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Abstract 

In this paper we present a global scheduling method 

for shared memory multiprocessor systems that provides a 

fixed-priority preemptive scheduling of periodic tasks, 

hard aperiodic tasks and soft aperiodic tasks on a set of 

identical processors. The method is based on the 

functioning of the Dual Priority Scheduling Algorithm 

extended to work in a multiprocessor environment. This 

algorithm guarantees periodic tasks deadlines and 

achieves good mean soft aperiodic response times. We 

include hard aperiodic tasks, by using an acceptance 

control test for service. Extensive simulations show that 

the proposed algorithm gives both high guarantee ratios 

for hard aperiodic tasks still achieving low mean 

aperiodic response times. 

1. Introduction 

Traditionally multiprocessor scheduling has been 

treated as a particular case of multiple individual 

uniprocessor because of the NP-Hard nature of the 

problem. This is called local scheduling or partitioning 

method. With this methodology, one first allocates 

statically tasks to processors and, after that, an optimal 

uniprocessor scheduling algorithm is used individually on 

each processor. The alternative is the global scheduling 

methodology, also called non-partitioning method. In this 

case, there is a global scheduler that dynamically binds 

tasks to processors, obtaining dynamic load balancing, 

fault tolerance, etc.  

In the recent years the non-partitioning method is 

receiving much more attention from the research 

community. The majority of recent works deal with 

utilization upper bounds for the Global Rate Monotonic 

Scheduling, using these bounds as a necessary 

schedulability condition and to perform new tasks 

admission control. Usually these upper bounds are too 

pessimistic and produce low processor utilizations. Hence, 

the solution to find schedulability in heavy loaded systems 

usually relies on their simulation. The non-existence of 

efficient schedulability tests, the existence of 

multiprocessor anomalies and its inherent computational 

complexity are some drawbacks of the non-partitioning 

method. Some of these drawbacks can be avoided using 

some heuristics.  

Bearing in mind these problems the consideration of 

heterogeneous task types becomes a difficult but important 

issue. Usually only a single type of tasks have been 

considered (mainly periodic tasks). Recently some works 

deal with more than two types of tasks [1,2] using a static 

allocation scheme. 

 In this paper, we present an extension of the Global 

Dual Priority Algorithm [3] to schedule hard aperiodic 

tasks on shared memory multiprocessor systems (in 

addition to periodic and soft aperiodic tasks). We have 

also modified the low priority policy to reduce the number 

of preemptions and migrations. Our main goals are: 1) to 

provide a low cost acceptance test for hard aperiodic 

requests, 2) to guarantee deadlines for accepted hard 

aperiodic tasks, 3) to maintain the properties of GDP (i.e. 

to guarantee all periodic task deadlines and to control the 

delay of periodic task executions to serve aperiodic 

requests) and 4) provide a best-effort service to soft 

aperiodic tasks, trying to achieve low average response 

times. The capability of dynamically balancing work 

among processors, especially periodic tasks, will make the 

difference in performance with respect local scheduling 

algorithms. 

We assume a priori knowledge of periodic tasks worst-

case execution times (Ci), periods (Ti), deadlines (Di) and 

arrival times (αk= kTi). Aperiodic tasks arrival time are a 

priori unknown. All tasks are independent and can be 

preempted at any time. Finally, for the sake of simplicity, 

we assume all overheads for context switching, task 

scheduling, task pre-emption and migration to be zero. 

2. Global Dual Priority Scheduling Overview 

In this section, we provide an overview of GDP 

algorithm. More detailed information can be found in [3] 

and [4]. 

At design time, all periodic tasks are statically 

distributed among processors using any bin-packing 

algorithm. After that, promotion times of periodic tasks are 

computed subtracting to its deadline the WCRT achieved 

with a local scheduling (Di – Ci). 

Two priority levels are established: the Low Priority 

Level (LPL) and the High Priority Level (HPL). 



Accordingly, every periodic task has two priorities, one in 

each level. The HPL order must be static to guarantee 

deadlines (the same used to compute WCRT). On the other 

hand, the priority assignment in the LPL can be arbitrary, 

even dynamic, because it does not compromise task 

deadlines. 

At run time, periodic task activations start with its LPL 

and are queued in the system Global Ready Queue (GRQ). 

The global scheduler (GS) selects tasks from this queue to 

be dispatched on any idle processor. Therefore, it is 

possible to execute periodic tasks on any processor during 

a certain time window that extends from the task activation 

to its promotion. This is the dynamic phase (see Figure 1). 
It provides some load balancing and reduces the number of 

tasks waiting for a specific processor. These tasks can 

advance work on other processors, making the system 

ready for future demands. 
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Figure 1: Periodic task τik allocation phases in EGDP 
 

At promotion time of a periodic task, it must execute on 

its pre-designated processor. There it will only receive the 

interference of other higher priority promoted tasks, being 

its deadline guaranteed. This is the static phase (see Figure 
1). So, when a task is promoted its priority is changed to 

its HPL and, when it is not running, it is moved from the 

GRQ to a queue local to the pre-runtime designated 

processor. Therefore, in addition to the GRQ, there are m 

High Priority Local Ready Queues (HPLRQi with i in 

[1..m]) used to queue promoted tasks. Processors with 

promoted tasks are not allowed to execute tasks from the 

GRQ.  

In the presence of aperiodic requests, periodic tasks can 

be delayed until their promotions to improve response time 

for aperiodic requests. Soft aperiodic tasks do not have 

deadlines (nor promotions). Because we want soft 

aperiodic tasks to execute before other not urgent tasks, we 

assign them a priority equal to zero. This implies the 

highest priority in the LPL. When a soft aperiodic task 

arrives, it is queued FIFO in a Global Ready Queue, close 

to the head, expecting imminent service. See Figure 3 at 
the end of this section 3 for more details on the run-time 

with heterogeneous tasks. In [3] it is shown that this 

scheme achieves good mean soft aperiodic response times. 

3. Extended Global Dual Priority 

We have improved the priority assignment in the LPL, 

which can be arbitrary. We propose to use an Earliest 

Promotion First (EPF), where the low priority refers to the 

periodic task promotion time instead of a fixed priority. 

This will accommodate to the execution of hard aperiodic 

tasks in EDF before their deadlines (see following 

paragraphs). Furthermore, the number of preemptions and 

migrations in the dynamic phase is reduced. In our 

simulation experiments we have measured savings in the 

number of preemptions and migrations that range from 

10% to 18% if EPF is used, compared to the original 

proposal in [3]. Note that periodic task deadlines are still 

guaranteed because this depends only in HPL priority 

order and soft aperiodic tasks still have the highest priority 

in the LPL, because absolute promotions used in EPF are 

always greater than zero. 

To incorporate hard aperiodic tasks in the model, we 

use the information provided by periodic task promotion 

times in an acceptance test. We keep track of next periodic 

task promotion time for every processor (NextPromp). It 

can be implemented with a queue for every processor to 

queue local promotions. The number of elements in a 

queue is fixed and equal to the number of periodic tasks 

pre-allocated to the corresponding processor. Every time a 

periodic task finishes, the corresponding promotion is re-

queued. Therefore, NextPromp simply is the arrival time of 

the head in the promotions queue for processor Pp. 

When a hard aperiodic task is assigned to a processor, it 

reduces the capability to attend new requests on this 

processor. Therefore, we also need to keep track of 

assigned computing resources to already accepted hard 

aperiodic tasks. So, for every processor Pp there is a 

variable that records the last deadline assigned to a hard 

aperiodic task in this processor (LastDLp). These variables 

store accumulated reservation for already assigned tasks to 

processors.  Then, the condition to guarantee a hard 

aperiodic task H
k
 =(αh

k
, Ch

k
 , Dh

k
) on a processor Pp at 

arrival time αh
k
 is: 

max(LastDLp ,αh
k
) + Ch

k
 ≤  NextPromp (1) 

This condition guarantees the aperiodic task would not 

be interrupted by any promoted periodic task, Figure 2. 
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Figure 2: Hard aperiodic task time constrains for the 

acceptance test 

Once a hard aperiodic task is assigned to a processor, 

its deadline is modified to execute the task with EDF. This 



new deadline is what we call effective deadline (D’h
k
). It 

has to satisfy the following inequality: 

   max(LastDLp , αh
k
) +Ch

k
 ≤ D’hk ≤ min(Dh

k
,NextPromp)  (2) 

The left hand side of inequality (2) represents the 

minimum possible deadline. When a task is assigned this 

deadline, it is executed without preemptions. The right 

hand side represents the maximum possible deadline, 

either by the restriction of the task deadline or by the 

promotion of a periodic task. When NextPromp < Dh
k the 

effective task deadline is reduced, but the initial deadline 

still will be met. 

The acceptance test is as follows: (i) find a processor Pp 

with no promoted task and satisfying equation (1); (ii) 

assign an effective deadline to this task satisfying equation 

(2). This algorithm has a cost of O(m) where m is the 

number of processors in the system. 

Once the effective deadline for a hard aperiodic task is 

assigned, the run-time procedure is the same as it is for 

periodic tasks (see Figure 3): the hard aperiodic task is 
queued in the GRQ with EPF priority assignment and its 

promotion is scheduled. Before its promotion, a hard 

aperiodic task can execute on any processor. After its 

promotion, it has to be executed on the processor where it 

has been assigned. It is worth mentioning that at any time 

there may be several hard aperiodic tasks accepted in the 

system. 

Figure 3: EGDP run-time. Squares represent 
processors, circles schedulers and rectangles queues. For 
any processor Pi , if HPLRQi is not empty the first 
promoted task in Pi is executed. Otherwise Pi executes the 
first task from GRQ. 

 

Balancing soft and hard aperiodic services is an 

important issue. It can be done allocating hard aperiodic 

tasks to processors and assigning them different effective 

deadlines.  When a task is assigned a deadline greater than 

its minimum not promoted hard aperiodic tasks can be 

preempted by soft aperiodic tasks. These deadline 

assignments are intended to increase responsiveness to soft 

aperiodic requests. However, it can reduce the number of 

hard aperiodic tasks accepted because it increases the 

reservation performed for every hard aperiodic task. On 

the other hand, if hard aperiodic tasks are executed without 

the possibility of a pre-emption, soft aperiodic tasks can be 

delayed excessively. This balance between service for soft 

and hard aperiodic requests is ubiquitous in all real time 

systems. 

A hard aperiodic request may be allocated to one of 

many processors satisfying inequality (1), and therefore 

many allocation schemes can arise. We have tested two of 

them: the minimum fit allocation (EGDPmin) and the 

maximum fit allocation (EGDPmax). The former consist 

on selecting the processor with the earliest promotion and 

assigning the minimum deadline provided by the left hand 

side of inequality (2), which is expected to increase the 

acceptance ratio and is suitable for applications with this 

requirement. For the maximum fit allocation, we select the 

processor with the latest promotion and we assign the 

maximum deadline derived from the right hand side of 

inequality (2) to the hard aperiodic request, which is 

expected to decrease the acceptance ratio but is suitable for 

applications that require soft aperiodic task 

responsiveness. 

Another important issue is the pre-runtime periodic 

tasks allocation. The proposed hard aperiodic task 

acceptance test has low costs but can be very unsuccessful 

if periodic tasks are wrongly distributed among processors. 

The algorithm depends on next promotion times and these 

depend on the minimum period in a periodic task set 

assigned to a processor. The acceptance test would fail if 

all next promotion times were always shorter than hard 

aperiodic task computation requests. For example, suppose 

every processor has a highest priority task τ1 =(C1= 10, Ti 

= Di= 100). Their laxity is 90 and their promotions are 90 

time units after their respective arrivals. These promotions 

are periodic with period 100. Hence, for every processor 

NextPromp ≤ 100 and therefore no hard aperiodic task with 
Ch

k
 > 100 can be served. 

In general, to be able to apply our algorithm the task set 

must satisfy the following condition: 

( )






 −≤
∈ ii
PSp

k

h CDC
ipτ

minmax               (3) 

This condition reflects the following constraint: no hard 

aperiodic request can be served if the processor that has 

the maximum spare time between periodic activations can 

not fit the execution time of this request.  

When equation (3) is not satisfied, we propose to use a 

Least Laxity First-Fit (LLFF) pre-runtime periodic task 

allocation. We first sort all periodic tasks according to 

increasing laxity (Di-Ci), and then we distribute tasks to 

processors using a first fit scheme. This concentrates as 

many low-laxity tasks as possible in one processor. This 

processor will have very short NextProm times, and the 

rest will have longer promotions or even could be empty 

(no promotions). Consequently, the acceptance test will be 
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more successful and will accept larger execution times for 

hard aperiodic tasks. We have used this allocation scheme 

even when equation (3) is fulfilled, although in this 

situation any greedy scheme that tends to leave some 

processors lowly loaded would succeed. 

4. Results 

The evaluation methodology we have used is based on 

the simulation of extensive randomly generated synthetic 

task sets. However, due to space restrictions, we are not 

able to provide the complete study and results. Therefore, 

in this section we will mainly focus on results obtained 

with a 65% of periodic load and 30% of aperiodic load. 

We have also simulated two other scheduling algorithms: a 

partitioning method and a global scheduler. The former 

was an adaptation to multiprocessors of the Total 

Bandwidth Server (TBS) [5].  Periodic tasks are allocated 

statically to processors but aperiodic tasks are considered 

globally. The global scheduler simulated was the 

Multiprocessor Total Bandwidth Server (M-TBS) 

algorithm [6] that is able to deal with heterogeneous task 

sets but the performance was equivalent to background 

service and no hard-aperiodic task was accepted (although 

task sets generated satisfied their conditions). 

First, we tested workloads with periodic tasks and hard 

aperiodic tasks to check the acceptance test performance. 

We measured the guarantee ratio (GR), i.e., the number of 

guaranteed hard aperiodic tasks over the total number of 

requests. The GR achieved by EGDPmin was 90.2%, 

which is very high; while for TBS and EGDPmax it was 

about 78%. EGDPmax performance was worst than 

EGDPmin performance because it assigns longer deadlines 

to hard aperiodic tasks, i.e. it reserves more capacity for 

every hard aperiodic task. TBS was worse because tasks 

cannot migrate between processors. 

Secondly, we performed experiments with all three 

types of tasks and we evaluated some tradeoffs between 

giving preference to soft aperiodic tasks or to hard 

aperiodic tasks. The GR achieved by EGDPmin was 99%, 

with TBS was 85% and with EGDPmax it was 89%. Note 

that GRs are higher than in the previous experiment 

because hard aperiodic workload now is the half. For soft 

aperiodic tasks, we measured the mean average response 

time (MART). The results obtained were 3.1, 1.9 and 1.07 

respectively. EGDPmin had almost 100% GR but its 

MART was the worst (more than 3 times the requested soft 

aperiodic computation). The best was EGDPmax: 

GR=89% and MART= 1.07, both excellent. TBS had only 

4% lower GR but MART was almost the double.  With 

other workloads distributions EGDPmax and TBS 

performed similarly but EGDPmin’s MART continuously 

increased as the periodic load portion decreased. 

Real-time application designers can choose one of both 

schemes in order to achieve their goals, and they also can 

decide whether to assign a deadline to an aperiodic tasks or 

not, accordingly to its importance and to the scheme 

chosen. Nevertheless, there are other possibilities between 

EGDPmin and EGDPmax. A threshold to balance the 

performance for soft or hard aperiodic requests can be 

established in EGDP. Now, when measured MART is 

lower than the threshold EGDPmin is applied otherwise 

EGDPmax is applied. In our experiments with this 

threshold, as aperiodic loads became higher, we observed 

that MART stabilizes around the threshold. Obviously, the 

GR was also affected: the lower the threshold the lower the 

GR. We found that a threshold of 1.5 is a good 

compromise: soft aperiodic tasks waiting time was only a 

50% of its computation time and hard aperiodic GR was 

above 86%. This threshold mechanism allows the 

application designer to automatically deal with both 

effects. 

Finally, we evaluated the performance when hard 

aperiodic task’s deadlines became tighter. The deadline for 

each hard aperiodic task was computed by applying a 

scaling factor to its laxity. We observed that GRs tend to 

decrease as deadlines became tighter. This implies that 

more capacity is available for soft aperiodic requests and 

thus the MART tends to decrease. EGDPmin and 

EGDPmax tended to converge but EGDPmin’s GR was 

still higher because it is less greedy and leaves processors 

with more capacity. On the other hand, TBS algorithm was 

not able to serve any hard aperiodic task when the scaling 

factor was 30% or less. This is because the capacity of the 

server was always inferior to the requested services. This 

phenomenon does not happen with EGDP because it does 

not use any server. 
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