextProm times, and the

rest will have longer promotions or even could be empty

(no promotions). Consequently, the acceptance test will be

hard-aperiodic

promotions

 HPLRQ1 P1

 HPLRQ2 GS P2

 HPLRQ3 P3

 Sk

 Hk GRQ

 τik
 other tasks aperiodic tasks

periodic

promotions

more successful and will accept larger execution times for

hard aperiodic tasks. We have used this allocation scheme

even when equation (3) is fulfilled, although in this

situation any greedy scheme that tends to leave some

processors lowly loaded would succeed.

4. Results

The evaluation methodology we have used is based on

the simulation of extensive randomly generated synthetic

task sets. However, due to space restrictions, we are not

able to provide the complete study and results. Therefore,

in this section we will mainly focus on results obtained

with a 65% of periodic load and 30% of aperiodic load.

We have also simulated two other scheduling algorithms: a

partitioning method and a global scheduler. The former

was an adaptation to multiprocessors of the Total

Bandwidth Server (TBS) [5]. Periodic tasks are allocated

statically to processors but aperiodic tasks are considered

globally. The global scheduler simulated was the

Multiprocessor Total Bandwidth Server (M-TBS)

algorithm [6] that is able to deal with heterogeneous task

sets but the performance was equivalent to background

service and no hard-aperiodic task was accepted (although

task sets generated satisfied their conditions).

First, we tested workloads with periodic tasks and hard

aperiodic tasks to check the acceptance test performance.

We measured the guarantee ratio (GR), i.e., the number of

guaranteed hard aperiodic tasks over the total number of

requests. The GR achieved by EGDPmin was 90.2%,

which is very high; while for TBS and EGDPmax it was

about 78%. EGDPmax performance was worst than

EGDPmin performance because it assigns longer deadlines

to hard aperiodic tasks, i.e. it reserves more capacity for

every hard aperiodic task. TBS was worse because tasks

cannot migrate between processors.

Secondly, we performed experiments with all three

types of tasks and we evaluated some tradeoffs between

giving preference to soft aperiodic tasks or to hard

aperiodic tasks. The GR achieved by EGDPmin was 99%,

with TBS was 85% and with EGDPmax it was 89%. Note

that GRs are higher than in the previous experiment

because hard aperiodic workload now is the half. For soft

aperiodic tasks, we measured the mean average response

time (MART). The results obtained were 3.1, 1.9 and 1.07

respectively. EGDPmin had almost 100% GR but its

MART was the worst (more than 3 times the requested soft

aperiodic computation). The best was EGDPmax:

GR=89% and MART= 1.07, both excellent. TBS had only

4% lower GR but MART was almost the double. With

other workloads distributions EGDPmax and TBS

performed similarly but EGDPmin’s MART continuously

increased as the periodic load portion decreased.

Real-time application designers can choose one of both

schemes in order to achieve their goals, and they also can

decide whether to assign a deadline to an aperiodic tasks or

not, accordingly to its importance and to the scheme

chosen. Nevertheless, there are other possibilities between

EGDPmin and EGDPmax. A threshold to balance the

performance for soft or hard aperiodic requests can be

established in EGDP. Now, when measured MART is

lower than the threshold EGDPmin is applied otherwise

EGDPmax is applied. In our experiments with this

threshold, as aperiodic loads became higher, we observed

that MART stabilizes around the threshold. Obviously, the

GR was also affected: the lower the threshold the lower the

GR. We found that a threshold of 1.5 is a good

compromise: soft aperiodic tasks waiting time was only a

50% of its computation time and hard aperiodic GR was

above 86%. This threshold mechanism allows the

application designer to automatically deal with both

effects.

Finally, we evaluated the performance when hard

aperiodic task’s deadlines became tighter. The deadline for

each hard aperiodic task was computed by applying a

scaling factor to its laxity. We observed that GRs tend to

decrease as deadlines became tighter. This implies that

more capacity is available for soft aperiodic requests and

thus the MART tends to decrease. EGDPmin and

EGDPmax tended to converge but EGDPmin’s GR was

still higher because it is less greedy and leaves processors

with more capacity. On the other hand, TBS algorithm was

not able to serve any hard aperiodic task when the scaling

factor was 30% or less. This is because the capacity of the

server was always inferior to the requested services. This

phenomenon does not happen with EGDP because it does

not use any server.

5. Acknowledgement
This research is supported by MCYT project number

TIN2004-07739-C02-01.

6. References
[1] Fohler, G., “Joint Scheduling of Distributed Complex

Periodic and Hard Aperiodic Tasks in Statically Scheduled

Systems”, Real-Time Systems Symposium, December 1995.

[2] Isovic, D., Fohler, G., “Efficient Scheduling of Sporadic,

Aperiodic, and Periodic Tasks with Complex Constrains”,

Real-Time Systems Symposium, 2000

[3] Banús, J.M, Arenas, A., Labarta, J., "Dual Priority

Algorithm to Schedule Real-Time Tasks in a Shared

Memory Multiprocessor", Workshop on Parallel and

Distributed Real-Time Systems, 2003

[4] Burns, A., Wellings, A.J., "Dual Priority Assignment: A

Practical Method for Increasing Processor Utilization",

Proceedings of the Fifth Euromicro Workshop on Real-time

Systems, pp. 48-53, 1993

[5] Spuri, M., Butazzo, G.C., "Scheduling Aperiodic Tasks in

Dynamic Priority Systems", Real-Time Systems Journal,

vol. 10, pp. 179-210, 1996

[6] Baruah, S., Lipari, G., “A Multiprocessor Implementation of

the Total Bandwidth Server”, International Parallel and

Distributed Processing Symposium, 2004

